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Abstract—A proper total-coloring of graph G is said to be
equitable if the number of elements (vertices and edges) in any
two color classes differ by at most one, which the required
minimum number of colors is called the equitable total chromatic
number. In this paper, we prove some theorems on equitable
total coloring and derive the equitable total chromatic numbers
of Pm ∨ Sn, Pm ∨ Fn and Pm ∨ Wn.
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I. INTRODUCTION

The coloring problem is one of the most important problems

in the graph theory. As an extension of proper vertex coloring,

edge coloring and total coloring[1−5], the concept and some

conjectures on the equitable total coloring[6−8] is developed.

It is a very difficult problem to obtain the equitable total

chromatic number, which meaningful results are rare.

The adjacent vertex distinguishing-equitable total chromatic

numbers of some double graphs are research in references

[9]. Zhang et al.(2008) introduced the vertex distinguishing

equitable edge coloring in references [10], and the vertex

distinguishing equitable edge chromatic numbers of the join-

graphs between path and path, path and cycle, cycle and cycle

with equivalent order are obtained in references [11].

In this paper, we study the equitable total coloring of some

join graphs and get some results. Some terms and marks aren’t

described in this paper, please refer them to [1-3].

II. DEFINITION AND LEMMA

Definition 2.1[2] For a simple graph G(V ,E), let f be a

proper k-edge coloring of G, and

| | Ei | − | Ej | | ≤ 1, i, j = 1, 2, · · · , k.

The partition {Ei|1 ≤ i ≤ k} is called a k-equitable edge

coloring (k-PEEC of G in brief), and

χ′
e(G) = min{k|k − PEEC of G}

is called the equitable edge chromatic number of G, where

∀e ∈ Ei, f(e) = i, i = 1, 2, · · · , k.
Definition 2.2[6−8] For a simple graph G(V ,E), let f be

a proper k-total coloring of G, and

| | Ti | − | Tj | | ≤ 1, i, j = 1, 2, · · · , k.

The partition {Ti} = {Vi ∪ Ei|1 ≤ i ≤ k} is called a k-

equitable total coloring (k-ETC of G in brief), and

χet(G) = min{k|k − ETC of G}
is called the equitable total chromatic number of G, where

∀x ∈ Ti = Vi ∪ Ei, f(x) = i, i = 1, 2, · · · , k.
Conjecture 2.1[6−8] For any simple graph G(V,E),

χet(G) ≤ Δ(G) + 2 and χet(G) = χt(G),

where χt(G) is the total chromatic number of G.

Definition 2.3[2] For graph G and H(V (G) ∩ V (H) =
φ,E(G) ∩ E(H) = φ), a new graph, denoted by G ∨ H , is

called the join of G and H if

V (G ∨ H) = V (G) ∪ V (H),

E(G ∨ H) = E(G) ∪ E(H) ∪ {uv|u ∈ V (G), v ∈ V (H)}.
Lemma 2.1[6−8] For any simple graph G(V,E),

χet(G) ≥ Δ(G) + 1.

Lemma 2.2[2] For any simple graph G(V,E),

χ′
e(G) ≥ Δ(G).

For any simple graph G and H , χ′
e(G) = χ′(G)[6], and if

H ⊆ G, then χ′(H) ≤ χ′(G)[1,2], where χ′(G) is the proper

edge chromatic number of G. So Lemma 2.3 and Lemma 2.4

are obtained.

Lemma 2.3 For any simple graph G and H , if H is a

subgraph of G, then

χ′
e(H) ≤ χ′

e(G).

Lemma 2.4 For complete graph Kp with order p,

χ′
e(Kp) =

{
p, p ≡ 1(mod 2),
p − 1, p ≡ 0(mod 2).

Lemma 2.5[2,5] Let G be a simple graph, if G[VΔ] does

not contain cycle, then

χ′
e(G) = Δ(G).

Where V (G[VΔ]) = VΔ = {v|d(v) = Δ(G), v ∈
V (G)}, E(G[VΔ]) = {uv|u, v ∈ VΔ, uv ∈ E(G)}.
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Lemma 2.6[6−8] For complete graph Kp with order p,

χet(Kp) =
{

p, p ≡ 1(mod 2),
p + 1, p ≡ 0(mod 2).

Lemma 2.7 Suppose Pm is a Path with order m, Sn, Fn

and Wn are Star, Fan and Wheel with order n+1, respectively.

Then

Δ(Pm ∨ Sn) = Δ(Pm ∨ Fn) = Δ(Pm ∨ Wn) = m + n.

III. MAIN RESULTS

For some simple graphs, we obtain Theorem 3.1 and The-

orem 3.2 as following.

Theorem 3.1 Let G be a simple graph, if Δ(G) =| V (G) |
−1 and G only has a vertex with maximum degree, then

χet(G) = Δ(G) + 1.

Proof By Lemma 2.1, we only prove that G has an f of

(Δ(G) + 1)-ETC. Suppose w �∈ V (G), G∗ = G ∨ {w}, then

G∗[VΔ] = P2, so χ′
e(G

∗) = Δ(G∗) = Δ(G) + 1 by Lemma

2.5.

Let f∗ be a (Δ(G) + 1)-PEEC of G,

∀u ∈ V (G), f(u) = f∗(wu);

∀uv ∈ E(G), f(uv) = f∗(uv).

Obviously, f is a (Δ(G) + 1)-ETC of G, so the Theorem 3.1

is true.

Theorem 3.2 Let G be a simple graph, if Δ(G) =| V (G) |
−1 and | V (G) |≡ 1(mod 2), then

χet(G) = Δ(G) + 1.

Proof By Lemma 2.1, we only prove that G has an f of n-

ETC, where n = |V (G)|. Suppose w �∈ V (G), G∗ = G∨{w},

obviously Δ(G∗) = n, G∗ ⊆ Kn+1 and (n + 1) ≡ 0(mod 2),
so χ′

e(G
∗) = n by Lemma 2.2, Lemma 2.3 and Lemma 2.4.

Let f∗ be an n-PEEC of G,

∀u ∈ V (G), f(u) = f∗(wu);

∀uv ∈ E(G), f(uv) = f∗(uv).

Obviously, f is an n-ETC of G, so the Theorem 3.2 is true.

In the following discussion, let

Pm = u1u2 · · ·um;
V (Sn) = {vi | i = 0, 1, 2, · · · , n}, E(Sn) = {v0vi | i =

1, 2, · · · , n};
V (Fn) = {vi | i = 0, 1, 2, · · · , n}, E(Fn) = {v0vi | i =

1, 2, · · · , n} ∪ {vivi+1 | i = 1, 2, · · · , n − 1};
V (Wn) = {vi | i = 0, 1, 2, · · · , n}, E(Wn) = {v0vi | i =

1, 2, · · · , n} ∪ {vivi+1 | i = 1, 2, · · · , n − 1} ∪ {vnv1}.
Theorem 3.3 When m ≥ 2, then

χet(Pm ∨ Sn) =
{

5, m = 2, n = 1,
m + n + 1, otherwise.

Proof There are seven cases to be considered.

Case 1 When m = 2 and n = 1, obviously P2 ∨S1 = K4.

By Lemma 2.6, it’s clear that the result is true.

Case 2 When m = 3, n = 1 or m = n = 2, χet(P3∨S1) =
χet(P2 ∨S2) = 5 by Lemma 2.7 and Theorem 3.2, so clearly

the result is true.

Case 3 When m = 2 and n = 3, χet(P3 ∨ S3) ≥ 6
by Lemma 2.1 and Lemma 2.7. We only need to prove that

P2 ∨ S3 has an f of 6-ETC. Define f by

f(v0v1) = f(v2u1) = f(u2) = 1;
f(v0v2) = f(v3u2) = f(u1) = 2;
f(v1u2) = f(v3u1) = f(v0) = 3;
f(v0u1) = f(v2u2) = f(v3) = 4;
f(v0u2) = f(v1u1) = f(v2) = 5;
f(v0v3) = f(u1u2) = f(v1) = 6.

Obviously, the f is a 6-ETC of P2 ∨ S3, so the result is true.

Case 4 When m = 2 and n ≥ 4, χet(P2 ∨Sn) ≥ n+3 by

Lemma 2.1 and Lemma 2.7. We only need to prove that P2 ∨
Sn has an f of (n+3)-ETC. Let matching M = {v0v1, u1u2}.

Suppose w /∈ V (P2 ∨ Sn), denote G∗ by

V (G∗) = V (P2 ∨ Sn) ∪ {w},
E(G∗) = E(P2 ∨ Sn\M) ∪ {wu1, wu2} ∪ {wvi | i =

0, 1, · · · , n − 2}.
Hence G∗[VΔ] = u1v0u2 is a Path with order 3, so χ′

e(G
∗) =

Δ(G∗) = n + 2 by Lemma 2.5.

Let f1 be an (n + 2)-PEEC of G∗, let f2 be a mapping of

P2 ∨ Sn based on f1, that is,

f2(ui) = f1(wui), i = 1, 2;
f2(vi) = f1(wvi), i = 0, 1, · · · , n − 2.

Define mapping f3 by

f3(v0v1) = f3(u1u2) = f3(un−1) = f3(un) = n + 3.
Put f = f1 ∪ f2 ∪ f3. So, for P2 ∨ Sn, we

∀i ∈ {1, 2, · · · , n + 3}, | Ti |= 3 or 4.

Obviously, f is an (n + 3)-ETC of P2 ∨ Sn, hence the result

is true.

Case 5 When m ≥ 4 and n = 1, χet(Pm∨S1) ≥ m+2 by

Lemma 2.1 and Lemma 2.7. We only need to prove that Pm∨
S1 has an f of (m+2)-ETC. Let matching M = {v0v1, u2u3}.

Suppose w /∈ V (Pm ∨ S1), denote G∗ by

V (G∗) = V (Pm ∨ S1) ∪ {w},
E(G∗) = E(Pm ∨ S1\M) ∪ {wv0, wv1} ∪ {wui | i =

2, 3, · · · ,m}.
Hence G∗[VΔ] = v0wv1 is a Path with order 3, so χ′

e(G
∗) =

Δ(G∗) = m + 1 by Lemma 2.5.

Let f1 be an (m + 1)-PEEC of G∗, let f2 be a mapping of

Pm ∨ S1 based on f1, that is,

f2(vi) = f1(wvi), i = 0, 1;
f2(ui) = f1(wui), i = 2, 3, · · · ,m.

Define mapping f3 by

f3(v0v1) = f3(u2u3) = f3(u1) = m + 2.
Put f = f1 ∪ f2 ∪ f3. So, for Pm ∨ S1, we have

∀i ∈ {1, 2, · · · ,m + 2}, | Ti |=
{

3, m = 4,
3 or 4, m ≥ 5.

Obviously, f is an (m+2)-ETC of Pm ∨S1, hence the result

is true.

Case 6 When m = 3 and n ≥ 2, χet(P3 ∨Sn) ≥ n+4 by

Lemma 2.1 and Lemma 2.7. We only need to prove that P3 ∨
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Sn has an f of (n+4)-ETC. Let matching M = {v0v1, v2u2}.

Suppose w /∈ V (P3 ∨ Sn), denote G∗ by

V (G∗) = V (P3 ∨ Sn) ∪ {w},
E(G∗) = E(P3 ∨ Sn\M) ∪ {wu2} ∪ {wvi | i =

0, 1, · · · , n}.
Hence G∗[VΔ] = v0u2 is a Path with order 2, so χ′

e(G
∗) =

Δ(G∗) = n + 3 by Lemma 2.5.

Let f1 be an (n + 3)-PEEC of G∗, let f2 be a mapping of

P3 ∨ Sn based on f1, that is,

f2(u2) = f1(wu2);
f2(vi) = f1(wvi), i = 0, 1, · · · , n.

Define mapping f3 by

f3(v0v1) = f3(v2u2) = f3(u1) = f3(u3) = n + 4.
Put f = f1 ∪ f2 ∪ f3. So, for P3 ∨ Sn, we have

∀i ∈ {1, 2, · · · , n + 4}, | Ti |=
⎧⎨
⎩

3 or 4, 2 ≤ n ≤ 6,
4, n = 7,
4 or 5, n ≥ 8.

Obviously, f is an (n + 4)-ETC of P3 ∨ Sn, hence the result

is true.

Case 7 When m ≥ 4 and n ≥ 2, Pm∨Sn only has a vertex

v0 with maximum degree and d(v0) = m+n =| V (Pm∨Sn) |
−1, so clearly the result is true by Theorem 3.1.

From what stated above, the proof is completed.

Theorem 3.4 When m ≥ 2 and n ≥ 2, then

χet(Pm ∨ Fn) =
{

7, m = 2, n = 3 or m = 3, n = 2,
m + n + 1, otherwise.

Proof Since Pm ∨ Fn
∼= Pn ∨ Fm, so we only prove that

the result is true when m ≥ n ≥ 2. There are six cases to be

considered.

Case 1 When m = n = 2, obviously P2 ∨ F2 = K5. By

Lemma 2.6, it’s clear that the result is true.

Case 2 When m = 3 and n = 2, χet(P3 ∨ F2) ≥ 6 by

Lemma 2.1 and Lemma 2.7, obviously P3 ∨F2 = K6 −u1u3.

Suppose χet(K6−u1u3) = 6, only the color contains at most

4 elements which colored u1 and u3, each color of the left

contains 3 elements, so 6 colors colored at most 19 elements,

but | V (K6 − u1u3) | + | E(K6 − u1u3) |= 20. Hence, 6-

ETC is impossible. Moreover, 7-ETC of P3 ∨F2 is getatable,

denote f by

f(uivj) = i + j, i = 1, 2, 3, j = 0, 1, 2;
f(u1u2) = f(v1) = 5; f(u3) = 2; f(v0) = 4;
f(u2u3) = f(v0v1) = f(v2) = 6;
f(v0v2) = f(u1) = 7; f(v1v2) = f(u2) = 1.

Obviously, f is a 7-ETC of P3 ∨ F2, hence the result is true.

Case 3 When m ≥ 4 and n = 2, χet(Pm ∨ F2) ≥ m + 3
by Lemma 2.1 and Lemma 2.7. We only prove that Pm ∨ F2

has an f of (m + 3)-ETC. Let matching M = {v0u2, v1v2}.

Suppose w /∈ V (Pm ∨ F2), denote G∗ by

V (G∗) = V (Pm ∨ F2) ∪ {w},
E(G∗) = E(Pm ∨ F2\M) ∪ {wv0, wv1, wv2, wu2} ∪

{wui | i = 4, 5, · · · ,m}.
Hence G∗[VΔ] = v1v0v2 is a Path with order 3, so χ′

e(G
∗) =

Δ(G∗) = m + 2 by Lemma 2.5.

Let f1 be an (m + 2)-PEEC of G∗, let f2 be a mapping of

Pm ∨ F2 based on f1, that is,

f2(vi) = f1(wvi), i = 0, 1, 2; f2(u2) = f1(wu2);
f2(ui) = f1(wui), i = 4, 5, · · · ,m.

Define mapping f3 by

f3(v1v2) = f3(v0u2) = f3(u1) = f3(u3) = m + 3.
Put f = f1 ∪ f2 ∪ f3. So, for Pm ∨ F2, we have

∀i ∈ {1, 2, · · · ,m + 3}, | Ti |=
⎧⎨
⎩

3 or 4, m = 4, 5, 6,
4, m = 7,
4 or 5, m ≥ 8.

Obviously, f is an (m+3)-ETC of Pm ∨F2, hence the result

is true.

Case 4 When m = n = 3, χet(P3 ∨ F3) = 7 by Lemma

2.7 and Theorem 3.2, so clearly the result is true.

Case 5 When m > n = 3, χet(Pm ∨ F3) ≥ m + 4 by

Lemma 2.1 and Lemma 2.7. We only prove that Pm ∨F3 has

an f of (m+4)-ETC. Let matching M = {v1u2, v0v2, v3u3}.

Suppose w /∈ V (Pm ∨ F3), denote G∗ by

V (G∗) = V (Pm ∨ F3) ∪ {w},
E(G∗) = E(Pm ∨ F3\M) ∪ {wu | u ∈ V (Pm ∨

F3), and u �= u1, um}.
Hence G∗[VΔ] = v0v2 is a Path with order 2, so χ′

e(G
∗) =

Δ(G∗) = m + 3 by Lemma 2.5.

Let f1 be an (m + 3)-PEEC of G∗, let f2 be a mapping of

Pm ∨ F3 based on f1, that is,

f2(u) = f1(wu), u ∈ V (Pm ∨ F3), and u �= u1, um.
Define mapping f3 by

f3(v1u2) = f3(v0v2) = f3(v3u3) = f3(u1) = f3(um) =
m + 4.

Put f = f1 ∪ f2 ∪ f3. So, for Pm ∨ F3, we have

∀i ∈ {1, 2, · · · ,m + 4}, | Ti |=

⎧⎪⎪⎨
⎪⎪⎩

4, m = 4,
4 or 5, 5 ≤ m ≤ 11,
5, m = 12,
5 or 6, m ≥ 13.

Obviously, f is an (m+4)-ETC of Pm ∨F3, hence the result

is true.

Case 6 When m ≥ n ≥ 4, Pm ∨ Fn only has a vertex v0

with maximum degree and d(v0) = m + n =| V (Pm ∨ Fn) |
−1, so clearly the result is true by Theorem 3.1.

From what stated above, the proof is completed.

Theorem 3.5 When m ≥ 2 and n ≥ 3, then

χet(Pm ∨ Wn) =
{

7, m = 2, n = 3,
m + n + 1, otherwise.

Proof There are six cases to be considered.

Case 1 When m = 2 and n = 3, obviously P2∨W3 = K6.

By Lemma 2.6, it’s clear that the result is true.

Case 2 When m = 2, n = 4 or m = n = 3, χet(P2 ∨
W4) = χet(P3 ∨ W3) = 7 by Lemma 2.7 and Theorem 3.2,

so clearly the result is true.

Case 3 When m = 2 and n ≥ 5, χet(P2 ∨ Wn) ≥ n + 3
by Lemma 2.1 and Lemma 2.7. We only prove that P2 ∨Wn

has an f of (n + 3)-ETC. Define f by

f(viuj) = i + j, i = 0, 1, · · · , n, j = 1, 2;
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f(v0vi) = i + 3, i = 1, 2, · · · , n; f(v0) = 3;
f(u1u2) = f(v1) = f(v3) = n + 3; f(v1v2) = n + 1;
f(v2v3) = f(u1) = n + 2; f(v2) = 2;
f(vivi+1) = i − 2, i = 3, 4, · · · , n − 1;
f(vmv1) = f(u2) = 1; f(vi) = i, i = 4, 5, · · · , n.

We have

∀i ∈ {1, 2, · · · ,m + 3}, | Ti |=
⎧⎨
⎩

3 or 4, n = 5,
4, n = 6,
4 or 5, n ≥ 7.

Obviously, the f is an (n + 3)-ETC of P2 ∨ Wn, hence the

result is true.
Case 4 When m = 3 and n ≥ 4, χet(P3∨Wn) ≥ n+4 by

Lemma 2.1 and Lemma 2.7. We only prove that P3 ∨Wn has

an f of (n + 4)-ETC. Let matching M = {v0u2, v1v2, v3v4}.

Suppose w /∈ V (P3 ∨ Wn), denote G∗ by
V (G∗) = V (P3 ∨ Wn) ∪ {w},
E(G∗) = E(P3 ∨ Wn\M) ∪ {wu2} ∪ {wvi | i =

0, 1, · · · , n}.
Hence the edge set of G∗[VΔ] is empty, so χ′

e(G
∗) =

Δ(G∗) = n + 3 by Lemma 2.5.
Let f1 be an (n + 3)-PEEC of G∗, let f2 be a mapping of

P3 ∨ Wn based on f1, that is,
f2(u2) = f1(wu2); f2(vi) = f1(wvi), i = 0, 1, · · · , n.

Define mapping f3 by
f3(v0u2) = f3(v1v2) = f3(v3v4) = f3(u1) = f3(u3) =

n + 4.
Put f = f1 ∪ f2 ∪ f3. So, for P3 ∨ Wn, we have

∀i ∈ {1, 2, · · · , n + 4}, | Ti |=
⎧⎨
⎩

4 or 5, 4 ≤ n ≤ 10,
5, n = 11,
5 or 6, n ≥ 12.

Obviously, f is an (n + 4)-ETC of P3 ∨Wn, hence the result

is true.
Case 5 When m ≥ 4 and n = 3, χet(Pm ∨ W3) ≥

m + 4 by Lemma 2.1 and Lemma 2.7. We only prove

that Pm ∨ W3 has an f of (m + 4)-ETC. Let edge set

M = {v0v1, v2v3, u2u3; v0v3, v1v2, u1u2}. Suppose w /∈
V (Pm ∨ W3), denote G∗ by

V (G∗) = V (Pm ∨ W3) ∪ {w},
E(G∗) = E(Pm ∨ W3\M) ∪ {wvi | i = 0, 1, 2, 3} ∪

{wu2} ∪ {wui | i = 6, 7, · · · ,m, m ≥ 6}.
Hence the edge set of G∗[VΔ] is {v0v2, v1v3}, χ′

e(G
∗) =

Δ(G∗) = m + 2 by Lemma 2.5.
Let f1 be an (m + 2)-PEEC of G∗, let f2 be a mapping of

Pm ∨ W3 based on f1, that is,
f2(u2) = f1(wu2); f2(vi) = f1(wvi), i = 0, 1, 2, 3;
f2(ui) = f1(wui), i = 6, 7, · · · ,m, (m ≥ 6).

Define mapping f3 by
f3(v0v1) = f3(v2v3) = f3(u2u3) = f3(u1) = f3(u4) =

m + 3;
f3(v0v3) = f3(v1v2) = f3(u1u2) = f3(u3) = f3(u5) =

m + 4, (only if m ≥ 5, has it vertex u5).
Put f = f1 ∪ f2 ∪ f3. So, for Pm ∨ W3, we have

∀i ∈ {1, 2, · · · ,m + 4}, | Ti |=
⎧⎨
⎩

4 or 5, 4 ≤ m ≤ 10,
5, m = 11,
5 or 6, m ≥ 12.

Obviously, f is an (m+4)-ETC of Pm∨W3, hence the result

is true.

Case 6 When m ≥ 4 and n ≥ 4, Pm ∨ Wn only has

a vertex v0 with maximum degree and d(v0) = m + n =|
V (Pm ∨ Wn) | −1, so clearly the result is true by Theorem

3.1.

From what stated above, the proof is completed.
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