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ABSTRACT 

A class of nonlinear problems with real parameters is defined. Generally, in this class of problems, when the parametric 
values are very large, the problems become ill-posed and numerical difficulties are encountered when trying to solve 
these problems. In this paper, the nonlinear problems are reformulated to overcome the numerical difficulties associated 
with large parametric values. A novel iterative algorithm, which is suitable for large scale problems and can be easily 
parallelized, is proposed to solve the reformulated problems. Numerical tests indicate that the proposed algorithm gives 
stable solutions. Convergence properties of the proposed algorithm are investigated. In the limiting case, when the cor-
responding constraint is exactly satisfied, the proposed method is equivalent to the standard augmented Lagrangian 
method. 
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1. Introduction 

There are a number of physical problems, where penalty 
terms (large parameter) occur naturally in the problems. 
For example, in nonlinear isotropic elasticity, the bulk 
modulus [1] can be considered as a penalty term for the 
incompressible constraint. When the penalty term is very 
large the corresponding constraint is nearly satisfied. 
Generally, numerical difficulties are encountered, see, 
e.g., [2], when trying to solve problems with very large 
penalty values. 

In this paper we consider a class of parametric prob-
lems that can be reformulated in such a way that the nu-
merical difficulties mentioned above can be overcome. 
The reformulated problem generally yields indefinite 
system of equations. When such a system is solved using 
an existing iterative method, its convergence properties 
are generally not as good as an iterative method design 
for a symmetric positive definite system. Here, we pro-
posed a novel iterative algorithm to solve the reformu-
lated problem. The proposed algorithm solves a symmet-
ric positive definite system in each iteration. The con-
vergence properties of the proposed algorithm are inves-
tigated and numerical tests are implemented. The algo-
rithm is an extension of the algorithm developed by 
Shariff [3] for quadratic problems with (near) linear con-
straints. Our proposed method is suitable for large scale 
problems in the sense that it only uses a handful of vec-
tors in the algorithm. The proposed algorithm is easily 

parallelized and is especially suitable for sparse system 
of equations. 

2. A Class of Nonlinear Constrained  
Problems 

Consider a class of nonlinear problems which is of the 
form 

Problem (I): Minimize 
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When   is very large it can be shown that the cor-
responding vector constraint 

( )h x  0  

( 1 2 ) is nearly satisfied and, generally, 
numerical difficulties are encountered when trying to 
solve Problem (I). For example, a near incompressible 
problem often leads to numerical difficulties when a fi-
nite element displacement solution is sought. One way to 
overcome these difficulties is to formulate Problem (I) in 
an alternative form [3] as given below. 

[ , , ]h   T
mh h h

Problem (II): Minimize 
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where       1 2[ , , ] ,  g h s h  T
mg g g , s is an invertible 

function, 

      1 2( ,  [g ,g , g ]g g g  T
mp s  ,g

T

 

and p is an m-vector variable. We note in several practi-
cal problems, the function  is often approximated [1]. 
An engineering example of Problem (II) can be found in 
Shariff and Parker [1]. 

h

Using the method of Lagrange multiplier, the solution 
of Problem (II) can be obtained from the following 
problem. 

Problem (III): Find x, p and q such that 

( ) ( ( ))f x h x q    0T
x x            (1) 

 ( ) ( )h x g p  0               (2) 

  '( ( )) ( ( )) ( ) .g p g p g p q   0T
p p    (3) 

We note that Problem (II) can be solved using the 
standard augmented Lagrangian method. In the case 
when   is very close to zero, it can be easily seen from 
Equation (3) that the numerical values of p are not reli-
able due to computations in non-exact arithmetic [3]. In 
addition to this, using the standard augmented Lagran-
gian method introduces an unnecessary variable q in the 
formulation. To reduce the number of variables from 
three to two, we propose a modified augmented Lagran-
gian method to solve an equivalent Problem (IV) given 
below. In order to formulate Problem (IV), we assume  

that ( ( ))g p T
p  is nonsingular and hence from Equa-  

tion (3) we see that the Lagrange multiplier 

 1 '( ) (( ( )) ) ( ( )) ( ( )) ,q p g p g p g p  T T
p p     (4) 

where 



            (5) 

We note that when 

'
1

'
' 2

'

(g )

(g )
( ) .

..

(g )

g

 
 
   

 m






 

g g , we have 
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On replacing the Lagrange mult
p 

iplier by a function of 
given in Equation (4) in the Lagrangian function we 

obtain an equivalent statement: 
(IV) Find x and p such that 0 0L , where 

 (7) 

where is given by Equation (4). 

3. A Modified Augmented Lagrangian 

Pr  solved using a large scale iterative 
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Method 

oblem (IV) can be
method designed for an indefinite system. However, the 
convergence properties of most large scale iterative 
methods for indefinite systems are generally not as good 
as those iterative methods for symmetric positive definite 
(SPD) systems. The augmented Lagrangian method, how- 
ever, solves a SPD system in each iteration and generally 
the solution is obtained in only a few iterations. Here, we 
modify this method to solve problem (IV). The modified 
algorithm solves a SPD system in each iteration and is 
given by: 
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In step 6, if g g  
 obta

then numerical value of p  is 
ge

i+1

nerally easier to in numerically than when g g . 
For example, when ( ) cosh( ) 1 t t , we have 1 ip  
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2  we
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4. Convergence 

how in Proposition 1, that under a 
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5. Numerical Test 
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rithm, a simple numeric

confidence in the proposed algo-
al test problem is given. Consider 

the simple test problems: 
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hird step of the proposed algorithm, the corre-
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500kc  and the starting value for x, y and p is zero.  
The results are tabulated below for several values of 

(Tables 1-4) 
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Table 1. ε = 0. Number of iterations = 8. 

x 0.9456 

y 0.8942 

p 3.371 

 
Table 2. ε = 10  Num erations = 8. –6. ber of it

x 0.9456 

y 0.8942 

p 3.371 

 
Table 3. ε = 10 Num erations = 11. –3. ber of it

x 0.9466 

y 0.8927 

p 3.355 

 
Table 4. ε = 10 erations = 23. –1. Number of it

x 1.024 x y
x y   

For this problem we have 

F x
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p 2.390 
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Table 5. ε = erations = 3. 0. Number of it

x 0.9455 

y 0.8940 

we vary the values of  . As expected, the rate of con-
vergence for 0.1  is not as good as those for smaller 
values of  . We must mphasize that the proposed al-
gorithm is dev primarily for 1

e
eloped  . 

6. Conclusions 
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