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Abstract 
In this study, based differential equations methods are used to solve equations 
because these methods are dependent on boundary value data more than oth-
er mathematical equations. We have calculated neutron flux, criticality and 
geometrical eigenvalue by using multi-group method and solving the neutron 
diffusion equation for finite and infinite cylindrical and spherical reactors in 
this study. For the calculation of the total neutron flux cross sections, we need 
the neutron diffusion equation. Thus, we have established the relationship be- 
tween neuron flow and cross-section of neuron depending on neutron energy. 
Critical calculations have been made by comparing the results with MNCP 
(montecarlo n-partical) simulation methods. For necessary computer calcula-
tions, the programme, Wolfram-Matematica-7 has been used. 
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1. Introduction 

Bessel differential equations are used for the calculations of neutron flux (ϕ ) 
and criticality coefficient (K) and cylindrical geometric structure is taken into 
account as the reactor geometry. Nowadays, the procedure of obtaining electric 
energy from nuclear energy is supplied by light water or heavy water reactors. 
Precious fossil fuel energy sources which can be divided with thermal neutrons 
are used in these reactors. Thermal neutrons are important for the fission reac-
tions. Thermal and delayed neutrons are important for the continuity of the 

How to cite this paper: Hançerlioğullari, 
A., Kurnaz, A., Madee, Y.G.A., Abdalsmd, 
L.A., Shufat, S.A.A., Elhadad, K.M., Almezo-
gi, H.H. and Mansur, M.M.A. (2017) Esti-
mates of the Fast and Termal Flux in Blanket 
of Critical Reactors by Using Multi-Group 
Methods. Open Journal of Applied Sciences, 
7, 68-81. 
https://doi.org/10.4236/ojapps.2017.72007 
 
Received: June 28, 2016 
Accepted: February 25, 2017 
Published: February 28, 2017 
 
Copyright © 2017 by authors and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

   
Open Access

http://www.scirp.org/journal/ojapps
https://doi.org/10.4236/ojapps.2017.72007
http://www.scirp.org
https://doi.org/10.4236/ojapps.2017.72007
http://creativecommons.org/licenses/by/4.0/


A. Hançerlioğullari et al. 
 

69 

nuclear reaction. During the occurring of these important reactions, the thermal 
power and the performance of the materials’ structural reactor change signifi-
cantly.  

The Bessel Equation is formulated as follows and this equation is a special case 
of Bessel’s Equation [1]: 

2
2 2 2

2 ( ) 0.y yx x x n y
xx

∂ ∂
+ + − =

∂∂
                 (1) 

In which n is an integer (n = 0, 1, 2, 3…), if we let , ,x r y⇒ ⇒Φ  and 
2

mn Bα = , after multiplication by r. Using these approaches, we can reach the 
balance equation. From our recent discussions, we recognize this as Bessel’s dif-
ferential Equation. The geometric eigenvalue, shown by 2B  in this equation, is  

given as 
( )2

2

1k
B

L
∞ −= . Leakages, taken into account also in the diffusion equa-  

tion don’t allow neutron flux to be zero on the border [2]:  

( )2 2 2 2 21 . . 0.d dr r d dr B n r+ + − =             (2) 

The solutions of this equation are called Bessel Functions of order n. Since 
Bessel’s differential equation is a second order ordinary differential equation, 
two sets of functions, the Bessel function of the first kind Y1=A Jn(x)0 and Y2 = 
CYn(x) are the solutions to the above formulated equation: [1]-[6]. 

( ) ( ) ( )n ny x AJ x CY x= +                   (3) 

Y1 and Y2 are respectively called as the functions of the Bessel function of the 
first kind and the Bessel function of the second kind [7]-[12]. 

2. Method 
2.1. Reactor Geometry for Neutron Flux 

We have calculated neutron flux, criticality and geometrical eigenvalue by using 
multi-group method and solving the neutron diffusion equation for finite and 
infinite cylindrical and spherical reactors in this study. The neutron distribution 
in the reactor can be explained in these ways. At any time, we can specify the 
neutron angular distribution as Ω by connected to a specified E energy, the 
number of neutrons in a unit volume [4] [5] [6]. We can write the expanded 
neutron diffusion equation in homogeneous reactors as. In the diffusion equa-
tion, D is used for diffusion coefficient and L stands for diffusion length and is 
used for the calculation of diffusion length with the help of 2

a

DL =
∑

 where, a is 
absorbtion macroscopic cross section [13] [14] [15] [16]. 

2 1. p
p

d dD r D
dr drr
 Φ  ∇ Φ =     

                  (4) 

If p = 0, the reactor is plane; if p = 1, the reactor is cylinder and if p = 2, it can 
be thought that the core of the reactor is spherical. In case of critical reactor, 
considering that the number of neutrons will not be changed by the time, the 
Boltzmann diffusion equation turns to: 

2. 0.aD S∇ Φ −∑ Φ + =                      (5) 
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In the equation, the first term 2.D− ∇ Φ  stands for leakage neutrons, the 
second term a∑ Φ  is for the absorption neutron and the last term S is for the 
neutron resources in the reactor core. The expression aS k∞= ⋅∑ ⋅Φ  gives the 
number of absorption in reactor core and the expression a∑ Φ  is in a unit time 
and volume. 

2.2. The Application of Modified Bessel for NDM 

The Bessel function of the second kind of order can be expressed in terms of the 
Bessel function of the second kind also known as the Weber Function. As it is 
shown in Figure 1 by arrows, neutron flux must be finite everywhere the diffu-
sion equation is applied. At Figure 1 is given for a reactor with an infinite R ra-
dius, the flux change is maximum when R = 0. The size of a reactor with the ref-
lector installed can be much smaller than of a reactor with the same material but 
without the reflector. For critical reactor P is possibility of not leaking and ex-
pressed as following formula [5] [6] (Figure 1). 

Rate of neutron absorption .
Rate of neutron absorption Rate of neutron loss

effK
P

K∞

= =
+

     (6) 

2.3. The Flux Distribution in the Bare Infinite Cylinder 

We can write Boltzmann equation for an infinite cylindrical core with the help of 
modified Bessel equation. In this equation, we can write diffusion Equation sepa-
rately from an infinite cylindrical reactor core with a bare R radius .When we ap-
ply the expression Laplace in cylindrical coordination to diffusion equation, 

2 1 d dr
r dr dr

Φ ∇ Φ =  
 

                      (7) 

it becomes: 

( )
2

2 2
2

1 ( ) 10 0.d d r d dr B r B
r dr dr r drdr

Φ Φ Φ  + Φ = ⇒ + + Φ = 
 

       (8) 

For the bare infinite cylindrical reactor, geometrical factor (buckling factor)  

can be written as B2 = ( 2.405
R

)2. The total power of the reactor is written as  

. .f fP E dV= ∑ Φ Φ∫ . 
 

 Figure 1. The model in fast and termal fluxes in reactor reflector andcore. 



A. Hançerlioğullari et al. 
 

71 

2.4. The Flux Distribution in the Bare Finite Cylinder 

For a finite cylindrical core with H height and R radius, the diffusion Equation 
becomes in geometrical eigenvalue: 

( ) ( ) ( )
2

2
0  and2  .405 2.405AJ Cos z H Br rr

R R
Hπ π   = +   

   
Φ =  [2] [4] [6] (9) 

Considering that the flux is zero in the expanded radius of the core, the func-
tion, Y2(Br), must be C = 0 because it is infinite when r = 0. 

In this case the equation, ( ) ( )nr AJ BrΦ =  is the essential solution.  
( ) 0e Sr R R= ⇒ Φ =  is written as  

( ) ( )
2

2
0  and .2.405 2.405

n
r rr AJ B

R
AJ

R
Br    Φ = =   


= 

  
          (10) 

2.5. The Flux Distribution in a Bare Spherical Reactor 

If we express the flux distribution for the spherical reactor that we study on, the 
operator, 2∇ , can be expressed as it is written below. Hence, a diffusion equa-
tion for a spherical reactor is obtained as it’s written below with the help of the 
expression.  

Changing a parameter in the solution of diffusion equation can be written  

with the method of φ  instead of u
r

 [2]. 

2
2

2

2 0r r
rB

r rr
φ φ

φ
∂ ∂

+ ⋅ + =
∂∂

                   (11) 

and written as ,by using the parameter changing method of diffusion equation 
and changing u

r
Φ =  and by converting into a new Bessel function for a finite  

cylindrical reactor core the solution becomes like that. 
2

2
2 0u B u

r
∂

+ =
∂

. Solution  

of this differential equation, 

( ) 1 2cos sin .
A AuBr Br Br

r r r
Φ = = +               (12) 

Considering that the flux is never infinite in anywhere in the reactor, it must 
be 1A  = 0. Therefore, when it is 2A  = A, the last version of the flux distribu-
tion expression becomes ( ) 2 sin

ABr Br
r

Φ =  and geometrical eigenvalue  

factor becomes B2 = 
2

R
π 

 
 

. 

3. The Flux Distribution in HAM and MCNP  

Homotopy analysis method, based on the homotopy term which is one of the 
basements of topology and differential geometry was stated by Shi Jun Liao in 
1992 and since that, it has been applied in various areas of economics and engi-
neering [17] [18] [19]. HAM is an analytical method providing mathematical, 
linear, nonlinear, partial differential and differential-integral solutions for the 
equations. This method can be applied in the boundary conditions of the prob-
lem handled in neutron diffusion Equations, this method includes an equation 
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system like ( ) ( )j j jN u x g x  =   j = 1, 2, 3. If an equation when the space 
boundary conditions of neutron diffusion equation are valid is written, the HAM 
equation is written as ( )| SN r

D
Φ = −    and becomes ( ) ( )0

0
cosn m

m
r b rβ

∞

=

Φ = ∑  
as N is operator  

Considering that the N linear is the operator for the bare finite cylinder with 
HAM method, the Laplace expression changes as it is written below [20] [21] 
[22]. 

( ) ( ) ( ) ( )
2

2 2
2, 0.   [0,1].

d x d x
H k x x kx x k

dxdx
φ φ

φ φ= + + = ∈     (13) 

Considering ( )0 x Aφ = , as a result of the basic HPM operator’s expansion in 
a series, it becomes 

( ) ( ) ( ) ( )2
0 1 2 .x x k x k xφ φ φ φ= + + +              (14) 

It forms an equation set in the upper series of p. when x=0, the expression 
( )0 x Aφ =  is equal to A and finite. 
Therefore, the solution of homotopy equation in terms of power series; 

( ) 2 2 4 3 6 .
4 4.16 4.16.36
A A Ax A k x k x k xφ = − + − +        (15) 

And the expression 1p →  in limiting case; 

( ) ( ) 2

0

1
4 ! !

m
m

m
m

A
x x

m m
φ

∞

=

−
= ∑  or ( ) ( ) 2

0

1
4 ! !

m
m

m
m

A
Br Br

m m

∞

=

−
Φ = ∑         (16) 

for x, diffusion flux [18] [19] [20] [21] [22]. 
This flux must be given in boundary conditions. The Laplace expression for a 

finite cylindrical flux with the homotopy method, Considering 

21 0n
d dRr R

r dr dr
λ  + = 

 
                      (17) 

2 2 2
n B nλ = −  

the solution of diffusion flux distribution equation will be: 

( ) ( ) ( )
0

, n n n n
n

r z a R r Z zλ
∞

=

Φ = ∑                     (18) 

with the method of Homotopy. Considering the partial differential solution, the 
expressions ( ) ( ) ( ) ( ) ( ),  ,  n n nr z R r Z z R r Z zλΦ = , respectively, 

( ) ( ) ( )

( ) ( )

2

0
2

2
2

1
4 ! !

1 ,

cos .

m
mn

n n nm
m

n

A
R r r

m m
d Z n

Z dz
Z z nz

λ λ
∞

=

−
=

= −

=

∑

                   (19) 

As a result, the finite cylindrical flux distribution function can be: 

( ) ( )
0

1 2.40483, cos
4 ! !

m

m
m c c

zr z
a Hm m

π∞

=

−    
Φ =    

   
∑  [18] [19] [20] [21] [22].  (20) 

MCNP simulation is randomly number selection technique from one or more 
probabilistic distribution in a special trial or simulation study. The complexity in 
the nature of the industrial problems unfortunately makes analytical solution 
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impossible diffusion problems. Monte-Carlo simulation method (MCNP) is 
randomly number selection technique from one or more probabilistic distribu-
tion in a special trial or simulation study. The method was then adopted easily 
for solution of much more complicated and non-statistical problems such as In-
tegra-differential evaluation problems [19] [20]. It is possible to calculate the 
multiple integrals on phase transitions by Monte Carlo method [8]. When the 
integral of an f(x) function between [a, b].It becomes: 

( ) ( )
b

a

I f x dx I b a f= → = −∫                (21) 

In this case, its integral is calculated by multiplication of f  average value 
with (b-a). If the arithmetical average of the function on N points, chosen arbi-
trarily between [a, b] is calculated, it becomes  

( )
1

1 .
N

i
i

f f x
N =

= ∑                     (22) 

Therefore, Monte Carlo reaches the integration: 

( )
1

.
N

i
i

b aI f x
N =

−
= ∑                     (23) 

We can benefit from the analyses described in the programme for flux distri-
bution with MCNP method. On the geometrical surface and cells of the reactor , 
we study on, the code requirement is stated with F1, F2, F4, F5, F6, F7, F8, *F1, *F2, 
*F3, *F4, *F5 analysis [13] [14] [15]. 

The above seven tally categories represent the basic MCNP tally types. To 
have many tallies of a given type, add multiples of 10 to the tally number. For 
example, F1, F11, F21, ··· , F981, F991 are all type F1 tallies 

The quantities actually scored in MCNP before the final normalization per 
starting particle are presented in Table 1. Note that adding an (*Fn) changes the 
units and multiples the tally as indicated in the last column of Table 1. The F1 
surface current tally estimates the following quantity: 

( )

( )
1

1

, , , d  d  d  d

, , , d  d  d  d .

A t E

A t E

F J r E t E t A

F E J r E t E t A

µ

µ

µ µ

µ µ

=

∗ = ∗

∫ ∫ ∫ ∫

∫ ∫ ∫ ∫





            (24) 

 
Table 1. Flux distribution with MCNP method. 

Symbols Fn Quantitiy Description Units 

F1 W Surface current MeV 

F2 ( )W Aµ ∗  Surface flux MeV/cm2 

F4 lW T V∗  Surface flux MeV/cm2 

F5 ( ) ( ) ( )2exp 2W p Rµ λ π∗ ∗ −  Flux at a point or ring detector MeV/cm2 

F6 ( ) ( )l T aW T E H E mσ ρ∗ ∗ ∗ ∗  
Track length estimate of  

energy deposition 
MeV/gm 

F7 ( )l f aW T E Q mσ ρ∗ ∗ ∗ ∗  
Track length estimate of  
fission energy deposition 

MeV/gm 

F8 sW  put in bin sE W W∗  Pulse height tally MeV 
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This tally is the number of particles (quantity of energy for *F1 crossing a sur-
face. The scalar current is related to the flux as  

( ) ( ), , , , , .J r E t r E t Aµ µ= Φ
 

 The range of integration over area, energy, time, 
aand angle ( ), , ,A E t µ  can be controlled by FS, E, T, and C cards, respectively. 
The FT card can be used to change the vector relative to which µ  is calculated 
(FRV option) or to segregate electron current tallies by charge  

The F2, F4 and F5 flux tallies are estimates: 

( )

( )

( )

( )
( )

( )

2

2

4

4

5

5

, , d d

, , d d

, , d d

, , d d

, , d d

, , d d .

A t E

A t E

V t E

V t E

t E

t E

dAF r E t E t
A

dAF E r E t E t
A

dVF r E t E t
V

dVF E r E t E t
V

F r E t E t

F E r E t E t

= Φ

∗ = ∗Φ

= Φ

∗ = ∗Φ

= Φ

∗ = ∗Φ

∫ ∫ ∫

∫ ∫ ∫

∫ ∫ ∫

∫ ∫ ∫

∫ ∫

∫ ∫













                 (25) 

4. Track Lenth Estimate of Cell Flux (F4) 

The definition of particle flux is ( ) ( ), , , ,r E t N r E tυΦ =
 

, where υ  = particle 
velocity, N = particle density = particle weight/unit volume. Roughly speaking, 
the time integrated flux: 

( ) d, , d  d l
V t E

Vr E t E t W t V WT V
V

υΦ = =∫ ∫ ∫


           (26) 

More precisely, let ds = vdt. Then the time integrated flux: 

( ) ( )d d, , d  d , , d  d
V E t E s

V Vr E t E t N r E t s E
V Vυ

Φ =∫ ∫ ∫ ∫ ∫ ∫
 

        (27) 

Beacuse ( ), , dN r E t s


 is a track length density, MCNP estimates this integral 
by summing lWT V  for all particle tracks in the cell, time range and energy 
range. Because of the track length term T  in the numerator, this tally is known 
as a track length estimate of the flux. It is generally quite reliable because there 
are frequently many tracks in a cell (compared to the number of collisions), 
leading to many contributions to this tally. 

5. Surface Flux (F2) 

The surface flux is a surface estimator but can be thought of as the limiting case 
of the cell flux or track length estimator when the cell becomes [10] [11]. 

( ) ( ) ( )2 / cosF W A W Aδ θ δ µ= =               (28) 

As the cell thickness δ  approaches zero, the volume approaches Aδ  and 
the track length approaches δ µ , where cosµ θ= , the angle between the 
surface normal and the particle trajectory. This definition of flux also follows di-
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rectly from the relation between flux and   

( ) ( ), , , , ,J r E t r E t Aµ µ= Φ
 

                (29) 

MCNP sets .1µ < .. 
The F2 tally is essential for stochastic calculation of surface areas when the 

normal analytic procedure fails. Surface areas when the normal analytic proce-
dure fails [20] [21]. 

6. Calculations 

We have calculated a specific eR  for the flux distribution expression written 
below that we obtained for spherical reactors, ( )rφ  which stands for the r val- 

ues for each different expansion values of r = 
2

a
π 
 
 

. We have obtained the re-  

sults in Table 2 by calculating neutron flux manually for different r values in this 
formula. As we stated before, eR  (expansion radius) is the distance where neu-
tron flux is zero out of the reactor. We can see that in case of er R= , ( )eRφ  is 
zero. 0φ  is the flux in the reactor center, namely is the maximum flux when r = 
0.  

In Table 3 microscopic influence lines of some of the materials which are 
used as fuel in fission reactor has shown. 

 
Table 2. The flux distribution in a spherical reactor (Re = 5 m). 

R (m) ( )rφ  m3/s 

1 0.936 ( )rφ  

2 0.757 

3 0.505 

4 0.234 

5 0.000 

6 −0.156 

7 −0.216 

8 −0.189 

9 −0.104 

10 0.000 

 
Table 3. Thermal neutron microscopic influence lines of the fuel materials [6]. 

Fuel Material ( )a barnσ  ( )b barnσ  ( )f barnσ  ( )s barnσ  

Natural uranium 714 3.2 4.2 8.3 

235Pu  683 101 582 10 

239U  1012 270 742 9.6 

233U  579 48 531 - 

238U  2.75 2.75 - 8.3 
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In Table 2 shows the flux distribution depending on the distance and theneu-
tronic data of flux distribution for a homogeneous spherical core in case of R. 

Connections which are obtained from the result of neutron diffusion equa-
tions and their boundary-value conditions obtained by using modify Bessel equ-
ations are shown in Table 4 in detail. In Table 4 maximum flux ratio on average 
flux, geometric buckling (B2) and flux distribution equations of some reactor 
geometries are shown. Similarly the datum given for the expansion radius for the 
same spherical reactor in Table 5 and the flux distribution is given in Figure 2 
and Figure 3 after obtained by using Matematica-7 programme. Similarly, in 
Table 6 the flux distribution in a finite cylindrical reactor for R = 2.405 and H = 
4.81 is given in Figure 3. 

 
Table 4. NEM and MCNP calculated flux values for the infinite bare cylinder (R = 2.405 
m). 

r/R Modified Bessel (NDM) MCNP 

0.0 1.000000 1.000000 

0.1 0.908456 0.945652 

0.2 0.896895 0.816547 

0.3 0.812834 0.752649 

0.4 0.746532 0.706494 

0.5 0.684865 0.65181 

0.6 0.513484 0.551561 

0.7 0.435479 0.406465 

0.8 0.201525 0.254468 

0.9 0.102499 0.113644 

1.0 0.000000 0.000249 

 
Table 5. The flux distribution in a spherical reactor for Re = 2 m. 

R (m) ( )rφ  

0.25 0.975 

0.50 0.900 

0.75 0.758 

1.00 0.637 

1.25 0.470 

1.50 0.300 

1.75 0.139 

2.00 0 

2.25 −0.108 

2.50 −1.800 

2.75 0.214 

3.00 0.213 



A. Hançerlioğullari et al. 
 

77 

 
Figure 2. The flux distribution in a spherical reactor for Re = 2 m. 

 

 
Figure 3. The flux in infinite cylindrical reactor for R = 2 m and R = 2.405 m (H = 4.81 
m). 

 
Table 6. Flux distributions in a finite bare and in an infinite bare reactor. 

r Φ  (r) (Finite Flux) (R = 2.405 m) Φ  (r) (Infinite Flux) (R = 2 m) 

0 1.000 1.000 

0.5 0.873 0.900 

1.0 0.555 0.637 

1.5 0.142 0.300 

2.0 0.117 0.000 

2.5 0.163 −1.100 

3.0 2.043 −0.213 

3.5 8.217 −0.128 

4.0 25.02 0.000 
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In Figure 3 is show that flux distribution in a spherical the reactor for radius 
R = 2 m. It appears to be greater in a small radius of the neutron flux. In Figure 
3 and Figure 4, core flux distribution are shown for the radius R = 2 and R = 
2.405 in finite and the infinite cylindrical. By using a modified Bessel function 
for infinite cylindrical reactor R = 2 m of the radius 0, 1, 2 state of flux distribu-
tions is shown in Figure 5. In both of the graphics, a view where neutron flux 
decreases from the center of reactor till the expansion radius is drawn and takes 
the value 0. After this point, it is seen that it takes negative values. One of the 
boundary conditions for reactors shows that the neutron flux can never be zero 
where the diffusion equation is applied. Actually we cannot say that these nega-
tive results are in contradiction with this boundary condition. 

Because we applied the diffusion equation till the point from r = 0 to r = Re. 
We should analyze the results we found in spherical reactors for neutron flux in 
order to be able to compare. In the solution of diffusion equation in cylindrical 
reactors, a different way is used than we used for the solution of diffusion equa-
tion in spherical reactors (see in Table 7). 

 

 
Figure 4. The flux distribution in a finite cylindrical reactor for R = 2 m. 

 

 
Figure 5. The flux distribution in case of n = 0, 1, 2 for an infinite cylindrical reactor. 
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Table 7. Flux distributions finite and infinite height 2H flux distributions for cylinder 
radius R finite. 

Data number R (m) H (m) Finite Flux Infinite Flux 

1 0.25 0.25 0.19473 0.19473 

2 0.50 0.50 0.33739 0.33739 

3 0.50 1.00 0.38113 0.38113 

4 0.50 2.00 0.40421 0.40421 

5 0.50 4.00 0.41356 0.41356 

6 1.00 1.00 0.53775 0.53775 

7 1.00 2.00 0.58683 0.58683 

8 1.00 4.00 0.60845 0.60845 

9 2.00 1.00 0.66619 0.66619 

10 2.00 2.00 0.78462 0.78462 

11 2.00 4.00 0.73978 0.73978 

12 4.00 1.00 0.73978 0.73978 

 
In Table 2 we can see the geometric eigenvalue flux distribution expressions 

found for finite cylindrical and infinite cylindrical reactors. We have chosen the 
flux distribution obtained for a finite cylindrical reactor to compare. Because the 
spherical reactor that we study on is handled as a finite system. As it is seen from 
the graphic, there is no sinusoidal change in the flux distribution obtained for 
cylindrical reactors. We can say that it draws a picture where the flux decreases 
till a specific distance from the maximum flux and after reaching the zero it in-
creases. We can also say that the flux in spherical flux takes negative values as 
much as the twice of the expansion radius after decreasing till the expansion ra-
dius from maximum flux. 

7. Conclusion and Discussion 

Nuclear reactors are the complex machine-equipment systems constructed 
through the use of advanced engineering technologies. Fission-type reactors are 
devices developed to generate energy at a stable power by taking the chain reac-
tion under control [15]. Bessel differential equations are second order ordinary 
differential equations and they offer solutions in the cylindrical, spherical and 
polar coordinates easily and also required physical parameters in the reactor can 
easily be obtained through the use of Bessel differential equations [8]. Neutron 
flux (φ ) in the reactor changes according to the geometry of the reactor. Three 
of the geometries in the field have a smallest critical size and the cube is the 
largest [8]. Spherical geometry is very difficult to build. For this reason, most of 
the reactors are constructed in the shape of a cylinder. The size of the reactor 
must be greater than the minimum critical size to allow for combustion of fuel 
and accumulation of fission products that are absorbing neutrons for an infinite 
reactor which can be defined k∞ = ε η fp, as well as, define keff for a finite reactor 
with leakage terms. At this here, keff; reactor critical coefficient, B; buckling coef-
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ficient, Ls; fast neutron moderation length, L; diffusion length and Pf ; reactor 
shape factors and Pt; reactor size factors. In the cylindrical reactor case, for 
height and radius, the following is given [15]. 
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