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ABSTRACT

In this paper, by using the contraction mapping principle and constructing a suitable Lyapunov functional, we estab-
lished a set of easily applicable criteria for the existence, uniqueness and global attractivity of positive periodic solution
and positive almost periodic solution of a neutral multi-species Logarithmic population model with multiple delays and
impulses. The results improve and generalize the known ones in [1], as an application, we also give an example to illus-
trate the feasibility of our main results.
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1. Introduction

N'(t)=N (t){r(t)—zn:aj ()N (t-o, (1))

Recently, there are more works on the periodic solution j=1

1.2
of neutral type Logistic models or Lotka-Volterra models m ' (12)
(see [2-7] for details). Only a little scholars considered _Zbi (t)(ln N (t_Ti (t))) :
the neutral Logarithmic model (see [1,8-10]). In [8], Li =
had studied the following single species neutral Loga- They established some criteria to guarantee the exis-
rithmic model: tence of positive periodic solutions of system (1.2). In
, [10], Chen studied the following neutral multi-species
N'(t)= o , ,
(L Logarithmic population model:
N(t)|r(t)-a(t)lnN(t-c)-b(t)(InN(t-p)) |.
N, (t) "
- N (t) |ri(t)—_2aij (t)In N, (t)
He had established a set of easily applicable criteria =
for the existence of positive periodic solution of system n
(1.1) by applying the continuation theorem of the coinci- - b, (t)InN;, (t -7 (t))
dence degree theory which proposed in [11] by Mawhin. j=1 (1.3)

In [9], Lu and Ge employed an abstract continuous theo- N .
rem of k-set contractive operator to investigate the fol- ->c (t)j, Ky (t=s)InN;((s))ds
lowing equation: i=1

"Supported by NSF of China (No. 10971229, 11161015), PSF of China _ L d. (t dinN i (t 7 (t))
(2012M512162) and NSF of Hunan Province (No. 11JJ9002, 13JJ4098). = U dt :
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By using the method of fixed point theory and con-
structing a suitable Lyapunov functional, a set of easily
applicable criteria are established for the existence,
uniqueness and global attractivity of positive periodic
solution (positive almost periodic solution) for system
(1.3).

In [1], Wang et al. had investigated the existence,
uniqueness of the positive periodic solution of the fol-
lowing neutral multi-species Logarithmic population mo-
del:

N'(t)=N (t){r(t)—a(t)ln N (t)
_er_';bj ()N (t-7(t))

-3¢, ()] K, (t-s)InN((s))ds

=

>4, (8)(InN(t-n, (t))),}.

=

(1.4)

By using an abstract continuous theorem of k-set con-
tractive operator, the criteria is established for the exis-
tence, global attractivity of positive periodic solutions for

an, (1)
dt

j=1

n

i1 i

where i=1,2,---,n, a(t), b(t), ¢;(t), d;(t), e(t),
f; (t)eC(R,(O,+oo)), 7 (1), 6 (t)eC(R,[O,+oo)) are
all continuous functions with y:max{yij (t),J(t)},
7i()<1, & (t)<1. And 146, >0, ["K;(s)ds=1,
I: sK; (s)ds <+ . We consider (1.5) together with the

initial conditions

2.8 (t)J.; K (t=s)nN;(s)ds _Zn: f; ()

ET AL.

model (1.4).

On the other hand, there are some other perturbations
in the real world such as fires and floods that are not suit-
able to be considered continually. These perturbations
bring sudden changes to the system. Systems with such
sudden perturbations involving impulsive differential
equations have attracted the interest of many researchers
in the past twenty years [12-20], since they provide a
natural description of several real processes subject to
certain perturbations whose duration is negligible in
comparison with the duration of the process. Such proc-
esses are often investigated in various fields of science
and technology such as physics, population dynamics,
ecology, biological systems, optimal control, etc. For
details, see [21,22]. Recently, the corresponding theory
for impulsive functional differential equations has been
studied by many authors [23-25]. However there are few
published papers discussing the impulsive neutral multi-
species Logarithmic population model. Our method is
different from that in [1,9].

In this paper, we investigate the existence, uniqueness
of the positive periodic solution of the following neutral
multi-species Logarithmic population system with multi-
ple delays and impulses

j=1

_N, (t)[ai ()b, (£)In N, (1)~ D¢, ()N, (1) D20, ()N (-7 (1))

dInN, (=4, (t))

= (1.5)

=12, n,t#t,,

AN, () = Ny (8 )= N; () = Ny (t )i =1,2,,n, k = 1,2,

N (£)=4 (&) Ni(£)=4(¢). £ e[-2.0].4(0)>0,
¢ eC ([—)/,0),[0, +oo))ﬂ c! ([—7/,0), [0, +oo)),
i=1L2,---,n.
For the ecological justification of (1.5) and the similar
types refer to [1,8-10].
Throughout this paper, we make the following nota-

tions:
Let @w>0 be aconstant and

(1.6)

C, ={x(t)= (% (1):+-%, (1) (1) € C(RR).  (t+0) =x, (1)

with the norm defined by [x|, = max, ;| {|Xi (t)

}:
Gl = [x(1)=(x (0) %, (1)

Copyright © 2013 SciRes.
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with the norm defined by ||X||2 =max, {"X"] ,||X’||]} .

Then (Cw,||x||1),(C[lU, X||2) are Banach spaces.

For the sake of generality and convenience, we always
make the following fundamental assumptions:

(H) & (t), b, (t), Gy (t), d; (t), & (t), are all posi-
tive periodic continuous functions with period @, and
fi (t) are positive continuously differentiable @-periodic
functions. Furthermore, y;(t), &;(t) are positive -
periodic continuous functions such that yf(t)<1,
5i(t)<1,and & (t) exists;

(Hy) O0<t <t,<---<t, <--- are fixed impulsive points
with lim, ,t, =+o0;

(Hs) {6’,k} is a real sequence such that 6, +1>0,
I1,...(1+6,) isan @-periodic function;

(15" a (1) B (1), (1) dy(1). e(t). are al
almost periodic continuous functions with period @ on
R, and f;(t) are positive continuously differentiable
almost periodic functions such that

a (t)20,b(t)=0,c;(t)=0,d;(t)=0,¢

7|j siJ 9”‘

f;(t)=0,m(b; (t)+d; (t))>0,

(t)=0,

where

m(b (t)+ d (t)) =tim, .., % [ (b, (r)+d, ())dr,

i,j=12,---,n;

(Hs) 7;(t), &;(t) are positive continuously differ-
entiable almost periodic functions such that y; (t)<1,
Si(t)<l, and &(t) exists, O<t <t,<---<t, <.
are fixed impulsive points with lim, , t =+4o;

(He) {6} is a real sequence such that &, +1>0,
H0<tk<t(1+0ik) is an almost periodic continuous func-
tion.

The outline of the paper is as follows. In the following
section, some definitions and some useful lemmas are
listed. In the third section, we first introduce a transfor-
mation, where some adjustable real parameters p; > 0
are introduced. After that, by using contraction mapping
principle, we derive some sufficient conditions which
ensure the existence and uniqueness of positive periodic

n

j=1
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solution (positive almost periodic solution) of system
(1.5) and (1.6). In the fourth section, we derive a set of
easily verifiable criteria for the global attractivity of the
positive periodic solution (almost periodic solution) of
(1.5) and (1.6) by constructing a suitable Lyapunov func-
tional. Finally, we give an example to show our results.
Here, We must point out, the idea of introducing pa-
rameters is stimulated by the recent works of [1,26, 27].
However, to the best of the authors knowledge, this is the
first time such a technique is applied to the impulsive
neutral delays ecosystem.

2. Preliminaries

In order to obtain the existence and uniqueness of a pe-
riodic solution for system (1.1) and (1.2), we first give
some definitions and lemmas:

Definition 2.1 ([21]) A function N;:R—(0,+%) is
said to be a positive solution of (1.5) and (1.6), if the
following conditions are satisfied:

1) N;(t) is absolutely continuous on each (t,.t,,);

2) for each keZ,, Ni(t;) and Ni(tk’) exist and
N, (tl:) =N, (t,);

3) N;(t) satisfies the first equation of (1.1) and (1.2)
for almost everywhere (for short a.e.) in [O,w]\{tk}
and satisfies N; (t;) =(1+6, )N;(t,) for t=t,,
kez, ={1,2,---}. ;

Definition 2.2 Let N*(t)z(Nl* (t),---,N;(t)J be a
strictly positive periodic solution (almost periodic solu-
tion) of (1.5) and (1.6). We say N*(t) is globally atT-
tractive if any other solution N (t)=(N,(t),---,N,(t))
of (1.5) and (1.6) has the property:

lim N7 (£) =N () =0, i=1,2,+-,n.

We can easily get the following Lemma 2.1.
Lemma 2.1 The region
R ={N;(t):N;(0)>0,i=12,--,n} is the positive in-
variable region of the system (1.5).
Proof. In view of biological population,we obtain

N;(0)>0. By the system (1.5), we have

j=1

N; (t) =N; (O)QXP J.(;[ai (77)_b| (n)ln N; (U)—Zcu (n)ln Nj (n)_idij (n)ln Nj (77_7ij (77))

e, (n)] Ky (-5)inN  (s)ds =3 f,

i=1 i=1

and

N; (t) = N; (t, ) exp _Ltk I:ai (7)-b (7)In N (U)_ic“

Copyright © 2013 SciRes.

dinN; (’7—5i,- (77))

(n)dln Nj(’]_é}j (n))]dﬂ}, te[O,t,],i =1,2,---,n,

dn

(N, (7)-3d, (1) N, (-7, (n))

j=1

dn

}d?]}, te(t,t,,].i=12n,
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Ny (&)= (1+6,)N; (1) > 0.k eNi=1,2,-,n.

Then the solution of (1.5) is positive. O
Under the above hypotheses (H;)-(H3), I consider the neutral non-impulsive system
d A n n
d_)'? =y (1) & (t)-B; (t)Iny, (t)- 1Cij (t)iny; (t)—Z; D; (t)Iny; (t-7; (1))
i= i=
2.1
n dlny, (t—5;(t
_Z; E; (t)ﬁw Kij (t=s)Iny;(s)ds —Z} Fi (t)w ’
j=
with initial conditions:
yi (é:) = ¢i (é:)s y;(é:) = (Di'(é:)$ é: € [—T,O], ¢i (O) > 09 (2 2)
¢, €C([-2,0),R")NC'([-7,0),R"), i=1,2,3,-,n, '
where
Bi(t)=h, (t)OHt(H O). Cy(t)=c; (t)olt_[l(” O ). Dy (t)=d (t)olt_[l(” O ).
<ty < <ty < <ty <
(2.3)

Ey(t)=¢;(t) I

0<ty <t-;j (t)

By asolution Y, (t),i=12,---,n, of (2.1)and (2.2), it
means an absolutely continuous function y; (t),
i=1,2,---,n, defined on [-7,0] that satisfies (2.1) a.c.,
fort>0,and y,(£)=0(£), Yi(£)=¢/(£) on [-7,0].

The following lemmas will be used in the proofs of
our results, The proof of the first lemma is similar to that
of Theorem 1 in [20].

Lemma 2.2 Suppose that (H,)-(Hs) hold. Then

1) if y,(t)(i=1,2,---,n) is a solution of (2.1) and
(2.2)on [-7,+00), then

N; (t) :Ho<tk<t(l+9ik)yi (t)(i :1’2""’n)

is a solution of (1.5) and (1.6) on [-7,+00).
2) if N;(t)(i=12,---,n) is a solution of (1.5) and
(1.6) on [-7,+00), then

Yi (t):H0<rk<t(1+6’ik)Ni (t)(i :1’2"”’n)

is a solution of (2.1) and (2.2) on [-7,+).

Proof. Its proof is similar to that of Theorem 1 in [20],
here we omit it. O

Lemma 2.3 ([28]) Suppose ceC, and o’'(t)<1,
te[0,»]. Then the function t—o(t) has a unique
inverse x(t) satisfying xeC(R,R) with
ula+w)=u(a)+o vaeR.

Proof. Its proof is similar to that of Lemma 2.4 in [29],
here we omit it. O

Lemma 2.4 (Barbalat’s Lemma [30]) Let f (t) be a
nonnegative function defined on [0,+e) such that f(t)
is integrable and uniformly continuous on [O,+oo), then
lim f(t)=0.

t—>+o0

Copyright © 2013 SciRes.

(1+6,). F(t)="f;(t)

IT @1+6).

0<ty <t=6j (t)

Lemma 2.5 Assume that u(t), z(t) are all con-
tinuously differentiable @ -periodic functions, a(t),
b(t) are both nonnegative continuous w-periodic func-
tions such that jowa(t)dt >0, then

L e’ﬁa@)d”!b(s)u'(s—r(s))ds
=c(t)u(t-z(t))
—J.;efﬁa(f)dg [a(s)c(s)+ c'(s)]u (s—7(s))ds,
b(t)

where c(t)=—-—~

l—T'(t).

Proof. As

J'joo e_I;a(§)d§b(s

- j_tw e’ﬁa(g)déc(s)du (s—(s))

= B (s)u(s—(s))
—.[iwu (s- r(s))d(e’ﬁa@)d’;c(s))

= B (s)u(s—2(s))[L

[ u(s=z(s))[a(s)e(s)+e'(s)]e 4 as,

Denote m =g 0 20 , then from a(t)>0,

~—
oy
—
w
|
3
—_
w
~—
~—
o
w

2.4)

["a(t)dt>0, it follows m < 1. Also, when t > s without

loss of generality, we may assume
s+now<t<s+(n+1)w, thus

OJApPpS
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e’féa(é)dgc(s)u (s—7(s)) < e A

e ol
" el

= ke B e ul <k e ]

_ZI::];)Hw /:)dé s
=¢C

Therefore

lim e'ﬁa@)dfc(s)u (s—7(s))=0,

S—-0

and so, from (2.9) it follows:

f_we Mp(s Ju'(s—z(s))ds
et (t—r(t))

—[1 e F T a(s)

—o0

)e(s)+c'(s)Ju(s—z(s))ds.

The proof is complete. O

Lemma 2.6 Assume that u(t) are all continuously
differentiable almost periodic functions, a(t),b(t) are
both nonnegative continuous almost periodic functions
such that m(a( ))>0 r is positive number, then

[ e (s)u'(s—(s))ds
=c(t)u (t—r(t))
_J:Oe’ﬁa(i)dé [a(s)b(s)+b (S)JU(S—T(S))dS,

where m(a(t))=lim,__, le’:” a(r)dr.

Proof. Similar to the proof of Lemma 2.5, we omit it
here. |

3. Main Theorem

Here, we take the transformation y; (t)= exp{ O (t)} ,
then (2.1) can be rewritten in the following form

S CORCICILIUR

ey ()% (1)

dt ENEp
—g‘;ﬁjoﬂt)xj(t—yﬁj(t))
RO (O] Ky (t-5)x(5)as
SR () (1= () (-5, (0) 2L,
12

3.1)

Obviously, the existence, uniqueness and global at-
tractivity of positive periodic solution (almost periodic
solution) of system (1.5) is equivalent to the existence,
uniqueness and global attractivity of periodic solution

Copyright © 2013 SciRes.
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(almost periodic solution) of system (3.1).

For u(t)=(u(t),u,(t),-.u,(t )) ecC!

.» let us con-
sider the equation

S [ mse, 00~ 3 26,000
—%%D”(t)uj(t—}/ij(t))
TR
—iﬁj R 010 14, (0)+ 2,

i=1,2,‘”,n~

(3.2)
Since by (t)+C;(t)>0, .[w[b (t)]dt>0, it

follows that the hnear system of system (3.2)

_:_[b. (1)+C; (t)J X (t), =12,

admits exponential dichotomies on R, and so, system (3.3)
has a unique continuous periodic solution X, (t), which
can be expressed as

Xiu (t) I_w ’j [b »+Ci (& ]dét fiu (T)dT,

., (33)

(3.9
1=1,2,---,n,
where
—— 3 Pic (d)u (s
flU(T)_ jgj‘;i P Cij( ) J( )
_J_Zn_;%:Du(T)uj(T_%J (T))
P ’ —s)u;(s)ds
_JZ:;EEIJ(T)J._QOKIJ(T ) J( )d
v P ) 1-0 (7)) (-3 (7 +ai(T)
jZ:;Pi Fij( )(1 6!1( ))J( 5!1()) P ’
i=12,--,n
3.9

Now, by using Lemma 2.5, X, (t) can also be ex-
pressed as

X (t)= Zn:pj Fi(t)u j(t—ﬁij(t))

i=1 P
+ JlOO e‘],[bi(é“)*'cii(é“)]digiu (Z')dz‘,
=12,

(3.6)
’n!

where

OJApPpS
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6, (5)=- 2 2¢, (), (1) -2 25D, (r)u, (=74 () - 221, (1) [ Ky (7=s)u, (s)ds

i=Li=i P i= Py = P 3.7

+ Y PR ()b (2)+Cy (7)) + (), (-6, (7)) + 2, i=1.2,m.

i=1 P Pi

Our main result on the global existence of a positive periodic solution of (1.5) and (1.6) is stated as follows.
Theorem 3.1 In addition to (H,)-(Hs), assume further that there exist positive constants p, (i = 1,2,---,n), such that

Y2 ()

t
(H;) max,_gq _[t efj’[h(g)m"(mdfqi (r)dr<1-
- j=1 pl

1

Then (1.5) has a unique positive ® -periodic solution with strictly positive components, say

N* (1) = (N7 (6N (1) N5 (1))

where
a(e)= 2 200, () + 2240y (1) + & () + Ry () ()4 a0+ R ()
and
P - P
S0 0] - x| E20 0

__NVFi tRIh()+Ca($)]as
- (t)= F. -5 (t g ,
X () ]Z} - S () (t=6,(t)+] e 9 (7)d, (3.8)
i=12,---,n,
where @, (r) are defined by (3.7), is a continuous @ - Following we will prove the mapping y is a con-
periodic function, and so ; traction mapping. In fact, for any
X, (1) = (% (1), Xy, ()., %, (1)) €C,,. Now define the u(t)=(u, (t).u,(t),-.u, (t))T and
mapping y:C, > C_ as follows: . . . e 1 N\T
u*(t)=(uy (t),u; (t),-uy (1)) from (3.8), (3.9) and
wu(t)=x,(t),u(t)eC,. (3.9) the conditions of Theorem 3.1 it follows:

5208, 0 -5, (0)-ui (10, 1)
S 2L (O, (-8, (1) -1 (t-5, (1)]

j=1 Pn

te[0.0]

pu—pu] - max{

+ .Ew e—ﬁ[bl(é)wu(é)]dé

9, (r)-9,. (7)]dz.---,
9. (1)-9,, (7)dr|

4 ef[bl +C1|(§)]d§q(z_)dz_:|| _

—o0
*
1

t e‘ﬁ[bﬂ (§)+Cnn(§ﬂd§

—0

< max {
te[0,0]

e

j=1 Pn

(3.10)

1

+ J'jw e’ﬁ[bﬂ(f)*Cnn(‘f)]dfq (T) dT:l

<[u-v].

where

Copyright © 2013 SciRes. OJApPpS
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0 (7)-0,: (] = 2 20, (o) ()5 ()« 20y (2 (74 () i (274 (0)

s Zn: _&Cij (T)”UJ -U; 1+Zn:ﬂ{Dij (r)+Ey(z)+F (T)[bi (r)+ J |Fu |}
j=Lj=i P i=1 P
||uj =12,
That is
G.11)

pu-yu], <Jo-v]
This shows that i is a contraction mapping. Hence, there exists a unique fixed point X(t)=(x, (t),--,x, (t))T eC,

such that wx =x, thatis

X (1)=-2 2L, (t)u, (t=5, (1)) + [ T P@[ > Lic, (), (r)

=1 Pi j=Li#i P
Pj _ T_n&__z-t s(T—=S)u.(S)ds
—JZ}pI D; ( ) (T 7ij( )) épi EIJ( )J.,wKIJ( ) 1( )d (3.12)
+pJ +..r+..’TU-r—--r+ai—(t)r
JZ;pI{F()[ () CIJ( )J FIJ( )} J( 511( )) ) }d’
i=12,---,n

Following, we prove X(t)=(x,(t),-.X, (t))T €C, is the periodic solution of system (3.1). Noticing that (3.12) is

equivalent to

X (0)+ 221 F, (1), (t-5, (1))

j=1 P
t +Cij L P L Pj
:J_Ooe .‘.r[bi(g) & (5)]d§|: Z J C ( ) J(T)_Z_J DIJ (T)uj (T_j/ij (T))
j=1j#i P j= P
32 (7)[' K, (7= s)u, (s)ds (3.13)
=1 Pi
n P a (t
+Z:,—J{Fu( )b (7)+Cy (z) ]+ Fi ( } (- J(r))+$}dr,
=t Fi i
1=12,---,n
From the right-hand sides of (3.13), we know that
o2
%O+ X2 (O, (t-5,(1)
j=1 P
is differentiable. And so, from (3.13) it follows that
OJApPpS
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LS 00, (1-6,0)+ 206, 00101 (0)u, (1-6,(0)
4150+ 325 0w -0,0)
=—J_ij¢i%;c.,<t>u,<t> ;QD (005t (0) -2 &, (O] K () (5)¢s
SR (0 0+, 00 0] (-0, (0) « 2
aCICCION [z%o <r>uj<r>—§%ja, (7)o, (=7, ()
—JZZE o)[, Ky (z=5)u; (s)ds+ 21, (2)[by (7)+ Gy (7) |+ F (r)}u,.(f-(s”(r))ﬁT(i‘) dr
== 3 2, (9, 0)- ;2a<> (t—n«t))—i%E ) Ky (t-5)u; ()ds
+ 52 (0 )+, (0] + R 0] -, () 21

-[b (t)+C; (t)}{xi (t)+

i=t i

here using the equality (3.13) again. That is

w2 PR ) (t-8, (1) | i

dx(li—t(t):_[bi (t ]X i &Cij (t)U;(t)—iﬂDu (t)uj(t—)/ij (t))

Pj t
- E Ki(t—=s)u;(s)ds—
SO, (0] Ky () ()05 -2
This shows that x(t)=(x, (t),m,xn(t))T is con-
tinuously differentiable @ -periodic function and satisT-
fies Equation (3.1). Therefore, X(t)=(x(t).--,x, (t))
is the unique continuously differentiable ® -periodic

solution of system (3.1), and so,

y(t)=(exp{ % (1)} exp o, (1)})'

is the unique positive @ -periodic solution of system
(2.1), from Lemma 2.2,

n

a()= X e, (042 0,0+ (1)

i=1 P

<[b(H)+C, ( Hzpl Fy(

j=1j=

i=l P

Then (1.5) has a unique positive @ -periodic solution
with strictly positive components.

Our next theorem concerned with the existence of
unique positive almost periodic solution of systems (1.5)

Copyright © 2013 SciRes.

i=1 P

> 2R, (1)(1-6; (1)) (=5, (1)) +

(3.14)
St
a'_()’i =12,---,n.
Pi

N (6)= (T Ty (16 exp{ o (D)}
[T (146 expl o, (0))

is the unique positive o -periodic solution of system
(1.5). The proof is complete. O
As a direct corollary of Theorem 3.1, one has
Corollary 3.1 In addition to (H,)-(Hs), assume further
that there exist positive constants p, (i=1,2,---,n),
such that

(t)[bi (t)+C; (t)]+|Fij' (t)”

I

and (1.6).

Let u(t)=(u,(t),u,(t),--u, (t))T be any continu-
ously differentiable almost periodic function, and con-
sider equation,

OJApPpS
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dx; (t NP,
[ 0se @) 0- 3 2e, 0
-iﬂDu (t)u; (t-7 (t))—i&Eu (O], Ky (t=s)u, (s)ds (.15)
i= P i=1 P -
—Zn:ﬂlzij(t)(l—i)‘"f(t))u](t—é‘ij(t))+ai—(t), =120
i=t Pi Pi
Since m(b; (t)+d; (t)) >0, it follows that the linear system of system (3.15)
dx; .
%:-[bi ()+Cy (1)]% (1), =120, (3.16)

admits exponential dichotomies on R, and so, system (3.16) has a unique continuous almost periodic solution X, (t) ,
which can be expressed as

Xiu (t) — J._tao ef.‘.;[bi(é:)+Cii(§)]d§ fiu (T)dT, i — 1’ 2,_ --,n, (3.17)
where
n p] n p] n p] t
fiu(z)= - Z —C (7)y; (T)_Z_ D; (7)u; (T ~7ij (T))_z_ E; (T)Lo Kij (z=s)u;(s)ds
j=1j=i P i=l P i=l P (3.18)

-y 2 ) 1-6; (z))u’ (-0 (¢ +a‘(r) i=1.2..--.n
épiFij()(l &5 (7)) (r =55 (7)) izl

Now, by using Lemma 2.5, X, (t) can also be expressed as
X () =220, (D, (-6, () + [} e FBESEREg (2)dr, i=1,2,n, (3.19)

where

9(7)== 2 21, (e)uy (7)- 2200y () (7, (1))~ 208 (1) = 5)u, (5)as
' Fij(r)[bi(r)+Cij(T)]+Fij'(r)}uj(f—é}j(r))+ai—(t), i=1,2,.n.

= Fi Pi

(3.20)

Then, we have
Theorem 3.2 In addition to (H4)-(Hs), assume further that there exist positive constants p, (i =12, n) , such that

n

R0

(Hg) maXtER J‘l efj‘;[kﬁ (¢)+Cll(¢)]d§qi (T)dT < 1 _
m i=1 P

1

Then (1.5) has a unique positive almost periodic solution with strictly positive components, say

N (0)= (N7 (6N (1), N (1)

where

and CZ{V(t):(Vl (t),5v, (t))T

} is continuous almost periodic function}

Proof. Set with the norm ||v], = sup{"u (t)"1 ‘te R} , obviously, C is

Copyright © 2013 SciRes. OJApPpS
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a Banach space. For any continuously almost periodic
function u(t)=(u,(t),--,u, (t))T we know that X, (t)
defined by (3.19) is also a continuously almost periodic
function. Now define the mapping ¢:C —» C as fol-

is the unique positive almost periodic solution of system
(2.1), from Lemma 2.2,

N (t) = (T Tpu 2 (15 G Jexp{ % (D)}

lows:

[T, .1+ 8)expl o, (0))

is the unique positive almost periodic solution of system
(1.5). The proof is complete. d
As a direct corollary of Theorem 3.2, one has
Corollary 3.2 In addition to (H4)-(Hg), assume further
that there exist positive constants p, (i =12,---, n) ,
such that

pu(t)=x,(t),u(t)eC. (3.21)

Then similarly to the prove of Theorem 3.1, we could

prove that under the assumptions of Theorem 3.2, the

mapping ¢ is a contract mapping, and so systemT(3.19)

has a unique fixed point X(t)=(x,(t),--+,X,(t)) . and
S0,

y(t)=(exp{ % (1)} exp o, (1)})'

i=Lij=i Fi =1 Fi

Then (1.5) has a unique positive almost periodic solution with strictly positive components.
Consider the following equation:

an, (1)

S, (t)[ai (t)-b, ()N, (t)- ¢, (I N, () -3 d, (In N, (t-7 (1))

(3.22)

ey ()] Ky (t-s)InN; (s)ds—> (¢
j=1 s j=1 dt
which is a special case of system (1.5) and (1.6) without impulse. Similarly, we can get the following results.
Theorem 3.3 In addition to (H,), assume further that there exist positive constants p, (i = 1,2,-~-,n) , such that

n

220, (1)

=t P

(Hg) max,_q J'_too e*f:[bi (5)+Cii(5)]d§qi (T)dT <1-

Then (1.5) has a unique positive @ -periodic solution with strictly positive components, say

N (8) = (N7 (£).N; (), N3 (1))

where

g ()= i 'ﬂcij (T)Jrip__j{du (v)+e;(0)+ () b (7) +cy (T)]+|fij'(f)|}’

and

Proof. Similar to the proof of Theorem 3.1, we omit it here. 0
As a direct corollary of Theorem 3.3, one has
Corollary 3.3 In addition to (H,), assume further that there exist positive constants p, (i = 1,2,---,n) , such that

g (t)= Zn: ﬂCij (t)+iﬂ{du (t)+e; (t)+ f (1) by (t) +c (t)]+|fii (t)|}

i=Lj#i Py i=1 P
J

anﬂ fi ()

i=1 P

<[l (t)+c; (t)](l—
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Then (1.5) has a unique positive ® -periodic solution with strictly positive components.

Theorem 3.4 In addition to (Hy), assume further that there exist positive constants p, (i=1,2,-

> 208, (0)].

(Hyp) max,_g _[; efﬁ[bi(f)J'C"(;)]dgqi (z’)dz’ <1-

j=1 Pi

-,n), such that

Then (1.5) has a unique positive almost periodic solution with strictly positive components, say

N"(t)=(N; (t),N

where

and

As a direct corollary of Theorem 3.4, one has

j=Li#i P i=1 P

<[l (t)+c; (t)][l

j=1 P

Then (1.5) has a unique positive almost periodic so-
lution with strictly positive components.

4. Global Asymptotic Stability

In this section, we devote ourselves to the study of the
global attractivity of periodic solutions (almost periodic

B

Pi Pi Pi
PR 0+ 113 Py () 2Dy )+

Pi

- te[O,a)]{

Corollary 3.4 In addition to (H,), assume further that there exist positive constants p, (i =1,2,--,

6 ()= X Ze, )+ 220 d, (1) +e, (t)+ f, (1)]bi () +c

)

2

+2rE, (u)

F()e NG (1)

$2040))

j=1 P

n), such that

(t)} +| i (t)|}

solutions) of system (1.5), (1.6) and (3.22) (which is a

special case of system (1.5) and (1.6) without impulse).

Now, we state our main results of this section as follows:
Theorem 4.1. Assume that the conditions in Theorem

3.1 hold. Suppose further the following conditions hold:
(Hy;) There is a positive constant M such that

Pi
2ie, )

Iz

=1, j=#i

} e W gy <\ <.

(Hy) exp{—j;(bi (£)+C, (f))df} 50, as t—>4a0,i=1,2,0,n

Then system (1.5) and (1.6) has a unique periodic solution which is globally attractive.
Proof. Let N*(t)= (Nl* (t),N; (t),---,N; (t)) be the unique positive periodic solution of system (1.5) and (1.6),

whose existence and uniqueness are guarantee by Theorem 2.1, and N (t) =(Nl (t),N,(t),--,N,, (t))T be any other

solution of system (1.5) and (1.6). Let

N7 (t)= H0<1k L(1+6, )exp {pi X (t)}= N; (t) = H0<tk (146 Jexp {pi X; (t)}

then, similar to Equation (3.1), we have

n

t) =—[b,(t)+C, ()] ()~ Y

Pi s)x
_;p,E() Kjj (t=s)x;(s)ds

and,

Copyright © 2013 SciRes.

p_:cij(t)x]f(t) szD (£)%; (t=7 (1))

i=1 P (41)
roa(t

zp' Ry (0(1-6; (0)(x; (-6, (1)) + 2,

j=1 Pi
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- J()= 30 21, (0% (0270 (0 (14 (1)
_JZ;ZJ E; ( IwKJ (t=s)x;(s) ds—jzn_;'%i"Fij(t)(l—c’)‘i}(t))x}(t—&ij(t))+ai7(it),
Then, from (4.1) and (4.2), we have
SRy (1), () ORTOIEIELTCICIORAC)
=220, ()%t (9) (=74 ()
_gl‘; E, ( j‘ K, (t—s)<x}‘(s)—xj(s))ds
_JZ;/IOOJ By (0)(1-65 (1) (6 (£-, (1) - (t-0, (1)) =12

Let x (t)—x(t)=2z(t), then

- 0120~ X 216, (97,0~ 700,(07, (¢ (1)
—Z’;’E ) Ky (t=s)z;(s ds—i%ﬁj(t)(l—ai;(t))z;(t_au(t)),i:1,2,---,n.

Muldply both sides of (4.4) with exp[} (5, (¢)+C, (£))d

———

and then integrate from 0 to t to obtain

j;[zi (u)exp{ju(bi (&£)+Cy (5))(15}] du
_—I [J ln] Pi Lic,( J(U)+Zn:[ﬂDij (u)z, (u—;/ij (u))+%jEij (u)fwKij(u_s)zj (s)ds

Bi
then
z (e {[)(0,(£)+Cy (£)) e
7 (O)_-[;L_IZHJ: ijcj(u)zj(u)+g(%Dij (U)Zj(u—y,(u))+%’E '[_uw K (u—s)z;(s)ds
+%F,(u)(1_5,(u))zj(u-51 (u))ﬂexp{j (b (&)+C (5))d§}du =12
thus

Copyright © 2013 SciRes.

4.2)

(4.3)

(4.4)

4.5)

(4.6)

(4.7)
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Let F/(u)=F, (u)(l—é‘ijf (u)) , by Lemma 2.3, we obtain

o250 (010, (0)2 (16, () exp [ (1 (£) G, (&) agau

-], Hi (U)CXP{_.[:(bi (£)+C; (f))df} 2;(u-g; (u))du}, 48

where

+f<:{jn-1 {& Hy (u)z; (u-g; (U))_p_ij D; (t)2;(t-7; (t))_% Ey (0], Ky (t-9)z, (s)ds 49

then

|z]<|z (0)+p__j F; (0)z; (_5ij (0))

Pi

£f3]

.
=1

Pj
—H, (u
L, (u)

+ &Dij(u)

Pi

+

yo .
;:Fij (t)|zj|, i=1,2,---,n,
That is
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2], <z (0)+%:Ej (0)z, (—5i,- (0)) eXP{_I;(bi ()+C; (f))df}
+Jo{z{’;jH<>\ f,jo() 25, 0]+ 3 ey o) sl (061 cu@Nac]anl, o

p,F

From (H;), we have

B €
p4
M. < - |2 o[ [P lp p o p; -m(©)+ci(€)
1-2 155 F (1) - IH, ()| + 22D, (u) +[=E; (u)] |+ e HEGRCTEE
gp. i I"{%{A (1) A () A i )} HZH. p ()} (4.12)
2,(0)+ 1 (0)2, (- (0)) e HOE O
< Py Y , i=12,---,n
From (H,), we have
I, —lm3X|Z (t)= gl[lgxl|xf(t)—xi(t)|=0, as t - +o0,i =1,2,--,n, (4.13)

thus, X (t) =X (t), as t —> +o0,i =1,2,---,n, that is the positive ® -periodic solution of (3.1) is globally attractive,
N; (t) = H0<tk<t(l + 6 )exp{pi % (t)}
> [ 1+ G )0 {6 (O} = N; (8) a5 > 0, =12,n,

by Definition 2.2, the positive  -periodic solution of (1.5) is globally attractive. The proof is completed.
Theorem 4.2. Assume that the conditions in Theorem 3.2 hold. Suppose further the following conditions hold:
(Hy3) There is a positive constant m such that

Sena s

j=1

(Hys) exp{—j;(bi (£)+C, (5))d.§} 50, as t—>+00,i =1,2,-+.1

Then system (1.5) and (1.6) has a unique almost periodic solution which is globally attractive.

Proof. Similar to the proof of Theorem 4.1, we omit it here.

Theorem 4.3. Assume that the conditions in Theorem 3.3 (or Theorem 3.4) hold. Suppose further the following
p' *
2 )

conditions hold:
(H,s) There is a positive constant A such that
2ok I3
j=1 =t | Fi j=L j#i
(Hio) exp|-[)(5 (&) +6, (€))dé] >0, as t>4m,i=12,n
Then system (3.22) has a unique periodic solution (almost periodic solution) which is globally attractive, where
[fu" (u)+ 1 (U)(bi (u)+c; (U))J((l = (“))+ d; (U)‘zf'(“))
’ 2 ’
(1-55 (u))

Proof. Similar to the proof of Theorem 4.1, we omit it here.

2ic,(v)

pJE() Pi

i
D() Pi

Pi
H() Pi

pJF() Pi

Pi

} j;(bi(§)+Cn(§))d<fdu <m<l;

I3
j=1, j=#i

Zie, (u)

Pj
+|—e. (u
|J( ) |

Pi
d() Li

pJf() Pi

Pi

}e-ﬂ(“(f)”"“”d‘f du<i<l

H;(u)=

]
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In

N (t—2m-0.01-0.5sint)

5. An Example

Now, we give an example to demonstrate our result. Let us consider the following equation:
dN (t i
% =N (t)[2+cost—%ln N (t)—m

1-sint

(5.1)

__.[;Kj (t-s)InN (s)ds—%ln N (t—0.1+0.5sint)}

20

Compare with (3.22), we get i=j=1,,
a,(t)= 2+ cost, bl(t)=%, ¢, (t)=0.

2+sint 1-sint 1
dll(t):T, e“(t)zT, fll(t):E’

71 (1) =21+0.01+0.5sint, &, (t)=0.1-0.5sint.

So, 7, (t)=0.5cost<1, & (t)=-0.5cost <1,
5/ (t)=0.5sint, f, (t)=0 and

0 (t): d, (t)+e11(t)+ fiy (t)bl (t)+| fii (t)|
:2+sint+1—sint+ixl (5.2)
20 20 10 4

:4LO< by (t)(l_" fii (0"1)2420

According to Corollary 3.3, we see that system (5.1)
has at least one positive 2m-periodic solution.
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