
Open Journal of Applied Sciences, 2015, 5, 199‐211 
Published Online May 2015 in SciRes. http://www.scirp.org/journal/ojapps 
http://dx.doi.org/10.4236/ojapps.2015.55020    

How to cite this paper: Chang, M.‐K. (2015) Adaptive Self‐Tuning Fuzzy Controller for a Soft Rehabilitation Machine Actu‐
ated by Pneumatic Artificial Muscles. Open Journal of Applied Sciences, 5, 199‐211.   
http://dx.doi.org/10.4236/ojapps.2015.55020   

 
 

Adaptive	Self‐Tuning	Fuzzy	Controller	for	a	
Soft	Rehabilitation	Machine	Actuated	by	
Pneumatic	Artificial	Muscles	

Ming‐Kun	Chang	

Department of Mechanical and Computer‐Aided Engineering, St. John’s University, New Taipei, Taiwan 
Email: mkchang@mail.sju.edu.tw   
 
Received 16 April 2015; accepted 11 May 2015; published 13 May 2015 

 
Copyright © 2015 by author and Scientific Research Publishing Inc. 
This work is licensed under the Creative Commons Attribution International License (CC BY). 
http://creativecommons.org/licenses/by/4.0/ 

  
 

 
	

Abstract	

Pneumatic	artificial	muscles	(PAMs)	have	the	highest	power	to	weight	and	power	to	volume	ratios	
of	any	actuator.	Therefore,	they	can	be	used	not	only	in	rehabilitation	engineering,	but	also	as	ac‐
tuators	 in	robots,	 including	 industrial	and	 therapy	robots.	Because	PAMs	have	highly	nonlinear	
and	time‐varying	behavior	associated	with	gas	compression	and	the	nonlinear	elasticity	of	blad‐
der	containers,	achieving	excellent	tracking	performance	using	classical	controllers	is	difficult.	An	
adaptive	self‐tuning	fuzzy	controller	(ASTFC)	including	adaptive	fuzzy	sliding	mode	control	(AFSMC)	
and	 functional	 approximation	 (FA)	was	 developed	 in	 this	 study	 for	 overcoming	 the	 aforemen‐
tioned	problems.	The	FA	 technique	was	used	 to	 release	 the	model‐based	 requirements	and	 the	
update	 laws	 for	 the	coefficients	of	 the	Fourier	series	 function	parameters	were	derived	using	a	
Lyapunov	 function	 to	guarantee	 control	 system	 stability.	The	experimental	 results	verified	 that	
the	proposed	approach	can	achieve	excellent	control	performance	despite	external	disturbance.	
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1.	Introduction	

Rehabilitation machine provides joint loading to assist patients in recovering extremity functions in cases of 
traumatic brain injury, bone injury, amputation, or spinal cord injury with causes such as traffic accidents and 
cerebral apoplexy that affect extremity activity. Rehabilitation robots can assist patients in recovering extremity 
functions by means of continuous passive motion (CPM). Traditionally, physical therapy for functional reha-
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bilitation is administered by medical therapists on a person-to-person basis. However, recently many automatic 
rehabilitation devices have been applied in physical therapy programs. Rehabilitation robots are typically driven 
by electric motors, which are typically rigid. Consequently, actuators can generate discomfort or pain when in-
terfacing with humans. Hence, current electro-mechanical actuation systems should be replaced to ensure adap-
tability, conformity and safety. An adequate actuator for a rehabilitation device must provide safety and physi-
cally adjustable compliance. Additionally, it must ensure soft contact with the patient, similar to human muscles. 
It has been suggested that pneumatic artificial muscles (PAMs) can contribute to creating more comfortable de-
vices for interfacing with human limb segments. 

A submissive PAM consists of a cylinder of flexible rubber surrounded by a braided mesh shell. When the 
rubber bladder expands because of an increase in air pressure, the diameter of the combined shell and bladder 
assembly expands in the radial direction and the muscle retracts in the axial direction. A PAM behaves in a 
manner similar to a muscle on an animal skeleton, and a PAM has many advantages such as a high power to 
weight ratio [1], high power to volume ratio [2], low maintenance expense, no mechanical wear, low cost, clean-
liness, high reliability, flexibility, and effective compliance for human use. As mentioned previously, it is suit-
able for use in rehabilitation engineering, medical nursing, and user-friendly therapeutic robots. In a recent re-
port, PAMs were widely applied to the state-of-art rehabilitation machine. Xie and Jamwal [3] developed an it-
erative fuzzy controller to obtain excellent tracking performance for various trajectories with a rehabilitation 
robot driven by pneumatic muscle actuators. Anh [4] proposed a gain scheduling MIMO neural PID controller to 
obtain favorable angle tracking performance compared with a conventional PID controller for a 2-axes PAM 
robot under various loads. Lilly and Yang [5] applied a sliding mode controller to a planar arm actuated by two 
PMA groups; simulation results were consistent with theoretical findings for two different masses. Ahn and Anh 
[6] also developed an inverse double nonlinear autoregressive model with exogenous control based on the Ta-
kagi- Sugeno model applied in a PAM robot. A novel control structure based on a Takagi-Sugeno model [7] was 
proposed to track the desired trajectories, and simulation results illustrated the efficiency of the proposed ap-
proach for the new rehabilitation device.  

The soft rehabilitation machine actuated by PAMs is highly nonlinear in behavior, model uncertainty and ex-
ternal disturbance. It is difficult to estimate an accurate dynamic model for model-based controller design. 
Hence, an adaptive self-tuning fuzzy controller which integrated adaptive fuzzy sliding mode control and func-
tional approximation can be designed to solve these problems. Since the robustness is the best advantage of a 
sliding-mode control, it has been widely used to control model uncertainty and external disturbance. However, 
the traditional sliding-mode control has the model-based requirement for controller design. Though the fuzzy 
controller has been widely used in engineering applications, the fuzzy controller needs a time-consuming trial- 
and-error process and lacks the analysis for the stability and robustness problem. Thus, some researchers [8]-[10] 
developed the fuzzy sliding-mode control that combines the advantages of the sliding-mode control and fuzzy 
logic control.  

Hence, the FA technique was adopted to release the model-based requirements and was used to design a slid-
ing-mode controller for different nonlinear systems containing model uncertainties. In addition, the FA tech-
nique is used to expand and capture the system dynamic model and uncertainties by using finite linear combina-
tions of basic functions with unknown constant weighting vectors. The update laws for weighting vectors of the 
functional approximation can be derived and the stability of the proposed controller is proven using the Lyapu-
nov stability theorem. The experimental results verified that the proposed approach can be applied in the PAM 
system. 

The remainder of this paper is organized as follows. In Section 2, the dynamic model is derived. In Section 3, 
the adaptive self-tuning fuzzy controller is presented. In Section 4, the experimental setup is described. Experi-
mental results for output tracking are shown in Section 5. Finally, conclusions are drawn in Section 6. 

2.	System	Dynamic	Mode	

Consider the single joint manipulator shown in Figure 1, which is indicative of the forces exerted by two PAMs. 
The variables and are control signals for generating and of each proportional valve. The relation between the 
control signal fed into any pressure proportional valve and the resultant pressure p is linear according to the 
static characteristics of the pressure proportional valve. The rotating torque is generated by the difference in 
pressure between the two opposing PAMs. That is, when as in Figure 1, the torque exerted on the joint is coun- 
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Figure 1. Schematic diagram of the single joint manipulator.                
 

ter clock wise and the rotation of the joint is also counterclockwise. Therefore, the desired input pressure and for 
each PAM is generated using the following equation: 

0ap p p                                                 (1) 

where 0p  is a nominal constant PAM pressure input, and p  is the control pressure input with an arbitrary 
function of time. Subscripts a and b denote the amount of inflation and deflation on the respective side. Hence, 
the dynamics of the system in Figure 1 can be described as 

   cosa bJ r Mgl d t                                           (2) 

where J  is the moment of inertia of the mass,  a b r   is the total torque,  d t  is the external distur-
bance torque and M  is the mass. The total forces exerted by PAMs on the mass [11] are 

     ,a a a a a aF p K p x B p x                                       (3) 

     ,b b b b b bF p K p x B p x                                       (4) 

where aF  and bF  can be expressed [12] as: 

 2
1a a aF P a b                                           (5) 

 2
1b b bF P a b                                           (6) 

Substituting (3) and (4) into (2) yields 

       2 2 cosa b a b a bJ F F r B B r K K r Mgl d t                          (7) 

where 0 1a bK K K K p   , 0 1a a aB B B p  , 0 1b b bB B B p   

0 0 0 0

,    a b

x r x r

L L L L

    
    . 

where 0L  is the initial muscle length. 
Subsequently, 

   
2 2

0 0 0
0 0 0 0

1 1 4 2 1 ,a b

r r r r
F F p p a b p p a b ap a b p

L L L L

                                                     
  (8) 

   
   

0 1 0 0 1 0

0 0 1 0 1 0 1 1            ,

a b a a b b

a b a b a b

B B B B p p B B p p

B B B p B p B B p

        

      
                       (9) 

Substituting (8) and (9) into (7) obtains 
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 

   

2
2

0 0 1 0 1 0 0
0

2

2
1 1

0

4 cos

2 1

a b a b

a b

r
J B B B p B p r ap Mgl

L

r
a b r B B r p d t

L

   

 

     

             
     

 


                     (10) 

Let   2
0 0 1 0 1 0a b a bB B B B p B p r    , 

2

04
r

K ap
L

 ,  

and 

   
2

2
1 1

0

, 2[ 1 ] a b

r
f a b B B r p

L

  
          

   

   

Equation (10) can be rewritten as: 

   cos ,J B K Mgl f p d t                                    (11) 

Equation (11) can be simplified as the following second-order model: 

     x f x,t b t u t                                     (12) 

where x is the state vector,  b t  is a control gain,  u t  is a control signal, and  ,f x t  is a an unknown 
time-varying function with an unknown variation bound. However, the bound of the unknown function  b t  
can be estimated, in other word,  min maxb b t b  , where maxb  and minb  are known bound. The  b t  is de-
fined as follows: 

  mb t b b                                         (13) 

where mb  is the nominal value and b  is a bounded uncertainty value. 

 min max0 b t                                       (14) 

Establishing an accurate dynamic model for model-based controller design is difficult because the system dy-
namics have nonlinear time-varying behavior with unknown uncertainty bounds. In this study, the functional 
approximation technique was employed to approximate this unknown function for releasing the model require-
ment. 

3.	Control	Strategies	

3.1.	Fuzzy	Sliding	Mode	Controller	

The fuzzy sliding-mode controller (FSMC), shown functionally in Figure 2, is associated with a fuzzy logic 
control (FLC) structure, and a fuzzy slide surface to reduce the fuzzy rule number. 

In many fuzzy logic control systems, the fuzzy rule table depends on error e  and error rate e  that compli-
cate the fuzzy inference rules and the membership functions. In this study, a fuzzy sliding surface was intro-
duced as a replacement, reducing the number of fuzzy sets and fuzzy inference rules. The fuzzy sliding surface  

 

 

Figure 2. The control block diagram of the FSMC.                                                        
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that combined error e and error rate e  on the phase plane could then be defined as 

d

d
s e e e

t
      

 
                                 (15) 

where   is a positive constant. Therefore, the sliding surface variable s gradually converge to zero, and the 
sliding surface reaching condition is 0ss   based on the Lyapunov theorem.  

The sliding surface can be divided into 13 sections according to the membership function sets of  
   NVB, NB, NVM, NM, NS, NVS, ZO,PVS,PS,PM,PVM,PB,PVBM s  . The membership function set for 

the control signal u is defined as    NVB, NB, NVM, NM, NS, NVS, ZO, PVS, PS, PM, PVM, PB, PVBM b  . 
Therefore, the 13 × 13 fuzzy rule table with error e and error rate e  in the fuzzy logic control can be simplified 
as the 1 × 13 fuzzy rule table by using a fuzzy sliding surface as shown, in Figure 3. 

The membership functions of fuzzy input and output variables, and the fuzzy rules of FSMC are shown in 
Figure 3. Hence, the control signal is derived from the fuzzy inference decision and defuzzification operation 

1 1

1

1 1

m m
j j i j

m
j j j

jm m
j j j

j j

U C

u C

 


 

 



 

 
  
 


 

                           (16) 

where m is the number of rules and i  is the weight of the corresponding rule which has been activated. i  
is the weight of each singleton fuzzy rules for constituting the control input u. ic  is the consequent parameter 
which can be set to zero initially and then adjusted by an adaptive rule. The adaptive rule is derived from the 
Lyapunov stability analysis. This adaptive rule can eliminate the trial-and-error process for finding appropriate 
fuzzy rules in fuzzy control implementation. 

3.2.	Functional	Approximation	Technique	

If a piecewise continuous time-varying function  b t  satisfies the Dirchlet condition, it can be transformed in-
to a generalized Fourier series expansion within a time interval  0,T : 

   0 1
cos sinn n n nn

b t a a t b t 


                               (17) 

where 0a , na , and nb  are the Fourier coefficients and n  is the frequency of the sinusoidal function. Define 

   T1 11 cos sin cos sinn nZ t t t t t                           (18) 

 0 1 1 2 2 n nW a a b a b a b                            (19) 

Subsequently, (17) can be rewritten as  

       1 1 2 2 n nb t W Z t W Z t W Z t                               (20) 

In finite term, (20) can be expressed as follows: 

     
1

n

i i
i

b t W Z t t


                                    (21) 

where  t  is the approximation error. When n is large enough,  b t  can be approximated as follows: 
 

 

Figure 3. Membership function for the FSMC.                        
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   Tb t W Z t                                       (22) 

Hence, the unknown time-varying function  ,f x t  in (12) can be approximated by a linear combination of 
finite orthogonal basis functions  Z t  to arbitrarily prescribed accuracy as long as n is large enough: 

  T, f ff x t W Z                                      (23) 

where  fZ t  is an orthogonal basis function vector and fW  a weighting coefficient vector. If the number of 
the basis functions is large enough, (23) can be described as the following approximation form: 

  T, f ff x t W Z                                      (24) 

where         T

1 2f nZ t Z t Z t Z t     is a orthogonal basis function vector and 

        T

1 2f nW t W t W t W t     is a weighting coefficient vector. This FA (24) can be used to represent 

an unknown function with uncertainty. The time-varying  fZ t  is a known function the T
fW  is an unknown 

regulating constant. A proper Lyapunov function can be selected to determine the update laws for these un-
known constant based on Lyapunov stability theory. 

3.3.	Adaptive	Self‐Tuning	Fuzzy	Controller	 	

The system control block diagram of the soft rehabilitation machineactuated by PAMs is shown in Figure 4. 
The sliding surface of this second-order system can be defined as 

d
s e e e

dt
      

 
                                    (25) 

where the positive parameter s implies the convergent rate of on the sliding surface. The time derivative of s can 
be derived as 

ds e e x x e                                             (26) 

Substituting (12) into (26) yields 
 

 

Figure 4. Control block diagram of the adaptive self-tuning fuzzy controller.                               
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   , ds f x t b t u x e                                      (27) 

In order to achieve the sliding surface reaching condition and establish the approximation error compensation, 
the control law  u t  can be designed as: 

 

  
FA AFSMC

T1 ˆ sgn ,d
m

u t u u

f x e s C
b

  

 

      
                           (28) 

where f̂  is the FA value of  ,f x t . The positive constant   is a design parameter for achieving an 

appropriate robustness.  

    Tˆsgns s f f gu C                                    (29) 

where f  and f̂  are assumed to be unknown bounded piecewise continuous functions and satisfy the 
Dirichlet conditions. Then, they can be expressed by the FA technique as follows 

T
f ff W Z                                        (30) 

Tˆ ˆ
f ff W Z                                        (31) 

where ˆ, n
f fW W R  are weighting vectors and n

fZ R  is a vector of a basis Fourier series function. Hence, 

(29) can be rewritten as  

    Tˆsgns s f f gu C                                    (32) 

where 
T T Tˆ
f f fW W W                                      (33) 

To prove the stability of the control system and determine the update laws for vectors fW  and C , a 

Lyapunov function candidate is chosen as 

  2 T T1 1
, ,

2 2f f f fV s W C s W Q W C                                  (34) 

where n n
fQ R   is a symmetric positive definite matrix. By taking the time derivative of the Lyapunov 

function candidate, the following can be obtained: 

  T T1
, ,f f f fV s W C ss W Q W C C


                                   (35) 

Because T Tˆ
f fW W   , (35) can be rewritten as  

   T T 1ˆ
f f f f fV s,W ,C s W Z s Q W C s C bsu 


 

        
 

                        (36) 

The update laws for ˆ
fW  and C  are chosen as  

1ˆ
f f fW Q Z s

                                       (37) 

C s k s C                                         (38) 

Therefore, (36) can be further rewritten as 

  T
max, ,f

k
V s W C s C s C su 


 

    
 

                            (40) 

To cover the uncertainty of the unknown function  b t  and establish an appropriate robustness, the 
parameter   can be specified as  
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max maxu                                         (41) 

where max  and maxu  are the maximum values of b  and u, respectively. Subsequently, (39) results in  

  T, , 0f

k
V s W C s C C


                                   (42) 

The control system stability can be guaranteed using the update laws (37) and (38). Equation (37) is the up-
date law of the functional approximation coefficients ˆ

fW


. Equation (38) is the adjusting rule of the AFSMC 
fuzzy parameters. Based on Barbarlet’s lemma [13] the convergence of the system output error can be guaran-
teed using the control law u(t), (28). 

4.	Experimental	Setup	

The single joint rehabilitation machine actuated by PAMs is shown in Figure 5 which is used to simulate the 
arm’s motion. The experimental layout is shown in Figure 6 and the specifications are listed in Table 1. The 
maximum deformation of a PAM is 20% of its nominal length. Thus, the rotary range of angle   extends from 
−40˚ to 40˚. The hardware includes an IBM-compatible personal computer, which calculates the control signal 
and controls a pressure proportional valve through a D/A card. Joint angles are detected by rotary potentiometers, 
the air pressure of each PAM is measured by pressure transducers, and the measurements are then fed back to 
the computer through an A/D card. 

 

 

Figure 5. The single joint rehabilitation machine actuated by PAMs.               
 

 

Figure 6. Experimental layout.                                                         
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Table 1. Component specifications.                                                                          

Number Component Specifications 

1 Disturbance cylinder 0˚ - 300˚ 

2 PAM Festo, MAS-10-300N 

3 Pressure proportional valve Mac, PPC5C 

4 D/A, A/D Automation, AIO3320 

5 Rotary potentiometer Keen Engineering, KRT2050 

6 Proportional valve HR 

7 Air supply 6 Kg/cm2 

8 Signal generator 0.1 - 20 MHz 

5.	Experimental	Studies	

Reciprocated motion of rehabilitation machine can help patients for recovering extremity function. Therefore, to 
investigate output tracking performance, the proposed controller and fuzzy sliding-mode conroller associated 
with fixed fuzzy rules and scaling factors were implemented on an Intel Pentium 1.8 GHz PC, with a sampling 
time of 1 ms. The control software was coded in C++ programming language. The fixed fuzzy rules of the 
FSMC are presented in Figure 3. The parameters 0.3Gs  , 0.04Gu  , 0.02   were chosen, because  
these were the optimal values obtained by trial-and-error. 

Following control parameters are chosen for the ASTFC. The sliding surface parameter   is chosen as 400. 
The robustness parameter   can be estimated based on (40). It is selected as 100.The nominal value of the 
control gain mb  was selected as 18000, whereas the weighting coefficients of the approximation series were 
updated at each sample step. In addition, it was found that the variation of the control gain is less than 20% of its 
nominal value. In other words, the following inequalities hold: min 0.8 mb b  and max 1.2 mb b . In order to im-
prove the control law chattering behaviour, the  sgn s  function in (28) is replaced by the saturation function 
sat  s   with a boundary layer thickness 0.05  . The weighting matrix fQ  of the Fourier series function 
coefficients is set as a small constant matrix 0.04fQ   to increase the converging speed. The first 12 terms of 
the Fourier series functions are chosen as the FA basis functions. 

5.1.	Sinusoidal	Wave	Response	

Figure 7 shows the output sinusoidal wave response obtained using the ASTFC and the FSMC. As shown in 
Figure 7, the actual joint angle trajectory is close to the reference trajectory. The peak-peak error is defined as: 

0% 100%i

i

M M
p

M


                                  (42) 

where iM  is the input wave peak value, and 0M  is the output wave peak value. The maximum peak-peak er-
ror and phase lag are listed in Table 2. The tracking errors are shown in Figure 8, indicating that the tracking 
errors of both controllers are considerably close without external disturbance or loading.  

5.2.	Sinusoidal	Wave	Response	under	External	Disturbance	Torque	

To investigate the robustness and adaptation of the ASTFC, an external disturbance signal  d t  as shown in 
Figure 9 are applied in the joint. The output tracking response obtained using the ASTFC and the FSMC is 
shown in Figure 10. The peak-peak error and phase lag are listed in Table 3. The tracking errors are shown in 
Figure 11. The peak-peak errors of the ASTFC are still maintained within 1.1%. The results indicate that the 
ASTFC can overcome external disturbance to achieve excellent tracking performance. 

6.	Conclusion	

Designing a model-based controller for a soft rehabilitation machine actuated by PAMs is highly difficult be- 
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(a) 

 
(b) 

Figure 7. Sinusoidal wave response for both the ASTFC and the FSMC. (a) ASTFC; (b) FSMC.                  
 

Table 2. Peak-peak error and phase lag for Figure 7.                                                             

ASTFC FSMC 

Peak-peak error Phase lag Peak-peak error Phase lag 

1% 0.1˚ 1.75% 0.16˚ 
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Figure 8. The tracking errors of 5.1.                                                                         
 

 

Figure 9. External disturbance signal.                                                                        
 

Table 3. Peak-peak error and phase lag for Figure 10.                                                           

ASTFC FSMC 

Peak-peak error Phase lag Peak-peak error Phase lag 

1.1% 0.13˚ 3.3% 0.18˚ 
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(a) 

 
(b) 

Figure 10. Sinusoidal wave response under external disturbance for both the ASTFC 
and the FSMC. (a) ASTFC; (b) FSMC.                                          

 

 

Figure 11. The tracking errors of 5.2.                                                
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cause the system has parameter uncertainties, highly nonlinear properties, and time-varying behavior. An 
ASTFC was developed and successfully used to control the system. The stability of the ASTFC is guaranteed by 
means of the Lyapunov theorem. The experimental results show that the ASTFC can be applied effectively to 
achieve excellent tracking performance despite external disturbance. 
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