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ABSTRACT 

The principle aim of this paper is to explore the existence of periodic solution of neural networks model with neutral 
delay. Sufficient and realistic conditions are obtained by means of an abstract continuous theorem of k-set contractive 
operator and some analysis technique. 
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1. Introduction (H1) Functions ( )jg u ( 1, 2, ,j   )n  are globally 
Lipschitz continuous with the Lipschitz constant 0jL  , 
that is,  

Man-made neural networks have been widely used in the 
fields of pattern recognition, image processing, associa-
tion, optimal computation, and others. However, owing to 
the unavoidable finite switching speed of amplifiers, time 
delays in the electronic implementations of analog neural 
networks are inevitable, which may cause undesirable 
dynamic network behaviors such as oscillation and insta-
bility. Thus, it is very important to investigate the dy-
namics of delay neural networks. 

g 1 2( ) ( )j j 1 2ju g u  L u u , for all 

1 2,u u R . 
(H2) Functions ( )ij t   are nonnega-

tive, bounded and continuously differentiable defined on 
R

( , 1, 2, , )i j n 

  and 1ij  , where ( )ij t  express the derivative of 
( )ij t . 
(H3) There exist constant 0j  , 0j  , such 

that x R  , ( )j j jg x x   , 1, 2, , . j n
The existence of periodic oscillatory solutions of neu-

ral networks model has been studied by many researchers 
[1-6]. Some authors [3-5] used the well-known Hopf 
bifurcation theory to discuss the bifurcating periodic so-
lutions. However, the usual Hopf bifurcation theory cannot 
be applied to non-autonomous system. In [6], Li and Lu 
applied the theory of coincidence degree to non-autonomous 
neural networks system and obtained some new criteria 
for the existence of periodic solutions. 

Remark 1.1 It is easy to verify that if condition (H1) is 
satisfied then condition (H3) holds. 

The organization of this paper is as follows. Prelimi-
naries will be given in the next section. In section 3, we 
will study the existence of periodic solutions of system 
(1.1) by the abstract continuous theorem of k-set contrac-
tive operator. 

2. Preliminaries 
We consider the following model for neutral type 

neural networks with periodic coefficient: 

1

( ) ( ) ( ) ( ) ( ( ( ))) ( ),
n

i i i ij j j ij i
j

x t a t x t b t g x t t I t


       (1) 

In order to study Equation (1.1), we should make some 
preparations. Let E be a Banach space. For a bounded 
subset A E , let 

1

( ) inf{ 0 | there is a finite number of 

subsets ,such that ,  

and diam( ) }

E

i i

i

A
where n is the number of neurons in the network, ( )ix t  
( ) corresponds to the state of the ith unit at 
time t,  denotes the neuron firing rate,  repre-
sents the neutral delayed connection weight. 

1, 2, ,i  
( )ia t

iA A A

A

A

 




 
  



 
n

( )ijb t
denotes the (Kuratoskii) measure of noncompactness, 
where diam( )iA  denotes the diameter of set iA . Let X, 
Y be two Banach spaces and  be a bounded open 
subset of X. A continuous and bounded map 


:

1 1 2 2( ) ( ( ), ( ), , ( ))T
n ng x g x g x g x  :  n nR R

is the activation function. 1 2( ) ( ( ), ( ), , ( ))T
nI t I t I t I t  is 

the  -periodic external input to the  neuron. thi
N Y  

is called k-set contractive if for any bounded set A    
we have X( (N A)) ( )Y k A  , where k is a constant. In 
addition, for a Fredholm operator  with in-
dex zero, according to [7], we may define 

:L X  Y
Throughout this paper, we assume that: 
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( ) sup{ 0 | ( ) ( ( )),  for all

 bounded subset }.
X Yl L r r A L A

A X

   


 

Lemma 2.1 Let  be a Fredholm operator 
with index zero, and  be a fixed point. Suppose 
that  is a k-set contractive with 

:L X Y
a Y

:N  Y ( )k l L , 
where X   is bounded, open, and symmetric about 

. Furthermore, we also assume that 0
1) Lx Nx r   , for x , (0,1)  ; 
2) [ ( , ] 0,  for  ) ,QN x Qr x ] [QN Q

ker ,x L  ] 
( )x r x 

 where [ ,  is a bilinear form on Y X  
and Q is the project of Y onto . Co ker( )L

Then there is a x , such that . Lx Nx r 
In order to use Lemma (2.1) for studying Equation 

(1.1), we set 

1{ ( ) ( ( ), , ( )) ( , ) :

( ) ( ), 1, , },

n
n

i i

Y C x t x t x t C R R

x t x t i n



   

  




 

with the norm defined by [0, ]10
max ( )

n

t ii
x x t

  , 

and 
1 1

1{ ( ) ( ( ), , ( )) ( , ) :

( ) ( ), 1, , },

n
n

i i

X C x t x t x t C R R

x t x t i n



   

  




 

with the norm 
0 0

max{ , }x x x  . Then 1,C C   are all  

Banach spaces. Let 1:L C C   defined by 

1( , , )Tdx
ndtLx x x    ; 1:N C C  , 

1 1 1 111

1

( ) ( ) ( ) ( ( ( )))

( ) ( ) ( ) ( ( ( )))

n

j j j jj

n
n n n nj j j njj

a t x t b t g x t tx

N

x a t x t b t g x t t









                







 








(2.1) 

It is easy to see from [8] that L is a Fredholm operator 
with index zero. Clearly, Equation (1.1) has a  -peri- 
odic solution if and only if  for some Lx Nx r 

1x C , where . 1

Lemma 2.2 [9] The differential operator L is a Fred-
holm operator with index zero, and satisfies . 

: ( ) ( ( ),r I t I t  , ( ))T
nI t

( ) 1l L 
Lemma 2.3 If , 

here 
1

max{ , 1, , } 1
n

ij jj
k b L i


   n 

[0, ]maxij tb b


 C( )ij t , :N   is a k-contractive 

map. 
Proof. Let A    be a bounded subset and let    

1 ( )
C

A


 . Then, for any 0  , there is a finite family of  

subsets Ai satisfying 1i iA A   with diam( )iA    . 
Now let 

1
1

( , , , , ) ( ) ( ).
n

i i n i i j j
j

V t x y y a t x g y


   

Since 1  are uniformly continuous on 
any compact subset of R

( , , , , )i i nV t x y y
1nR  , A and iA  are precom-

pact in 0C , it follows that there is a finite family of sub-

sets ijA  of iA  such that i 1j ijA A 

( )), , (

( )), , (
i n

i n

t u t

t u t

 

 with 

1 1

1 1

( ), ( ( )))

( , ( ( ))) | ,
in

in

V t t u t t

V t u t t

 | , (

, ( )
i i

i i

x

u t   
 

  

 
  

 

for any , ijx u A . Therefore we have 

0

[0, ]

1 1

[0, ]

1 1

   

sup | ( , ( ), ( ( ( )))

   ( , ( ), ( ( ))) |

sup | ( , ( ), ( ( ( )))

  ( , ( ), (

i i n in
t

i i in

i i n in
t

i i in

Nx Nu

V t x t x t t

V t u t u t t

V t x t x t t

V t x t u t





 

 
 









  


  

1 1

1 1

( )), ,

( )), , (

( )), ,

( )), , (

i

i n

i

i n

t t x

t u t

t t x

t u t 

 

 

 

 
 

 

1 1( ( )), ,

( )), , (

))) ( (

)) ( (

i

i n

j j

j ij

t t

t u t

t g u t

u t t

 
[0, ]

1 1

1

1

( ))) |

 sup | ( , ( ), ( ( )))

  ( , ( ), ( ( ))) |

( ( ( ( )))

( ( ))

(

i i n in
t

i i in

n

ij j j ij ij
j

n

ij j j ij
j

t

V t x t u u t t

V t u t u t t

b g x t t

b L x t t

k k


 

  

















  

   

   

 




1) .

 

 





 

 

 

 

 

As   is arbitrary small, it is easy to see that 

0 1C 
( (

C
N A)) ( )k A  .  

0 1C Lemma 2.4 Let C ,   , and ( ) 1t  , then 
0( ( ))v t C 

( )t t
, where  is the inverse function of ( )v t

 . 
Throughout this paper, we assume that 1

ij C  , 
( ) 1ij t   ( , 1, , )i j n  . So that (ij t)  has a unique 

inverse, and we set ij  to represent the inverse of 
function

( )tv
( ).ijt t . Meanwhile, we denote 

0
: (1/ ) ( )h h s ds


   and  1/ 2

2 0
: ( )h h s ds


  , 

3. Main Results 

Set 

2 1
max :

1 ( ( ))ij
ij ij

p t
v t

R
      

, 

1 2

1 2

2
1

diag( , , , ),  ( ) ,  ,

diag( , , , ),   ( ) ,

.

l l l m
n ij n n ij ij j

m m m
n ij n n

n
m

i ij j i
j

ijA a a a B b b b p

C a a a H h

h b I



 







   

  

 

 





 

Theorem 3.1 Assume that (H1), (H2) hold, further-
more, assume that (H4) A BC  is non-singular M-ma-
trix, then Equation (1.1) has at least one positive  - 
periodic solution. 

Proof. We consider the operator Equation 

,  (0,1)Lx Nx r              (3.1) 
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Corresponding to Equation (3.1), we have That is, 

1

( ) ( ) ( ) ( ) ( ( ( ) ) ) ( )
n

i i i i j j j i j
j

ix t a t x t b t g x t t I t 


 
     

 
   

2 2 2
1

2
1

          

n
m m

i i i ij j i j j
j

n
m
ij j i

j

x a x b p x

b I



 





 

 





 
        (3.5) 

(3.2) 

Suppose that 1( ( ), , ( ))T
nx t x t
(0,1)

 is a solution of system 
(3.2) for a parameter  

i

. Multiplying the  
Equation of system (3.2) by 

thi
x  and integrating over 

[0, ]  gives 

Then we may rewrite Equation (3.5) as 

.Y CX H                  (3.6) 

Substituting (3.6) into (3.4), we obtain 

   

2

2
10

1 10

1/ 2 1/ 222

0 0
1

( ) ( ) ( ( ( ))) ( )

          ( ) ( ( )) ( )

          ( ) ( ( ))

             

n
l
i i i ij j j ij i

j

n n
m m

i ij j j ij ij j i
j j

n
m
ij j i j ij

j

a x x t b t g x t t I t dt

x t b x t t b I t d

b x t dt x t t dt

b





 



  

 



 



 
   




t



   
 

 





 

  







( ) .A BC X BH H              (3.7) 




It follows from Lemma 2.2 of paper [10] that 

1( , , )T
nX H h h     . That is 

 
2

,  1, , ,i ix h i n              (3.8) 

where 1
1( , , ) ( ) ( )T

nH h h A BC BH H        

  Substituting (3.8) into (3.6), we obtain 

   

1/ 2
2

0
1

1/ 2 1/ 2
2 2

0 0

( )

             ( ) ( ) .

n
m
ij j i

j

i i

x t dt

x t dt I t dt



 

 




 

 
2

,  1, , .i ix h i n              (3.9) 

It is easy to see that there exist two positive constants 
( 1, 2iN i )  such that And according to Lemma 2.4, we have 

10 0
,  .2x N x N             (3.10) 2

0

2

0

2

   ( ( ))

( )

1 ( ( ))

.

j ij

j

ij ij

ij j

x t t d

x s
ds

v s

p x



























t

 
Let 1

10 0
{ : ,x C x N x N     2 },  and define a 

bounded bilinear form [ , ]   on 1C C   by 

0
[ , ] ( ) ( )y x y t x t dt


  . 

Thus 

2 22
1 1

n n
l m m
i i ij j ij j ij j i

j j

a x b p x b I  
 

  

Also we define  by . 

Obviously, 

: Co ker(Q y L ) dt
0

( )y y t


 
   (3.3) 

1 1{ | ker } { | ,  or }x x L x x N x N      . 

Without loss of generality, we may assume that 

1x N . Thus 
Then we may rewrite Equation (3.3) as 

,AX BY H                 (3.4) 

where 1 2 2
( , , )T

nX x x  , 1 2 2
( , , )T

nY x x   . 

Multiplying the  Equation of system (3.2) by thi ix  
and integrating over [0, ]  gives 

   

2

2
0

1

1

0

1

1 / 2 1 / 2
2 2

0 0

( ) ( )

( ) ,
( ) ( ( ( ))) ( )

( ) ( ( ))

      ( ) ,

( )

      ( ) ( )

i i

n
i i

ij j j ij i
j

n
m m
i i ij j j ij

j

i n
m
ij j i

j

m
i i i

a t x t

x x t d t
b t g x t t I t

a x t b x t t

x t d t

b I t

a x t d t x t d t





 



 









 
     
  

   
 
 
  
 



 






 

 







2 2
1

1 1 1 1 1 1 1 11 1

1 11 1

[ ( ) , ] [ ( ) , ]

[ (0) ][ (

[ (0) ][ (

n n

j j j jj j

n n

n nj j n n nj jj j

QN x Qr x QN x Qr x N

a N b g I a N b g I

a N b g I a N b g I



 

 

     

0) ]

0) ]n

     
 
 
 
      

 

 


 

(3.11) 

If 1
1

1
m a x 0

n

ij j ij

i n
i

b I
N

a




 

    
  

 , then 
 

1
1 1

(0)
n n

i ij j i ij j
j j

a N b I b g I
 

    i

,

      (3.12) 

So from (3.12) we get 

   
 

   

1 / 2 1 / 222

0 0
1

1 / 2
2

0
1

1 / 2 1 / 2
2 2

0 0

         ( ) ( ( ))

         ( )

         ( ) ( ) .

n
m
ij j i j ij

j

n
m
ij j i

j

i i

b x t d t x t t d t

b x t d t

x t d t I t d t

 



 

 

 





 





  

 

 

 





 

[ ( ) ( ), ] [ ( ) ( ), ] 0i i i i i iQN x Q r x QN x Q r x      

1, ,i n   

Therefore, by using Lemma 2.1, we obtain that Equa-
tion (1.1) has at least one positive  -periodic solution. 
The proof is complete.  
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