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Abstract 
The performance on prediction by mathematical models which represent the conceived image of a 
system such as hydrology is oftentimes represented through calibration and verification pro- 
cesses. Oftentimes a best fit between observed and predicted flows is obtained through correla-
tion coefficient (R2) and the Nash Sutcliffe model efficiency (NSE) by minimizing the average Root 
Mean Square Error (RMSE) of the observed versus simulated flows. However, these days, a new 
paradigm is emerging wherein accounting for the flow variability for the protection of freshwater 
biodiversity and maintenance of goods and services that rivers provide is paramount. Therefore, 
from an ecohydrology perspective, it is not clear if the existing method of model calibration meets 
the needs of the riverine ecosystem at its best. Thus, this study investigates and proposes a me-
thodology using entropy theory to gage the calibration of Soil and Water Assessment Tool (SWAT) 
from an ecohydrology perspective characterized by the natural flow-regime paradigm: Indicators 
of Hydrologic Alteration. 

 
Keywords 
Principle of Maximum Entropy, Ecohydrology, Indicators of Hydrologic Alteration, Maximum  
Entropy Ordered Weighted Averaging, Soil and Water Assessment Tool, Calibration 

 
 

1. Introduction 
Mathematical models of watershed hydrology are employed to simulate the effects of various conservation pro-

 

 

*Corresponding author. 

http://www.scirp.org/journal/ojapps
http://dx.doi.org/10.4236/ojapps.2015.57035
http://dx.doi.org/10.4236/ojapps.2015.57035
http://www.scirp.org
mailto:sivaloga@hushmail.com
http://creativecommons.org/licenses/by/4.0/


S. Mylevaganam et al. 
 

 
345 

grams and to determine suitable conservation programs for given watersheds and agronomic settings [1]. Soil 
and Water Assessment Tool (SWAT) is such model. SWAT is a basin-scale, continuous-time model and oper-
ates on a daily time step [2]. SWAT has been developed to quantify the impact of land use and management on 
water, sediment, and agricultural chemical yields from ungauged watersheds. The model is validated by the 
agreement between observed and predicted flows, using parameter values obtained by calibration.  

Model calibration is the process of estimating model parameters by comparing model predictions for a given 
set of assumed conditions with observed data for the same conditions [3]. A number of studies have addressed 
model evaluation statistics [4]. Borah and Bera [5] present an excellent review of values for various statistics 
used in hydrologic and nonpoint-source model applications. More importantly, [1] provides guidance on ac-
ceptable ranges of values for each statistic. By far the most widely used statistics reported for hydrologic cali-
bration are the correlation coefficient (R2) and the Nash Sutcliffe model efficiency (NSE) coefficient. The R2 
value measures how well the simulated versus observed regression line approaches an ideal match and ranges 
from 0 to 1, with a value of 0 indicating no correlation and a value of 1 representing that the predicted dispersion 
equals the measured dispersion [1] [6]. The NSE ranges from −∞ to 1 and measures how well the simulated 
versus observed data matches the 1:1 line whose slope is equal to 1.  

However, there is now a broad acceptance that it is in society’s best interests to recognize that rivers and ad-
jacent wetlands need adequate water to sustain ecological processes and associated goods and services [7] [8]. 
The flow variability is important to the health of riverine ecosystems. They have to be varied at different times 
of the year to keep the ecosystem in good working order by mimicking the natural variability being seen in river 
flows. Low flows, for example, trigger migration and reproduction within different animal species. On the other 
hand, high flows, for example, help some riverside plants to reproduce and also ensure that river channels keep 
their shapes and do not silt up [9] [10]. Therefore, it is now recognized that the full range of natural intra- and 
inter-annual variation of hydrological regimes and associated characteristics of timing, duration, frequency and 
rate of change, as shown in Table 1, are critical to sustain the full native biodiversity and integrity of riverine 
ecosystems (the “natural flow-regime paradigm”: Indicators of Hydrologic Alteration (IHA) [9]-[11]).  

Therefore, performing the calibration process just by looking at the above discussed statistical measures of 
observed versus predicted flows may not portray how well the predicted system will meet the need of the rive-
rine ecosystem that is defined as a function of temporal variations in river flows. Getting a best fit between ob-
served and predicted flows through NSE or R2 by minimizing the average Root Mean Square Error (RMSE) of 
the observed versus simulated flows may lose the vital core needed to sustain the riverine ecosystem. 

Moreover, in SWAT and in contemporary hydrological models, to capture the spatial variability, the wa-
tershed is subdivided into few subwatersheds/subbasins. The modeler can define as many or as few subwater-
sheds as desired according to the critical source area (CSA), the threshold at which stream network appears. This 
has been exercised as a trial and error process. Presently, there are no standard protocols for deciding what 
scheme to adopt to capture the spatial variability through subwatersheds. Each subwatershed is then further di- 
 
Table 1. Summary of Hydrological Parameters Used in IHA [11].                                                   

Group Regime  
Characteristics 32 Parameters 

Group 1:Magnitude of monthly water conditions Magnitude 
Timing Mean value for each calendar month 

Group 2:Magnitude and duration of annual  
extreme water conditions 

Magnitude 
Duration 

Annual min/max of 1 day means 
Annual min/max of 3 day means 
Annual min/max of 7 day means 

 Annual min/max of 30 day means 
 Annual min/max of 90 day means 

Group 3:Timing of annual extreme water conditions Timing Julian date of each annual 1 day  
minimum and maximum 

Group 4:Frequency and duration of high and low pulses 
Frequency 
Duration 

Number of high and low pulses each year 
Mean duration of high and low pulses 

Group 5: Rate/frequency of consecutive  
water-condition changes Rates of Change 

Means of all positive differences between daily values 
Means of all negative differences between daily values 

Number of rises 
Number of falls 
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vided into a number of hydrologic representative units (HRU) based on unique combinations of land use and 
land cover (LULC), and soil types within the subwatershed. To simplify the hydrological system further, an 
HRU threshold is applied to remove smaller HRUs. 

However, the question is whether these conventional calibrated flows at the selected spatial scales (i.e., CSA 
and HRU threshold) best represent the need of the riverine ecosystem that is characterized through IHA. Fur-
thermore, which one of the considered scales has to be considered as the best model that best represent the need 
of the riverine ecosystem. It is also worth mentioning that such calibrated models are employed subsequently to 
analyze the water management scenarios to reflect the real nature. Thus, will these calibrated models mimic the 
nature that’s being observed at the gage location subsequently at subwatershed scale from an ecohydrology 
perspective? Therefore, there has to be a way to gage this to ensure that the best calibrated model reflects the 
need of the riverine system at its best. In other words, there has to be a way to gage the alteration on the need of 
the riverine system caused by the best calibrated model. Thus, it is the objective of this study to investigate the 
SWAT calibration at different spatial scales from an ecohydrology perspective characterized by the natural 
flow-regime paradigm: Indicators of Hydrologic Alteration.  

2. Soil and Water Assessment Tool (SWAT) 
SWAT is a river basin or watershed scale model developed by the United States Department of Agricul-
ture(USDA)—Agricultural Research Service(ARS) to predict the impact of land-management practices on water, 
sediment and agricultural chemical yields in large complex watersheds with varying soils, land use and man-
agement conditions over long periods of time [2]. SWAT operates on daily time step and predicts water quality 
and quantity at the subwatershed level. The watershed is defined by the main watershed outlet as chosen by the 
user. To capture the spatial variability, the watershed is then subdivided into subwatersheds/subbasins. The 
modeler can define as many or as few subwatersheds as desired according to the CSA, the threshold at which 
stream network appears. This has been exercised as a trial and error process. Presently, there are no standard 
protocols for deciding what scheme to adopt to capture the spatial variability through subwatersheds. Each sub-
watershed is then further divided into a number of HRUs based on unique combinations of LULC, and soil types 
within the subwatershed. To simplify the hydrological system further, an HRU threshold is applied to remove 
smaller HRUs. However, these HRUs are not spatially defined within the subwatershed. They are simply ac-
counting categories which represent the total area of the unique LULC, and soil type they represent within a 
subwatershed. A subwatershed contains at least one HRU, a tributary channel and a main channel or reach. 
Loads from the subwatershed enter the channel network in the associated reach segment. HRU-scale processes 
are simulated separately for each HRU and then aggregated up to the subwatershed scale and then routed 
through the stream system. Details of SWAT are presented by [2].  

3. Study Area 
The study area is Kings Creek, a tributary of the Cedar Creek River basin, Texas (Figure 1). It has a drainage 
area of 614 km2 as delineated from a USGS streamflow gaging station (32.513˚N, 96.3286˚W). Its elevation 
ranges from 107 m to 190 m and its land use is mainly hay (34%) and range (34.5%). The remaining areas were 
composed of agricultural, forest-deciduous, etc. The average annual precipitation in the study area is 975 mm.  

4. Methodology and Discussion of Results 
Input data on topography were extracted from a digital elevation model (DEM). The 30 m DEM used in deli-
neating the watersheds was taken from the NHDPlus dataset, an integrated suite of application-ready geospatial 
data products envisioned by the U.S. Environmental Protection Agency. Soil dataset was obtained from the 
USDA-NRCS State Soil Geographic Data Base (STATSGO). Digital land use/land cover data for the Kings 
Creek watershed was obtained from the National Land Cover Dataset (NLCD). The observed daily streamflow 
data used for calibrating SWAT was obtained from the USGS National Water Information System (NWIS). The 
study area was set up to run on a daily time step. As shown in Figure 2, as presently there are no standard pro-
tocols for deciding what scheme to adopt to capture the spatial variability through subwatersheds and HRUs, 
SWAT was run for a particular combination of CSA and HRU threshold. 

The percentile of subwatershed scale was obtained by considering the lower most CSA (1000ha) as the 0%  
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Figure 1. Kings Creek, a Tributary of the Cedar Creek River Basin, Texas. 

 

 
Figure 2. Spatial Scale in SWAT.                      

 
and the upper most CSA (5000 ha) as the 20%. The percentile of HRU scale was obtained by considering an 
equal threshold on landuse and soil. In other words, a 5% HRU scale represents a 5% landuse and 5% soil. Sur-
face runoff was calculated using the Soil Conservation Service (SCS) curve number method. The Penman- 
Monteith method was used to determine potential evapotranspiration. Channel water routing was performed us-
ing the Muskingum routing method.  

4.1. Goodness of Fit Criteria 
Manual and automatic calibration methods were combined for calibrating SWAT using the measured stream 
flow data at (32.513˚N, 96.3286˚W). For this analysis, twenty years, from 1 January 1963 to 31 December 1982, 
of meteorological and hydrometric flow data were utilized, including two years of “warm-up” period. The ob-
jective function was to minimize the RMSE of observed versus simulated flows. RMSE was defined as: 

( )
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where n is the number of time steps, Qobs,i is the observed streamflow at time i, and Qsim,i is the simulated 
streamflow at time i. The NSE was used to evaluate SWAT’s overall performance at calibration and validation. 
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The NSE was defined as: 
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The following parameters were tuned during the calibration process: Curve Number (CN), Soil Available 
Water Capacity (SOIL_AWC), Soil Evaporation Coefficient (ESCO), Base-Flow Alpha Factor (ALPHA_BF), 
and Groundwater Revap. Coefficient (GW_REVAP). The model validation was done using the calibrated para-
meters. The model validation involved re-running the model using input data different from the data used in ca-
libration. Four years of observed flow data from 01 January 1983 to 31 December, 1986, were used to validate 
the model. Figure 3(a) shows the NSE for monthly stream flows during the calibration for different combina-
tions of CSA and HRU threshold as presented in Figure 2.  

Among the considered spatial scales, 5% of subwatershed scale and 0% of HRU scale produced the best NSE 
value of 0.865 and 0.823 for the study area during the calibration and validation, respectively. Whereas 20% of 
subwatershed scale and 20% of HRU scale produced the lower most NSE of 0.781 and 0.727 during the calibra-
tion and validation respectively. Although the variation of NSE among the considered spatial scales was not that 
significant, the altered level of NSE, which is the absolute deviation with respect to the highest NSE, was high 
with the increased HRU scale at the high subwatershed scale as highlighted in Figure 3(b).  

4.2. Determination of Least-Biased Probability Distributions of IHA Parameters 
Having calibrated and validated SWAT for the combination of CSA and HRU threshold as presented in Figure 
2, it was hypothesized that each of the 32 biologically relevant hydrologic parameters, proposed by [11], could 
be considered as a random variable. Then, for each of the parameters, the least biased probability distribution 
was obtained by maximizing the Shannon entropy [12]:  

1
log

N

i i
i

E p p
=

= −∑                                   (3) 

in accord with the Principle of Maximum Entropy (POME), subject to known constraints. In Equation (3) E is 
the Shannon entropy, 1 2, , , Np p p  are the values of probabilities corresponding to the specific values 

, 1,2, , ,ix i N=   of the biologically relevant hydrologic parameter X, and N is the number of values. These 
 

 
(a)                                   (b) 

Figure 3. (a) SWAT Model Fit (NSE) for Monthly Stream Flows During the 
Calibration for Different Combinations of CSA and HRU Threshold; (b) The 
Altered Level of NSE(i.e., Absolute Deviation with Respect to the Highest 
NSE).                                                                 
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probabilities constitute the probability distribution { }1 2, , , NP p p p=   of the parameter { }: , 1,2, ,iX x i N=   
in question. For maximization, the constraints on X can be expressed in terms of averages or expected values of 
the parameter reflecting the state of the ecosystem as  

( )
1

, 1,2, ,
N

i j i j
i

p g x C j m
=

= =∑                              (4) 

1
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N
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i

p p i N
=

= ≥ =∑                               (5) 

where Cj is the jth constraint, m is the number of constraints, and ( )j ig x  is the jth function of x. Using the me-
thod of Lagrange multipliers, the maximization of E would lead to the least biased P expressed as [12]: 
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                        (6) 

In practical applications, functions ( )j ig x  are expressed as simple moments and the number of constraint is 
kept to two or three. Thus, the first constraint would be the average and the second constraint would be the 
second moment or variance. Once the least biased probability distribution is determined using Equation (6), it is 
inserted in Equation (3) to obtain the maximum entropy. This process was carried out for each of the IHA para-
meters and for each spatial scale as shown in Figure 2. 

4.3. Computation of Deviation (Non-Satisfaction Level) 
Non-Satisfaction Level (NSL) for an “nth” parameter was defined as  

NSL where 1,2, ,32n obs sim nE E n= − = 
                           (7) 

where ,obs simE E  are the Shannon entropies for parameter “n” for the observed condition and SWAT simulation 
for one of the combinations of CSA and HRU threshold as presented in Figure 2, respectively. Equation (7) re-
lates the lack of information about the riverine ecosystem to the level of non-satisfaction. The satisfaction level 
could be seen as to how much the system is unharnessed. The values of NSL were computed for all the IHA pa-
rameters. The steps required to determine the non-satisfied levels are outlined in Figure 4.  

The computed values of average NSL for IHA group-1 which provides the general measure of habitat availa-
bility or suitability and an expression of environmental contingency [11] is shown in Figure 5. The value of the 
average NSL at the best spatial scale (i.e., 5% of CSA threshold and 0% of HRU threshold) which gave the 
highest NSE was relatively low compared to the others even though it did not yield the lowest average NSL. 
Furthermore, as the subwatershed threshold increased the alteration on IHA group-1 increased too. 

The average NSL for IHA group-2 which measures the structuring of river channel morphology, physical ha-
bitat conditions, and aquatic ecosystems by abiotic versus biotic factors [11] was relatively higher than the av-
erage NSL for IHA group-1 as shown in Figure 6. The average NSL at the best spatial scale (i.e., 5% of CSA 
threshold and 0% of HRU threshold) which gave the highest NSE was relatively high. Furthermore, the tenden-
cy of the model to reduce the impact on IHA group-2 increases as the HRU scale increases. This is in contrast to 
what was observed for the IHA group-1. As shown in Figure 7, the average NSL for IHA group-3 which meas-
ures the key life cycle phases [11] was lower than the average NSL for the IHA group-1 and IHA group-2.  

However, it is reasonable to say that these NSLs of 32 parameters may have priorities among themselves. 
Some of the parameters may not be of important, even though they define the underlying riverine ecosystem. 
Thus, there has to be a way to consider this to reflect the overall status of the alteration on ecohydrology with 
the SWAT simulation, which could go in parallel with the NSE. 

4.4. Aggregated Non-Satisfaction Level 
The values of NSLs of biological parameters were aggregated based on [13] finding such that the final aggrega-
tion maximized the information associated with each biological parameter. The Ordered Weighted Averaging 
(OWA) operator introduced by [13] is a general type operator that provides flexibility in the aggregation process 
such that the aggregated value is bounded between minimum and maximum values of input parameters. The 
OWA operator is defined as 
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Figure 4. Evaluation of Non-Satisfaction Level.                                 

 

 
Figure 5. Average NSL for IHA Group-1.                                 
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where the computed value of entropy for each of the 32 parameters is the argument (ai), bj is the jth largest of ai,  
and wj are a collection of weights such that wj € [0,1] and 1jw =∑ . Aggregated NSL can also be expressed as 
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Figure 6. Average NSL for IHA Group-2.                                                          

 

 
Figure 7. Average NSL for IHA Group-3.                                                        
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The methodology used for obtaining the OWA weighting vector was based on [13]. This approach, which 
only requires the specification of just the Orness value (1-Andness), generates a class of OWA weights that are 
called Maximum Entropy Operator Weighted Averaging (ME-OWA) weights. The determination of these 
weights 1 32, ,w w  from a degree of optimism Orness given by the decision maker requires the solution of an 
optimization problem formulated below. The objective function used for optimization is one of trying to max-
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imize the dispersion or entropy, which calculates the weights to be the ones that use as much information as 
possible about the values of entropy for each of the 32 parameters in the aggregation.  

maximize: 

( )
1

log
n

i i
i

H W w w
=

= −∑                                   (10) 

subject to: 

( ) ( )
1

1Orness
1

n

i
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W n i w
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= −
− ∑                             (11) 

1iw =∑  where n = 32 and [ ]0,1iw ∈ . 
The Orness characterizes the degree to which the aggregation is like an “OR” operator. For the analysis an 

Orness value of 0.75 was assumed in this study to ensure that the impact of all the IHA parameters is considered 
in the index development and to avoid assigning equal weights as some of the parameters may have more influ-
ence on defining the underlying ecosystem. Then, an array of weights wj was generated using Equations (10) 
and (11). 

As shown in Figure 8, the value of the aggregated NSL at the best spatial scale (i.e., 5% of CSA threshold  
 

 
Figure 8. (a) Aggregated NSL for Different Combinations of CSA and HRU Threshold; (b) NSE for Different Combinations 
of CSA and HRU Threshold; (c) Average Aggregated NSL versus Average NSE.                                          
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and 0% of HRU threshold) which gave the highest NSE was relatively low even though it did not yield the low-
est aggregated NSL. Furthermore, the lowest aggregated NSL was observed at 0% subwatershed scale and 0% 
HRU scale. In other words, the lowest aggregated NSL occurs with the hydrological system without any simpli-
fication on HRU. Moreover, the ability of the model to reflect the need of the riverine ecosystem tends to de-
crease as the subwatershed scale increased. This is justified with the average NSE that tends to decrease as the 
subwatershed scale increased.  

5. Conclusions and Recommendations 
This study shows how the conventional calibration process by minimizing the RMSE of the observed versus si-
mulated flows of a hydrological model like SWAT can be gauged on its ability to retain the need of the riverine 
ecosystem characterized by the natural flow-regime paradigm: Indicators of Hydrologic Alteration. The outcome 
of this study shows the followings: 
1) The ability of the calibrated model to reflect the need of the riverine ecosystem tends to decrease as the sub-

watershed scale (i.e., CSA threshold) increased.  
2) The best calibrated model does not yield the best result for the selected study area from an ecohydrology 

perspective. However, the deviation is not that significant.  
3) The model without any simplifications on HRU and CSA threshold gives the best result for the selected 

study area from an ecohydrology perspective. 
4) The proposed methodology can be used as a surrogate when there is a tie to select the best simulation along 

with spatial scales. 
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