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ABSTRACT 
To solve the problem of the spatial correlation for adjacent areas in traditional spectral unmixing methods, we propose 
an area-correlated spectral unmixing method based on Bayesian nonnegative matrix factorization. In the proposed me-
thod, the spatial correlation property between two adjacent areas is expressed by a priori probability density function, 
and the endmembers extracted from one of the adjacent areas are used to estimate the priori probability density func-
tions of the endmembers in the current area, which works as a type of constraint in the iterative spectral unmixing 
process. Experimental results demonstrate the effectivity and efficiency of the proposed method both for synthetic and 
real hyperspectral images, and it can provide a useful tool for spatial correlation and comparation analysis between ad-
jacent or similar areas. 
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1. Introduction 
Spectral unmixing is a technique to extract a collection 
of pure spectra (called endmembers), by decomposing 
mixed pixels of a hyperspectral image and estimating the 
corresponding fractions (called as abundances) of these 
endmembers [1]. Most of the existing spectral unmixing 
methods focus on the hyperspectral images themselves 
and no extra information is needed in the spectral 
unmixing procedure. Vertex Component Analysis (VCA) 
[2], Pixel Purity Index (PPI) [3] and N-FINDR [4] are 
widely-used typical methods, whose basic idea is to 
extract the endmembers by identifying the vertexes of 
the simplex formed by the endmembers. VCA and PPI 
project the hyperspectral data into a low-dimensional 
space based on the fact that vertexes of a simplex are still 
vertexes even if the simplex is projected into a 
low-dimensional space, while N-FINDR tries to find a 
fixed number of pixels to minimize the volume of the 
simplex formed by these pixels. Iterative Error Analysis 
(IEA) [5] updates every endmember by selecting the 
pixel with the maximum error in the reconstructed image 
using the latest endmember set in an iterative process. A 
new trend is to apply nonnegative matrix factorization to 
the spectral unmixing, since all of elements in the 
endmember matrix and the abundance matrix are 
nonnegative [6, 7]. These methods mentioned above are 
characterized by no requirement for extra information, 
and therefore only a few constraints need be considered 
when they are implemented. 

But in the case of comprehensive analysis, we need 
also consider some other information besides the 
hyperspectral image itself, such as spectra from the 
spectral library and hyperspectral images observed at 
different time or in different area. If we could bring extra 
information into the current framework of spectral 
unmixing, the spatial correlation and comparation 
analysis between different images can be carried out. 
Plazza et al. put forward an Automatic Morphological 
Endmember Extraction method (AMEE) using the 
correlation of spatial distribution for different substances 
[8]. Zortea et al. propose a pre-processing method on a 
pixel neighborhood scale to enhance the accuracy of 
spectral unmixing [9]. Zhang focuses on spectral 
unmixing supported by digital geomorphology model 
and geographical information system [10]. Dobigeon et 
al. present a semi-supervised spectral unmixing based on 
a hierarchical Bayesian model [11], where spectra from a 
spectral library are used in the spectral unmixing 
procedure. However, endmembers of hyperspectral 
images observed at different time or in different area 
may hold not only strong time or spatial correlation but 
also certain difference at the same time, the problem is 
how to use these kinds of correlations in the spectral 
unmixing procedure. 

In this paper, we only concentrate on the spatial 
correlation between hyperspectral images observed in 
adjacent or similar areas. Our method is based on 
Bayesian nonnegative matrix factorization [12, 13] and 
the spatial correlation between hyperspectral images 



X. CHEN  ET  AL. 

Copyright © 2013 SciRes.                                                                               OJAppS 

observed in adjacent or similar areas is used in the form 
of a priori probability density function as a constraint to 
the spectral unmixing procedure. The remainder of this 
paper is organized as follows: Section 2 gives the 
detailed description of the proposed method; Section 3 
discusses the experimental results both on synthetic and 
real hyperspectral data; Section 4 is the conclusions. 

2. Spatial Correlation Method 

2.1. Area-correlated Spectral Unmixing 

A hyperspectral image X  can be written in this form: 
X = SA + E , where S = (s1; s2; ¢¢¢; sP ) 2 R+

L £ P  is 
the endmember matrix with the kth endmember 
represented by sk , A = (a1; a2; ¢¢¢; aP )T 2 R+

P £ N  is 
the abundance matrix in which ak  corresponds to the 
kth endmember and E = (Ei ;j )L £ N 2 RL £ N  is the 
noise matrix with the number of endmembers P and the 
number of mixed pixels N. The noise Ei ;j  is assumed to 
an i.i.d. white Gaussian noise with zero mean and  
variance ¾2. The objective of spectral unmixing is to 
find the proper S and A  that minimize kX ¡ SA k2

F  
with the Frobenius norm k¢kF  (or other kinds of norm). 

The basic idea of area-correlated spectral unmixing is 
to use the common endmembers in adjacent or similar 
areas as an aid in the spectral unmixing procedure. On 
one hand, they can be used as initial values after proper 
pre-processing with the current hyperspectral image; on 
the other hand, we bring them into the iterative spectral 
unmixing procedure as a priori knowledge. 

The whole procedure of our area-correlated spectral 
unmixing method consists of three steps: pre-processing, 
Bayesian nonnegative matrix factorization and post- 
processing. 

In pre-processing, for each endmember extracted 
from the adjacent area, we search for pixels similar to it 
in the current hyperspectral image. If the number of these 
similar pixels is too small, then we abandon this 
endmember, otherwise, we will calculate the average 
spectrum of these pixels and put it into the initial 
endmember matrix. We fill the rest of the initial 
endmember matrix with random pixels selected from the 
current hyperspectral image, and the abundance matrix 
will be also initialized randomly. 

The similarity of two spectra is measured by the 
Spectral Correlation-coefficient Distance (SCD). The 
SCD of spectrum x  and y  is defined by Equation (1). 

SCD (x ; y ) =
P

i (xi ¡ x) (yi ¡ y)q P
i (xi ¡ x)2

q P
i (yi ¡ y)2

, (1) 

where x = 1
L

P
j xj , y = 1

L
P

j yj  and L is the number 
of bands. 

Besides, we need also estimate the number of 
endmembers. If the estimated number is less than the real 
one, then it’s evident that some endmembers cannot be 
extracted. To avoid this situation, our strategy is to 
increase the estimated number of endmembers.  

After pre-processing, Bayesian nonnegative matrix 
factorization with the spatial correlation constraint, as 
described later in Section 2.2, will be applied to the 
current hyperspectral data to estimate the endmembers 
and their abundances. When the spectral unmixing 
procedure is finished, the extracted endmembers are 
clustered and the abundances are merged within every 
cluster in the post-processing stage. 

2.2. Bayesian Nonnegative Matrix Factorization 
Assuming that S , A  and ¾2  are statistically 
independent, the Bayesian rule gives rise to 

p
¡
S; A ; ¾2jX

¢
=

p
¡
X jS; A ; ¾2¢

p
¡
S; A ; ¾2¢

p(X )

=
p

¡
X jS; A ; ¾2¢

p(S) p(A ) p
¡
¾2¢

p(X )
_ p

¡
X jS; A ; ¾2¢

p(S) p(A ) p
¡
¾2¢

.  (2) 

One of the possible ways is to find the S and A   by 
maximizing Equation (2). But, due to the complexity of 
Equation (2), the optimization process would be 
computatively expensive. Instead, in Bayesian 
nonnegative matrix factorization, Gibbs sampling [14], a 
sampling method based on Markov Chain Monte Carlo 
(MCMC) is applied to estimate S, A  and ¾2. 

Gibbs sampling estimates the model parameters by 
sampling from the posterior probability density functions 
of these parameters. These samples will converge to the 
samples taken from the joint posterior probability density 
functions of these model parameters. Reference [14] 
gives the proof of the convergence of Gibbs sampling. 
The procedure of Gibbs sampling can be described as: in 
every round of sampling, we sample each parameter in 
turn; when we sample one of the parameters, we fix the 
rest and sample from the posterior probability density 
function of the current parameter; the sample is then used 
to update the posterior probability density function of the 
next parameter. Therefore, the posterior probability 
functions of S, A  and ¾2 are required. 

Ei ;j  is assumed to an i.i.d white Gaussian noise, that 
is, 

p
¡
X jS; A ; ¾2¢

=
Y

i ;j

N X i ;j ; X̂ i ;j ; ¾2 , (3) 

where N
¡
x; ¹ ; ¾2¢

= 1p
2¼¾2 e¡ ( x ¡ ¹ ) 2

2¾2  and X̂ = SA . 
An inverse Gamma distribution is chosen for the noise 
variance ¾2  and the posterior probability density 
function of the noise variance is given by 

42



X. CHEN  ET  AL. 

Copyright © 2013 SciRes.                                                                               OJAppS 

p
¡
¾2 X̄ ; S; A

¢
= G¡ 1 ¡

¾2; k; µ
¢

=
µk

¡ (k)
¡
¾2¢¡ k ¡ 1 e¡ µ

¾2
,  (4) 

where k = L N
2 + k0 and µ = 1

2
P

i ;j E 2
i ;j + µ0. 

According to the Bayesian rule, the posterior 
probability density function of sk  is 

p
¡
sk X̄ ; Sk ; A ; ¾2¢

_ N (sk ; ¹ sk ; § sk ) p(sk ), (5) 
where Sk  is the remaining matrix after deleting the  
kth column of the endmembers matrix S  , 
N (x ; ¹ ; § ) = 1p

(2¼)L det (§ )
e¡ 1

2 (x ¡ ¹ )T § ¡ 1 (x ¡ ¹ ) is the 

L-dimensional Gaussian distribution function, and ¹ sk  
and § sk  is the mean vector and the covariance matrix 
of sk  and these parameters are estimated as 

¹ sk =
¡
¹ S1; k ; ¹ S2; k ; ¢¢¢; ¹ SL ; k

¢

¹ Si ; k =

P
j

³
X i ;j ¡

P
m 6= k Si ;m Am ;j

´
Am ;j

P
j A2

k ;j

§ sk = diag
n

¾2
S1; k

; ¾2
S2; k

; ¢¢¢; ¾2
SL ; k

o

¾2
Si ; k

=
¾2

P
j A2

k ;j

i = 1; 2; 3; ¢¢¢; L :

, (6) 

The posterior probability density functions of the 
endmembers are actually multiple-dimensional Gaussian 
distribution functions weighted by their priori probability 
density functions. The next step is to choose proper 
priori probability functions for the endmembers. We 
adopt the following distribution as the priori probability 
density function of the endmember  

 p(sk ) _

(
1 ¡ ¸ e¡ jv T

k sk j 0 · sk · 1
0 other wise

,  (7) 

where the vector vk  is orthogonal to all the column 
vectors of Sk , 0 and 1 represent all-zero and all-one 
L-dimensional vectors respectively and ¸  is the 
parameter for adjusting. One of the reasons we form the 
priori probability density function of the endmembers in 
this way is that given a linear combination c  of the 
column vectors of Sk , we have vT

k c = 0, and therefore 
the corresponding density value will be zero, which 
reduces the possibility of exacting a spectrum mixed by 
the existing endmembers. Another reason is that when 
projected to , endmembers tend to have larger values 
of v̄T

k sk  ̄ which leads to larger probability density 
values. By substituting the priori probability density 
function in Equation (7), the posterior probability density 
function of the endmember  is written by 

p k X ; Sk ; A ; ¾2

_
N ( k ; k ; § k ) 1 ¡ ¸ e¡ j T

k k j 0 · k · 1
0 other wise

.(8) 

As to the abundances, similarly, the posterior 
probability density function of the abundance ak  is 

p
¡
ak X̄ ; S; A k ; ¾2¢

_ N (ak ; ¹ a k ; § a k ) p(ak ) (9) 
where A k  represent the remaining matrix after deleting 
the kth row of A  with the estimation of ¹ a k  and § a k   

 

¹ a k =
¡
¹ A k ; 1 ; ¹ A k ; 2 ; ¢¢¢; ¹ A k ; N

¢

¹ A k ; j =

P
i Si ;k

³
X i ;j ¡

P
n 6= k Si ;n An ;j

´

P
i S2

i ;k

§ a k = diag
n

¾2
A k ; 1

; ¾2
A k ; 2

; ¢¢¢; ¾2
A k ; N

o

¾2
A k ; j

=
¾2

P
i S2

i ;k

j = 1; 2; 3; ¢¢¢; N :

, (10) 

Since the kth endmember is assumed to distribute 
randomly in the observed area, the priori probability 
density function of the abundances is modeled as the 
uniform distribution. Thus, the posterior probability 
density function of the abundance ak  becomes 

p k X ; S; A k ; ¾2 _
N ( k ; k ; § k ) 0 · k · 1
0 other wise

 . (11) 

When estimating the model parameters mentioned 
above, the method of Slice Sampling [15] is used to 
sample from the posterior probability density functions 
of these parameters. 

3. Experiments and Discussions 
3.1. Experiments on Synthetic Data 
Ten spectra are selected from the spectral library of the 
United States Geological Survey (USGS) for generating 
synthetic hyperspectral images. For each pixel in the 
synthetic hyperspectral image, we first pick several 
spectra from the ten spectra, and then generate a set of 
abundances which sum to one, and finally mix the 
spectra linearly by their corresponding abundances. 

Two synthetic hyperspectral images are generated to 
simulate the hyperspectral images of two adjacent areas. 
Six spectra are used to generate the first image while the 
second image has eight, and four spectra are shared 
between them. The white Gaussian noise is added to 
each image with the SNR up to 30dB approximately. 
Firstly, the first image is pre-processed using the Vertex 
Component Analysis (VCA) method, to extract the 
endmembers from it as the initial. 

Figure 1 shows the result, where the red curves 
represent the real spectra and the endmembers extracted 
by our method are represented by the blue curves. 
Figure 1(a) is the final result of our method, in which 
the first row corresponds to the four initial endmembers 
from pre-processing and the second row is the other 
extracted new endmembers obtained from the spectral 
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unmixing procedure. Table 1 lists the Spectral 
Correlation-coefficient Distances and the Spectral Angle 
Distances (SAD) between the real spectra and the 
extracted endmembers. Figure 1(b) plots the error 
between the original image and the reconstructed image, 
where error = kX ¡ SA k2

F  with the Frobenius norm 
k¢kF . As we can see from Figure 1(a) and Table 1, the 
exacted endmembers fit the real spectra well. The error 
between the original image and the reconstructed image 
decreases sharply with the sampling process approaching, 
which indicates that our method is able to estimate the 
endmember matrix and the abundance matrix correctly. 

Arngren et al. give another form of priori probability 
density function with a volume constraint [16]. The 
volume of the simplex formed by the endmembers is 
used as a constraint in the priori probability density 
function of the endmember matrix. Figure 2(a) shows 
the results using the two different priori probability 
density functions, where the red curves are still the real 
spectra, the green curves are results under the volume 
constraint and the blue curves are results of our method. 
The results of our method fits the real spectra better. 
Figure 2(b) shows the error comparison between the two 
methods. At the beginning, the errors of both methods 
decrease almost at the same pace. With the sampling 
process going on, the error of our method is dropping 
faster than the method with the volume constraint. 

3.2. Experiments on Real Data 
Two adjacent square areas of size 100× 100 are 
cropped from the AVIRIS data. The VD method [17] 
and the Hysime method [18] are used to estimate the 
number of endmembers of both images. Table 2 gives 
the estimation of both methods showing that the Hysime 
method gives a larger estimated number. 
 
Table 1. SCD and SAD between the real spectra and the 
extracted endmembers shared by both images. 

Endmember SCD SAD 

1 0.950335 7.303504 

2 0.973790 8.976964 

3 0.977021 7.848447 

4 0.997171 5.941172 

Table 2. Estimation of numbers of endmembers in both 
images using VD and Hysime method. 

 VD method Hysime method 

Image 1 3 16 

Image 2 4 18 

 
According to [17], the VD method gives a relatively 

better estimation than other methods when applied to 
the AVIRIS data. Figure 3(a) illustrates the extracted 
endmembers and the corresponding abundances. Five 
spectra remain after clustering, which consistent with the 
result of the VD method. Figure 3(b) plots the error 
between the original image and the reconstructed image, 
showing that the error declines rapidly in the first few 
rounds of iteration and approaches zero in the end. 

To avoid missing some endmembers, we increase the 
estimated number of endmembers. But, there are two 
disadvantages of this strategy. One is that some 
endmembers may be extracted repeatedly and the other is 
that mixed spectrum may be extracted. The solution to 
the first problem is cluster. As to the second problem, 
one possible solution is considering the abundances 
while clustering. If a mixed spectrum was extracted, it is 
most likely that its abundance will be small, which can 
be used as a clue to discard the poorly extracted 
endmembers.  

Furthermore, our method is based on the fact that there 
exist some common endmembers between adjacent areas, 
which means that it should be applied in some certain 
occasions. For instance, a large hyperspectral image 
cannot be processed immediately. The large image can 
be split into several smaller pieces and then our method 
is applied to the small hyperspectral images. Another 
application is for areas that are not adjacent 
geographically yet sharing some common ground surface 
types. 

4. Conclusions 
In this paper, we propose an area-correlated method of 
spectral unmixing based on Bayesian nonnegative matrix 
factorization. Common endmembers within adjacent 
areas are used to assist the spectral unmixing procedure. 
Experiment results show that these endmembers can 
serve as a kind of priori knowledge in the procedure to 
improve the results. It is thought that the proposed 
method can provide a useful tool for spatial correlation 
and comparation analysis between adjacent or similar 
areas. Future researches will focus on investigating other 
correlations between the hyperspectral images of 
adjacent areas, optimizing the sampling process and how 
to use the correlations more efficiently. 
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Figure 1. Experimental results on the synthetic data, (a)Comparison of the real spectra and the extracted endmembers, 
(b)Error between the original image and the reconstructed image. 

 

 
Figure 2. Comparison results of two different priori probability density functions, (a)Extracted endmembers of the two 
methods, (b)Error of the two methods. 

 

 
Figure 3. Experimental results on the real data, (a)Endmembers extracted from AVIRIS data with their abundances, 
(b)Error between the original image and the reconstructed image.    
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