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ABSTRACT 

The empirical likelihood-based inference for varying coefficient models with missing covariates is investigated. An 
imputed empirical likelihood ratio function for the coefficient functions is proposed, and it is shown that iis limiting 
distribution is standard chi-squared. Then the corresponding confidence intervals for the regression coefficients are 
constructed. Some simulations show that the proposed procedure can attenuate the effect of the missing data, and 
performs well for the finite sample. 
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1. Introduction 

In practice, missing data frequently occur in many appli- 
cation literatures, and the literatures on statistical analy- 
sis of data with missing values have been flourished in 
the past decade. Parametric regression models with miss- 
ing data have been widely discussed (see [1,2]). In many 
practical situations, however, the parametric regression 
models are not flexible enough to capture the underlying 
relation between the response and the associate covari- 
ates. Hence, Wang [3] and Liang et al. [4] considered the 
statistical inferences for the partially linear model with 
missing covariates, which is a useful extension of the 
parametric regression model. In addition, the following 
varying coefficient model is another useful extension of 
the parametric regression model, which has more imple- 
ments and stronger explanations than the parametric re- 
gression model. This paper aims to present an imputed 
empirical likelihood method for analyzing the varying 
coefficient model with covariate data missing at random.  

Consider the following varying coefficient model 

 TY X U                 (1) 

where Y is the response variable, X is the  covariate 
vector, U is the scalar covariate, and 

1p
     1u u  , ,

T

p u   
is a vector of unknown smooth functions. The error   
has mean zero conditional on X and U. In this paper, we 
focus mainly on the case that the covariate X may be 
missing at random. That is, the available incomplete data 
with the sample size of n are denoted as 

 , , , ,  1, 2, ,i i i iX Y U i n    

where 0i   if iX  is missing, otherwise 1i  , and 
it satisfies that 

     1 , , 1 ,i i i i i i i iP X Y U P Y U Z     ,   (2) 

where  ,i i iZ Y U . The supposition (2) is commonly 
used in the literature of missing data (see [2-5]). It is well 
known that, in the presence of missing data, the complete 
case analysis often generate a considerable bias and lose 
efficiency. Then, it is important to develop some new 
methods which can take the partially incomplete data 
into account. 

In this paper, an imputed empirical likelihood procedure 
is proposed to study model (1) under missing covariates. 
The proposed method can use the information of the in- 
complete data efficiently, and the limiting distribution of 
the proposed empirical log-likelihood ratio function is 
shown to be standard chi-squared. Then the correspond- 
ing confidence intervals of the regression coefficients are 
constructed. Some simulations show that the proposed 
procedure can attenuate the effect of missing data, and 
performs well for finite sample. 

Compared with the Wald-type confidence intervals, 
the empirical likelihood based confidence intervals pos- 
sess several attractive features such as the circumvention 
of asymptotic variance estimation and the flexible shapes 
of the confidence intervals determined by data (see [6]). 
This paper provides an additional positive result of the 
empirical likelihood inferences varying coefficient models 
with missing data, which extends the application litera- 
ture of the empirical likelihood method. 

*This research was supported by the National Natural Science Founda-
tion of China (Grant No. 11101119). 
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2. Methodology and Main Results 

Let  

     
     1 2         

T
u i i i i

i

z E X Y X u Z z

Y g z g z u





   

 
, 

where    1g z E X Z z   and    2
Tg z E XX Z z  . 

Then, by a simple calculation, we have that 

      1

0,

Ti i
i i i i u i i

i i

E X Y X U Z U u f u
 


 
         
   



 

where i i Z  , and  f u  is the density function 
of i . Hence, using this information, an auxiliary ran- 
dom vector can be defined as 

U

       

 

1

                 ,

Ti i
i i i i

i

h i

u X Y X u Z

K U u

 
  

 
         
   
 

u i
i  

where    hK u K u h ,  is a kernel function, and h 
is the bandwidth. For any given u, note that 

 K 

     1 , , nu u     

are independent each other, and satisfy     0iE u    

if and only if  is the true parameter. Hence using 
the empirical likelihood method proposed by [6], an em-  

 u

pirical log-likelihood ratio function for  can be defined 

based on . However,  contains the 

unknown functions , 

 u
  u  i u   i

  z 1g z 2 and  g z , then it 
can not be used directly for the statistical inference for 

. A natural idea to solve this problem is to replace 
, 

 u
 z  1g z  and  2g z  with the following kernel 

estimators respectively. 
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Then, we obtain the following estimated auxiliary ran- 
dom vector 

       

 

ˆˆ 1
ˆ ˆ

                ,

Ti
i i i i

i

h i

u X Y X u Z

K U u

 
  

 
         
   
 

i
u i

i


(3) 

where  ˆ ˆi iZ   and        1 2
ˆ ˆ ˆu i i i iZ Y g Z g Z u   . 

Hence, an empirical log-likelihood ratio can be given by 

  

    
1 1 1

   

ˆ2max log 0, 1, 1 .
n n n

i i i i i
i i i

R u

np p p p u



 
  

 
     

 
  

 

For any given u, provided that zero is inside the convex 

hull of the points       1 , , ,nu    u  then a unique 

value for   u

p

R   exists. By using the Lagrange mul-  

tiplier method to find the optimal , then i   R u  
can be represented as 

      
1

ˆ2 log 1 ,
n

T
i

i

R u u  


         (4) 

where   is a 1p  vector given as the solution to 

  
  1

ˆ
0.

ˆ1

n
i

T
i i

u

u

 

  




            (5) 

Next we will show that  is asymptotically chi- 
square distributed when 

 R u 
 u

R
 is the true parameter for 

given u. To derive a theory for , the following 
assumptions will be required. 

  u 

Assumption 1. The bandwidth h satisfies that  
 and . 

3nh
 5 0nh 

Assumption 2. The kernel function  K u  is a bounded 
and symmetric probability density function, and satisfies  

 4u K u du   . 

Assumption 3. The density function  f u  is 
bounded away from zero, and has continuous first de-
rivatives. The function  z  has bounded partial de-
rivatives up to the order 2 with .  inf 0z z 

Assumption 4.  u ,  1g u  and 2  g u  are twice 
continuously differentiable. Furthermore, we assume that 

  0k u   , 1, ,k p  , and  2g u  is a positive defi-
nite matrix for any given u. 

Assumption5. The error   and covariate X satisfy 
 4supu E U u     and  4

supu E X U u   , 
respectively, where   denotes the Euclidean distance. 

Under these assumptions, the following theorem gives 
the asymptotic distribution of .    R u

Theorem 1. Suppose that Assumptions 1-5 hold. For 
any given u, if  u  is the true value of the parameter, 
then 

   2 ,D
pR u   

where “ D
2

” denotes the convergence in distribution 
and “ p ” denotes the chi-square distribution with p de-
grees of freedom. 

By Theorem 1, the 1   confidence interval for  u  
can be defined as 

        ,C u u R u         

where   satisfies  2 1pP      . In addition, to 
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implement this estimation procedure, we need to choose 
the bandwidth h. One can select h by optimizing some 
data driven criteria, such as the classical criteria CV, 
GCV and BIC. For the facilitation of calculation, we 
suggest to choose the bandwidth based on the CV criteria. 
More specifically, we can estimate h by minimizing the 
following cross-validation score 

    2

[ ]
1

ˆCV ,
n

T
i i i i i

i

h Y X U 


   

where  is the estimator of  after deleting 
the ith subject. From our simulation experience, we 
found that such a choice of the bandwidth is workable. 

 [ ]
ˆ

i u  u

Next we give the proof Theorem 1. The proof the 
Theorem 1 relies on the following lemma. 

Lemma 1. Under the assumptions 1-5, we have 

       
1

1
ˆ 0, ,

n
D

i
i

u N v u u
nh

 


   

where  and      2v u f u K s ds 

       
    22 11

,
Z

u E X E X Z U u
Z Z


 

 
      

  
 

Proof. From the definition of  in (3), it is 
easy to show that 

 î u  

  

    

   

1

1

1

1 2

1
ˆ   

1
ˆ

1 ˆ   1
ˆ

n

i
i

n
Ti

i i i h i
i i

n
i

u i h i
i i

u
nh

X Y X u K U u
nh

Z K U u
nh

A A

 















 

 
    

 
 








    (6) 

Then, similar to the proof of Theorem 4 in Wang (2009), 
we can prove that 

     
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1
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p
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o







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 
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
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Hence, using the central limit theorem, we have 

   1 0, ,D 1A N v u u            (7) 

   2 0, ,D 2A N v u u            (8) 

where      2v u f u K s ds  , 

      2

1

1
u E X U u

Z



     

  
 

and    
    2

2

1Z
u E E X Z U u

Z





     

  
. Finally,  

this lemma follows immediately by (6) - (8). 
Proof of Theorem 1. Together with the proof of 

Lemma 1 and using the same argument as are used in the 
proof of Lemma 1 in [7], we can show that 

     1 2

1
ˆmax .i p

i n
u o nh 

 
          (9) 

Similar to the proof of (2.14) in [6], we can prove that 

  1 2
.pO nh              (10) 

Then, invoking (9) and (10), and applying the Taylor 
expansion to (4), it is easy to show that 

  
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n
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i
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

     


     1 .po
 (11) 

Furthermore, from (5) and invoking (9) and (10), we 
can prove that 
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

  u
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    (12) 

       
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1 1

ˆ ˆ 1 .
n n

T T
i i

i i

u u     
 

         (13) 

Using (11)-(13), we obtain that 
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where       
1

1ˆ ˆ ˆ
n

T
i i

i

u u
nh

   


   u . Invoking the  

proof of the Lemma 1 and using the law of large numbers, 
we obtain that 

    ˆ .Pu v u   u  

This together with (14) and Lemma 1 yields Theorem 1. 

3. Simulation Studies 

In this section, some Monte Carlo simulations are con-
ducted to evaluate the finite sample performance of the 
proposed empirical likelihood method. The data are gen-
erated from the following model 

  ,Y X u    

where    sin 2u u  , the covariates U and X are 
generated according to  and ~ 0,1U U   ~ 0,1X N , 
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respectively. The response Y is generated according the 
model with . In the following simulation 
procedure, we choose the following two missing data 
mechanism: 

~ 0,0.5N

 



Case1:  

 
  

  ,

exp 1 0.5 0.45 0.5 exp 1 0.5 0.45

y u

y u y



      u
, 

Case 2: 

 
   

   ,

exp 1 0.5 0.45 1 exp 1 0.5 0.45

y u

y u y u



     
 

The average missing rates of these two cases are 0.15 
and 0.25 respectively. For each case, we take 1000 simu- 
lation runs. In addition, the sample size is taken as n = 
200. 

For comparison, we consider two methods for construct- 
ing the confidence intervals: the imputed estimation method 
(IEL) proposed by this paper, and the naïve empirical 
likelihood method (NEL). The latter is neglecting the 
incomplete data information, and constructing the confi- 
dence intervals for the regression coefficients only based 
on the complete data. The averages of the confidence inter- 
vals with the nominal level 1 95%,   computed with 
1000 simulation runs, are summarized in Figures 1 and 2. 
Figure 1 is the simulation results under the missing 
mechanism Case 1, and Figure 2 is the simulation results 
under the missing mechanism Case 2, where the dashed 
curves mean the results obtained by IEL method, the 
dotted curves mean the results obtained by NEL method, 
and the solid curve represents the real curve of  u .  

From Figures 1 and 2, we can make the following ob- 
servations: 

(i) The confidence intervals based on the IEL method 
outperform those based on the NEL method, because 
lengths of the confidence intervals obtained by the IEL 
method are shorter than those obtained by the NEL method.  

(ii) The performances of the confidence intervals based 
on the IEL method are similar for all levels of missing 
mechanisms. This implies that the imputed empirical 
likelihood procedure can attenuate the effect of missing 
 

 

Figure 1. The 95% confidence intervals of θ(u) under the 
missing mechanism Case 1 based on IEL method (dashed 
curve) and NEL method ( dotted curve). 

 

Figure 2. The 95% confidence intervals of θ(u) under the 
missing mechanism Case 2 based on IEL method (dashed 
curve) and NEL method ( dotted curve). 
 
data. 

4. Conclusions and Discussions 

We have proposed an imputed empirical likelihood pro- 
cedure for varying coefficient models when some covari- 
ates are missing. The proposed method can attenuate the 
effect of missing data efficiently, and extends the impu- 
tation-based estimation method to the varying coefficient 
models with missing covariates. Simulation studies indi- 
cated that the proposed method was very effective in at- 
tenuating the effect of missing data and constructing the 
confidence intervals for the coefficient functions.  

In this paper, although we assume that all components 
of the covariate are subject to missing, it is not essential. 
The proposed estimation method can easily extend the 
case that only some components of the covariate are 
measured with missing. In addition, one useful extension 
of the varying coefficient model is the varying coeffi- 
cient partially linear model. For such model, Zhao and 
Xue [8] considered the statistical inferences for regres- 
sion coefficients when the response with missing. Then, 
another interesting topic of further research is investigat- 
ing the inferences for such varying coefficient partially 
linear models with missing covariates. 
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