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ABSTRACT

In this work, we studied the performance of modified techniques of Adomian method applied to non-linear Volterra
integral equations of the second kind. This study shows that the modified techniques are reliable, efficient and easy to
use through recursive relations that involve simple integrals. Furthermore, we found that the right choice and the proper
implementation of the modified techniques reduce the computational difficulties and increase the speed of convergent,

comparing with the standard Adomian method.
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1. Introduction

In recent years, many works have been focusing on the
developing and applying of advanced and efficient meth-
ods for integral equations such as implicitly linear collo-
cation methods [1], product integration method [2], Her-
mite-type collocation method [3] and analytical (semi-
analytical) techniques such as Adomian decomposition
method [4,5]. In this work, we investigate the perform-
ance of modified techniques of Adomian decomposition
method applied to non-linear Volterra integral equations
of the second kind. This type of integral equations has
the following form

u(x)=f(x)+

Equation (1.1) represents a nonlinear Volterra integral
equation of second kind with unknown function u(x)
and F(u) is a non-linear function of u(x), and we
assumed that, the kernel k(x,t) and the function
f(x) are analytical functions on R* and R, respec-
tively. Hence, Equation (1.1) classifies as a linear
Volterra integral equation of second kind if F(u) is a
linear function of the unknown function u(x).

K(xt)F (u(t))dt. (11)

O ey <

2. Standard Adomian Method

The standard technique for the non-linear integral Equa-
tion (1.1), starts by decomposing u(x) into uy,u,,u,,--,
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and assuming that
lim, {Zn:ui(x)}zu(x). (2.1)
i
For the non-linear function F(u), we set
F(u)=2A (2.2)

In (2.2), A, (n>0)are special polynomials known
as Adomian polynomials. In ref. [6], close formulas of
these polynomials, for any non-linear function F(u),
introduced in the terms of the Kronecker delta o, . .
With A, =F(u,), these formulas for n=1,2,--- read

A = z HVdF—(UO)7 (2.3)
v=1

v
du;

where

1 n+l-v

H, == Z

V!i1~i2v“ni

u-u

nig+ig +--+i, Ui Ui, Uiy

Now Equation (1.1) becomes,

gun(x): f (x)+i(k(x,t)§;\n(uo,ul,---,un)]dt,
2.4)

Now u,(x)= f(x) and the u,(x); (i=1,2,---) can
be completely determined by using the recurrent formula
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(2.5)

X
Uiy ( .[k £),uy (t), -+, u; (1)) dt
0

Consequently the solution of the integral Equation
(1.1), in a series form, can be immediately determined by
using (2.5).

Recently, ref. [7] claims that the choice of the initial
data u,(x) plays an essential rule on improving the
performance and the speed of the convergence of the
Adomian method. Furthermore, for a complicated func-
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tion f(x), we can see immediately from the recurrent
Formula (2.5) that the standard Adomian method will
encounter computational difficulties. To see that, we ap-
plied the recurrent Formula (2.5) on the nonlinear Vol-
terra integral equation

u(x) (x+ xj jtu

If we choose u,(x)= x+x°/5, then the other com-
ponents can be found from (2.5) as follows:

(2.6)

X X 1.\ 1 1 3 1
u (x)=-— t)dt=—[t| t+=t° | dt=—=x* ——x° ———xB——x"
, (%) {t”b() {[ 5 j 5° 15" 325 2125
X X 1.V( 1. 1 3 1
U, (x)=—[tA (t)dt=—(3t| t+=t° | | —=t> ——t° ———t® ——"" |dt
2(x) {Ai() !( 5)(5 15 325 2125}
_x_9+11xl3+214x17+566x21 . 231x% . 3x*
15 325 27625 580125 3453125 1540625
X X 2
U () =—[tA, (t)dt =—[3t (t+£t5j (it9+£t“’+ 214 g, 560 o, 843 o 3 tzgj
! ! 5 15 325 27625 580125 3453125 1540625
2
+(t+lt5j(—£t5—it9—it“—it“J dt
5 5 15 325 2125

Note that, with the help of the Mathematica Packages,
we can deduce that these calculations will lead to the
exact solution u(x)=x, which is quit hard to see im-
mediately from the above calculations.

3. Modified Techniques

To reduce the computational difficulties of the standard
method and accelerate the convergence of this method,
we introduce modified techniques of the standard
Adomian method [8,9].

First Modified Technique:

In the first modified technique, we assume that the
function f (x) can be split as follows

F(x)=f.(x)+ f,(x).
Based on this assumption, we can introduce a slight

change for the choice of the components u, and u, as
following

(CRY

efk(e)AOd  (32)

um(x)zik(x,tm(t)dt, n2l.

As we will see in the next section, this change reduces,
the computational difficulties of finding other compo-
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nents and accelerate the convergence of the standard
Adomian method procedure. Furthermore, the improve-
ment of the standard Adomian decomposition method,
uses the first modified recursive Formula (3.2), depends
mainly on the splitting (3.1). In addition, we recommend,
to apply the first modified technique, when f(x) is
given in term of a polynomial or a combination of poly-
nomial and trigonometric, or transcendental, functions.

Second Modified Technique:

The main idea of the second modified technique is re-
placing the non-homogeneous function f(x) by a se-
ries of infinite components. Ref. [9] expresses f (x) in
term of the Taylor series and introduces the recursive
formula

U (¥)= F, ()4 [K(X DA O, @3)

n>0

In 33), f;(x); (i=0,1---,n) represents the Taylor
series components of f (x). Note that, it is easily to
observe that the second modified recursive Formula (3.3)
minimizes the size of the calculations which produced in
the standard Adomian decomposition method. In addition,
it is clear that the reduction in each iteration of (3.3), will
ease the construction of Adomian polynomials for the
non-linear term.
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4. Comparison Study

In this section, we compare the modified techniques
against the standard Adomian decomposition method. To
do that, let us study the following examples of non-linear
Volterra integral equations.

Example 1: Consider the nonlinear Volterra integral
equation

u(x) =secx+tan x—juz(t)dt. 4.2)

To investigate the first modified technique, we split
f(x) into two parts, say
fo(x)=secx, f,(x)=tanx. (4.2)

The modified recursive Formula (3.2) reads

f(x)=1+x+%x2+%x3+ix“+

24

Next, the second modified recursive Formula (3.3) gives

Uy (x)=1

0

This leads to

u(x)=1+lx2 +ix4+ 61

—X
2 24 720

This is the Taylor series expansion of secx, where E,
represents the n™ Euler number. This study shows that
the second modified technique eases the construction of
Adomian polynomials for the non-linear term and hence
reduces each term of the recursive Formula (3.3). This

U (X) =secx + tan x

=] A ma=(
=] 00t =J2u (00

This leads to computational difficulties.
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217 o (D L
+ X 4= E X 45
8064 %(m! 2 (45)

Uy (X)=secx,

ul(x):tanx—iAo(t)

X
dt =tan x— [u3 (t)dt
0
X
=tan x—jsecztdt:O
0

This implies u,,, (x jﬁh t)dt=0, for n>1. This
leads to the exact squtlon u(x)_secx and hence by
deploying the right splitting of f (x), we can avoid the
calculation difficulties of Adomian polynomials required
for the non-linear term as we will see later.

To investigate the second modified technique, let us
first expand the function f (x) in term of Taylor series
expansion. This reads

—X5+EX6+£X7+'“ (43)
15 720 315

(4.4)

also shows that the second modified technique, for some
cases, improves the performance of the standard method.

To investigate the performance of the standard Ado-
mian method, we use the recurrent Formula (2.5). For the
integral Equation (4.1), this reads

(sect+tant) 20t =—2tan X — 2seCX+ X+ 2 (4.6)

.[2(—2tant—25ect+t+2)(sect+tant)dt
0
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Example 2: Consider the nonlinear Volterra integral equation
X 1 X 1 i 3
u(x)=e —gxe +§x+.[xu (t)dt 4.7
0

To investigate the performance of the standard Adomian method, we use the recurrent Formula (2.5). For the integral

Equation (4.7), this reads

x 1o 1
U (x)=e —Exe3 3

X X 1 1 3
u, (x)=| xA (t)dt =[x et——te3‘+—t} dt
6309953837  2xe* xe®* 83xe¥ xe™ xe™ xe® 2xe™ 2xe”* 2x%*
=— - + - + - + + - (4.8)
8101522800 3 4 243 48 25 1944 1029 59049 3
X2e2x ~ 2X2e3x X2e4x ~ X2e5>< Xzeﬁx ~ 2X2e7x ~ 2X269x X3ex X3es>< B X3e4><
2 81 12 5 324 147 6561 3 27 6
X3e(3x X3e7x X3e9x X4eB>< X4eG>< X4e9>< XS
— — + j— —_—
108 21 729 27 54 243 108
To apply the first modified technique, we split f (x) This implies that
into two parts, say X
1 1 Uyt (X)= [ A (t)dt=0, n>0, (4.11)
fo(x)=e*, f(X)=-Zxe¥+Zx. (4.9 0
3 3 . . X
» ) which leads to the exact solution u(x)=e*.
The modified recursive Formula (3.2) reads To apply the second modified technique, let us first
X expand the function f (x) in term of Taylor series ex-
U (x)=e X .
pansion, which reads
1 o1 t
ul(x)_—gxe +§x+_[xﬂb(t)dt (4.10) f(X)=1+X_£Xz_ﬂxs_ﬁxzt_ﬂxrurm (4.12)
0 2 3 24 60
=—lxe3x+1x+jxu§(t)dt:0 Next, the second modified recursive Formula (3.3)
3 3 % gives
Uy (x)=1
Uy (X) = x+ [ xug (t)dt = x+x*
0
_ 1, f 2 _ 1., f 2 _ 1, 3. 4
uz(x)——Ex +£x[3uo(t)ul(t)]dt——§x +£x[3(t+t )]dt__EX +o XX
u3(x):—ﬂx3+Jx'x(3u§(t)u2 (t)+3u, (t)u? (t))dt=—£x3+j3x —ﬁ+§t3+t4 +(t+t2)2 dt
37 37 2 2
(4.13)
L TS I N
3 8
u4(x):—§x4+Jx'x(3u§u3+6uou1u2+uf)dt
24 0
- Y4 [ x 3( it3+£t4+3t5+§t6j+6(t+t2)(—1t2+§t3+t4 +(t+t2)3 dt
24" 4 2 5 2 2
B 3,206,897 58
24 2 10 16 35
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This leads to the Taylor series of the exact solution X
X Y ul(x)=%sin(2x)—§+%jAo(t)dt
Example 3: Consider the non-linear Volterra integral 2
equation =15in(2x)—1+lju§ (t)dt
1 8 4 23
u(x)=sin x+§sm(2x) —lsin(zx)—1+lfsinztdt—
11k (4.15) ) 4 2]
_ZX+§OU (t)dt This implies that
To investigate the performance, we first apply the n+1 IA1 dt:O, nx1, (4.17)
modified technique. To do that, we split f (x) into two
parts, as which leads to the exact solution u(x)=sinx.

To apply the second modified technique, let us first

fo (x)=sinx, (@.16) expand the function f(x) in term of Taylor series ex-
f(x)= %sin(ZX)—f. ' pansion. This reads
1., 1. 17 ., 13
The modified recursive Formula (3.2) gives f(x)_x—gx *24% “som0* Tsret T 19
Up () =sinx Next, the second modified recursive Formula (3.3) gives
uo(x)zx
X 1%, X 1%, 1,
U, (x) :——+ fAU :—?+—juodt:—?+—jt dt=-=x
x> 17 1
U (x) =2+ =[A(t)dt =2+ = 2uudt— +=|2t] —=t° |[dt=—=x°
(%) 24 2£A1() 24 J 0 24 I [ 3! j 51"
17 , 1% 17 ,
Uy (X)=———=Xx"+= t)dt =———x" +=|(2u,u, +u, )dt 4.19
s()=-500 " T3] AW =-55 2{( ol +U7 ) (4.19)
X 2
—x 1j Zt(—tj (_ltsj dt=——
5040 2] 3l 71
13, 1% 13 4 1%
Uy (X)=———=X" += t)dt = X" +=1(2U,U, + 2u,u, ) dt
() 72576 2£A3() 72576 2£( oty + 200 )

=ix9+1j 2t(—it7j+2(—lt3j(lt5j dt=lx9
72576 27 71 3l 51 gl

This leads to exact solution u(x)=sinx.
To show the computational difficulties of the standard Adomian method, we use the recurrent Formula (2.5). For the

integral Equation (4.15), this reads

Up (X)=sin x+%5in(2x)—%

1t 11 ty
:ElAU(t)dt=5£(S|nt+§S|n(2t)—Zj dt

65 . 1 5 xcosx Xxcos2x 3sinx 17sin(2x) sin(3x) sin(4x)

“128° To6" T g 64 16 128 48 1024
1% 1%
:EI A (t)dt :§j2ul (t)u, (t)dt

tcost+tc052t_Bsint_17sin(2t)_sin(3t)_sin(4t) (sint+£sin(2t)—£jdt
° 128 4 2 32 8 64 24 512

v_,x
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This gives
-209 65 5 1
X

207

s 95xcosx x°cosx 393xcos2x x°cos2x 11xcos3x 5xcos4x

u, = X— -
22048 3072 1920 256

96

4096 1536 1152 16384

+7sinx_xzsinx 88095in2x_xzsin2x 1607sin3x 935sin4x 11sin5x sin6x

24 32 98304 1024
This shows, the computational difficulties of the stan-
dard Adomian decomposition method comparing with

the modified techniques.

5. Conclusion

In this work we showed the accuracy, applicability and
simplicity of modified techniques of Adomian method
applied to non-linear Volterra integral equations. A com-
pression study against the standard Adomian method
showed the applicability and the accuracy of the modi-
fied techniques. For the modified techniques, this study
showed that the first modified technique requires choos-
ing the right splitting of the function f(x). Hence, by
using the right splitting, we can avoid the calculation
difficulties of using the Adomian polynomials required
for the non-linear term. In addition, this study also
showed that the second modified technique overcomes
the difficulty of the splitting of the function f(x) and
eases the difficulties construction of the Adomian poly-
nomials required for the non-linear term.
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