Open Journal of Applied Sciences

Supplement[] 2012 world Congress on Engineering and Technology

\/
‘0:0‘ Scientific
Q‘:‘ Research

The uniform convergence of upwind schemes on
layer-adapted meshes for a singularly perturbed Robin BVP

Quan Zheng, Fengxi Huang, Xiaoli Feng, Mengbin Han

College of Sciences, North China University of Technology, Beijing 100144, China
zhengq@ncut.edu.cn

Abstract—In this paper, we discuss the uniform convergence of the simple upwind scheme on the Shishkin mesh and the
Bakhvalov-Shishkin mesh for solving a singularly perturbed Robin boundary value problem, and investigate the midpoint upwind
scheme on the Shishkin mesh and the Bakhvalov-Shishkin mesh to achieve better uniform convergence. The elaborate e
-uniform pointwise estimates are proved by using the comparison principle and barrier functions. The numerical experiments

support the theoretical results for the schemes on the meshes.
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1. Introduction

Let us consider a singularly perturbed convection-diffusion
Robin boundary value problem:

Lu=—cu"—b(x)u'+c(x)u= f(x),x€(0,1) (1)
Bu=u(0)=A4,Bu=u(l)+u'()=B,

where 0<e&<«1 isasmall perturbation parameter, 4 and B are
given constants, and function b(x),c(x) and f(x) are
sufficiently smooth with b(x)> g, >p>0 and c(x)>0 .

Under these conditions, the singularly perturbed problem (1)
has a unique solution with a boundary layer at x=0 .
Singularly perturbed problems arise in many branches of
science and engineering such as modeling fluid flows and
simulating semiconductor devices (see [1-4]). A wide variety
of numerical methods, including the simple upwind scheme
and the midpoint upwind scheme on layer-adapted meshes,
were constructed to solve the problems in the past few decades
(see [5-9]).

In this paper, the properties of the exact solution and the
Shishkin mesh are introduced in section 2. In section 3, we
discuss the simple upwind scheme on the Shishkin mesh for
solving the singularly perturbed Robin BVP (1) and prove its

& -uniform pointwise convergence of order O(N™') on the

nodes in coarse part and O(N ' In N) on the nodes in fine part.

In section 4, the simple upwind scheme on the
Bakhvalov-Shishkin mesh, and the midpoint upwind scheme
on the Shishkin mesh and the Bakhvalov-Shishkin mesh are
studied to reach higher orders of uniform convergence. In
section 5, several numerical examples support the elaborate
error estimates.
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2. The Solution and the Mesh

Lemma 1 (see [5]) For any positive integerg >0, if wu(x)
is the solution of problem (1) with sufficiently smooth data
then u(x) can be decomposed as u=S+E, where the

smooth part S satisfies
LS(x)=f(x) and |[sO(x)|<C, 0<i<g,
while the part E satisfies LE(x)=0,

2

and EV(x)<Cs exp(-2), 0<i<q.
&

1 2¢élInN

Let r=min{5, }, N be an even positive number ,

and rbe the transition point, where ¢ <N as generally in
practice. We have the Shishkin mesh:

’ 2
x(i) = Y
2

which is simply piecewise equidistant. Denoting 4 =x, —x, |,

we have
4eln N
Lemma 2. i< N > N'<h,,., <2N"
i=12,.,N/2.

Throughout the paper, C is a generic positive constant that is
independent of & and A, , and note that C can take

different values at each occurrence, even in the same
argument.
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3. The Scheme and Its Estimate

For the simple upwind scheme:

N, N _ +y-. N + N N _
L'u; =—eD"Du; —bD"u; +cu, =f,

3
i=1,2,..,N-1, )

BYu) =u)' = A,B"uy =u) + Du) =B,
where
Dot M pey (MU pepey 2D =D
hi+l h,' h:+l + h
we have
L' o2 u +( 2¢ + b +eu - (728 +L)”X1
(hm +h)h, By iy Byt By
=-r u L+ u - u,il,
and 7 7,1 >0, -1 +r' =" =¢,20, i=12,..,N-1.
Lemma 3. If grid function v (x) and w,(x) satisfy

B)v, <BYw,» B'v, <BYw, and [My <[w, i=1,2,.,N-1,
then v (x)<w(x), i=0,12,..., N, and the equation (3) has a
unique solution.
Proof. It is proved by that the coefficient matrix associated
. N . .
with L" is an M-matrix.

By direct computation and Taylor formulas as usual, we
have the following two lemmas.

i bh.
Lemmad.If Z,=1,Z = 1+,
0 i H( 28)

7.
then LV Z, > <z,

ey N

Lemma 5. |LN(u —u/ )|<C I

u"(0)lde +j |u"(t)|dt]

As in the continuous case, decompose the numerical
solution into the smooth part and the layer part by
u=8Y+EY , we have [¥§V=f , i=0,1,2,.,N-1,

BYSY =5(0),

S.g _S:// 1

BYSY =8 + L= S(1)+S'(1)

1

N

and LYEY =0, i=0],..,N-1, BYEY =E(),
EY-E)
=N TN - E(1)+ E'(1)

N

BYE) =Ey +
Therefore, the error can be estimated by
o~ | <[5, - 5| +|E, - B

For the smooth part, we have =0,

By (S, =Sy)

|BY (S, =S¥)| =[B"S\ —(BS)| <N,
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LY (S, =8| =|L's, - (L,8),|[< N,

for i=12,.,N-1,
w,=CN'(3-x,)

by Lemma 1 and Lemma 5. Setting
Na;>CN™!
>IN, - sV )‘ . By the discrete comparison principle, we get

for all i, we have

|5, ~S"|<m, <N i=0,1,2,..,N. 4)

For the layer part, we have

Lemma 6. There exists a constant C such that
‘E{ _E,'N‘SCN%’ i= N/2a"'9N

Proof. By Lemma 1, we have |BYEY |5 E(0)|<C and

-5 -
|BYEY| <|[EQ|+|E'M)|< C(e" +De © < Ce

N By -1

=C[]e?* <CH(1+

j=1

Let YI.:COZ,.+C02£ZN and C, to be sufficiently large,
&

then — pvy>c x|BE| - BY,=Cz,zB'E)| and

L”YI.ZO:‘L"VE,”H i=1,2,.,N-1. So, Y, is a discrete barrier

function for £, and noting

N/2 N/2 h h
1nH(1+ )2 ( ﬁ _L ﬂ,))
J=1 2e
> By _21n2 N > By, _C
T 2 N 2 ’
N2 ﬂ -1
H(1+ f) <Ce o <CN1

h

211 (1+ gzﬁ i (1+LN)"< 2% o
&

25 JoNi2n & jZNi2+ 2 1+£

ﬁ = / < i / h/ B -1
2 1 <CN,

. | | ) | |( + g) N

we have

EN <Y, <Y,,,<CN', i=N/2,..,N

i

From Lemma 1, we have
_pr
|E|<Ce ¢ <cN's i=N/2,.,N.

Thus, the proof is complete.

Lemma 7. There exists a constant such that
|E,~E"|<CN"'InN, i=1,.,N/2.

Proof. By Lemma 5, Lemma 1,
function (2) and noting that

the mesh generating

smh(ﬂ ’)—s1nh(2N "nN)<CN'InN, i=1,.,N/2,
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we have

|LY(E, - EM| < Cle j E"(x)ldx + j |E"(x)|dx]

<C j e exp(@)dx =Ce"! exp(i i) sinh( Bh ),
X 2¢ 2¢ 2¢

- ! -ph;
<Ce'N'InNJ Jex !
[Texe(—

“1 a7 . Bh; B
)< Ce N Ian |(1+7) .
j-1 2¢

j=1
Let ¢, =C,N"'InN(1+Z,)» from Lemma 4 and 6, we have
L'¢, > Ce' N InNZ, = |LY(E, - EM)|

B

¢0 20= |E0 _EI;V| C Py 2 Co]\rl z |EN/2 _E.i\///z

provided that the constant C, is chosen sufficiently large. So,
| E - E[_N| <¢ <CN'InN by adiscrete comparison principle.

Theorem 1. The simple upwind scheme on the Shishkin
mesh for the singularly perturbed Robin boundary value
problem (1) satisfies:

CN™! lnN,OSiSE, %)
< 2

_ N
U, —u,

CN",%«'SN.

Proof. It is proved by (4), Lemma 6 and 7.

I. FURTHER RESULTS
On the Bakhvalov-Shishkin mesh (see [8]):

X; :x(ti)’ti :i,i:0,1,2,...,N,
N

where the mesh generating function is as follows:
2¢g 1 1
o ——ln(l—Z(I—N)z),O <t< > (6)
X =
2slnN+2(1_ 2glnN)(t—l),1§tS 1
p p 272

the simple upwind scheme for solving the singularly perturbed
Robin BVP was proved to be uniform first-order
convergence (see [4]):

|u;—u)|<CN7,0<i<N. (7)

Further, we consider the midpoint upwind scheme for
Dirichlet BVP in [9] to be modified for the Robin BVP (1) as
follows:

N N

Y Y r u, +u:' A
v =-eD'Du’ —b D'u+c¢ ,H—=f i=12..,N-],
; i O P te 2 il
2 2

" ®)
b . 2 e by
D = (-2 20 h el (- Dy = "
N ( hlzv 2}1‘.\,) N-1 (hlzv 1\) ‘N ( hi,v 2}1‘\,) N+l fm
BYu) =u) = 4,BMul =u) +Dujy =B,
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where pyY =@

N+l T

ul )/ (2h,)- For i=1,2,..,N—1, we have

2¢ +bi+]/2
h.h h

i+ i+l

2e bun G
h 2

i+1

LNMIN __ 2¢ u
Uy +h)R

— N e N _ o+
=L ULt LY

v
L+

Gy N
= —(

2 (e + )

i+1

N
iy

N
i+12

Supposed that #, <2, /||, , we have = r¢,r* >0,

=1+ = =020, i=1,2,.,N-1.
For j=N, from (8), we have

, 2¢ 2¢
Dl =22 4

: vyt 2 bl = fo+ (24 by)B.
hN v i A hN i

hﬁ hJ\

The coefficient matrix associated with this LY is also an
M-matrix and a discrete comparison principle holds. By using
barrier functions, we can obtain the same error estimate on the
Shishkin mesh for Robin BVP as that for Dirichlet BVP in the

— ._N
following: CN'InN,0<i< > ©)

<

N
u, —u;

CN'Z,%SI'SN.

Moreover, we can prove that the midpoint upwind scheme

on the Bakhvalov-Shishkin mesh has the uniform
1 ._N
convergence: N N ’OS’S?’ (10)
u,—u, | < N
CN’Z,?SiSN.

4. Numerical Examples

The numerical results in tables 1 and 2 agree with the error
estimates for the simple upwind scheme on the Shishkin mesh
and the Bakhvalov-Shishkin mesh, denoted by S-S and S-BS,
and the midpoint upwind scheme on the Shishkin mesh and the
Bakhvalov-Shishkin mesh, denoted by M-S and M-BS. The
numerical convergence rates are computed by

logz(max|ui —ul |/max|u,. —u?N |) on the coarse part and the fine

part, respectively. Denoting the error
|u,—u |<Co(N) , the constant is

estimate by
computed by

max‘u,. —uiN‘/O'(N)~

Problem 1. {—gy"—y’+y =0,0<x<l,
y(0)=0,y()+y'M)=1.

The exact solution of this problem is

y(x)=("" —e"")/[(1+m)e™ —(1+m,)e™ ], where
mym, = (—1+.J(1+4¢))/ (2¢) -

TABLE 1. THE ERRORS FOR PROBLEM 1 WITH £ =10"° AND $=0.75
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N i<N/2 rate const i>N/2 rate const
S-S:

64 0.0069 0.59 107 0.0077 0.98 492
128 0.0046 0.67 122 0.0039 1.04 496
256  0.0029 0.77 133 0.0019 0.96 498
512 0.0017 0.79 .140 9.746¢-4 1.00 499
1024 9.851e-4 0.82 .146 4.878e-4 1.00 .500
2048 5.565e-4 0.85 .149 2.440e-4 1.00 .500
S-BS:

64 0.0055 0.97 353 0.0077 0.98 492
128 0.0028 1.00 362 0.0039 1.04 496
256 0.0014 1.00 .366 0.0019 0.96 498
512 7.170e-4 0.97 367 9.746e-4 1.00 499
1024 3.590e-4 1.00 368 4.878e-4 1.00 .500
2048 1.796e-4 1.00 368 2.440e-4 1.00 .500
M-S:

64 0.0103 0.71 .660 1.497e-5 2.00 .613e-1
128 0.0063 0.77 .809 3.744e-6 2.00  .613e-1
256  0.0037 0.82 956 9.366e-7 2.00 .1lle-1
512 0.0021 0.81 1.10 2.344e-7 2.00  .985e-2
1024 0.0012 0.85 1.23 5.874e-8 1.99  .889%e-2
2048 6.663e-4 0.87 1.36 1.475e-8 1.99  .812e-2
M-BS:

64 0.0055 0.97 350 1.497e-5 2.00 .613e-1
128 0.0028 1.00 354 3.746¢-6 2.00 .614e-1
256 0.0014 1.00  .356 9.373e-7 2.00 .614e-1
512 6.98le-4 1.00  .357 2.347e-7 2.00 .615e-1
1024 3.496¢-4 1.00  .358 5.882e-8 1.99  .616e-1
2048 1.749¢-4 1.00  .358 1.478e-8 1.99  .619e-1

—&y"—y' =1+42x,0<x <1,

Problem 2. {
»(0)=1Ly1)+y'(1)=0.

Its exact solution is given by

y(x)=[(5-4&)-(1 é)ﬁ Fae—Der 1/[I-(1 —é)e%']] —(x+x>—2ex).

TABLE 2. THE ERRORS FOR PROBLEM2 WITH £=10"° AND B =0.5

N i<N/2 rate const iZ2N/2 rate const
S-S:

16 0.8961 0.64 5.170 3594 0.97 5.75
32 0.5749 0.63 5.310 .1836 0.98 5.87
64 0.3706 0.70 5.700 .0928 0.99 5.94
128 0.2280 0.77 6.010 .0466 0.99 5.97
256 0.1336 0.80 6.170 .0234 1.00 5.98
512 0.0764 0.84 6.270 0117 0.99 5.99
S-BS:
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5,

16 0.7088 0.90 11.30 3594 0.97 5.75
32 0.3796 0.93 12.10 1836 0.98 5.87
64 0.1986 0.97 12.70 .0928 0.99 5.94
128 0.1017 0.98 13.00 .0466 0.99 5.97
256 0.0515 0.99 13.20 .0234 1.00 5.98
512 0.0259 0.99 13.30 0117 0.99 5.99
M-S:

16 0.6784 0.56 10.9 6.081e-8 337  .56le-5
32 0.4614 0.54 14.8 5.902e-9 392 .174e-5
64 0.3174 0.69 20.3 3.895e-10 413 384e-6
128 0.1974 0.73 253 2.231e-11 4.18  .753e-7
256 0.1191 0.79 30.5 1.228e-12 225  .145e-7
512 0.0689 0.82 353 2 .576e-13 2.00 .108e-7
M-BS:

16 0.4455 0.84 7.13 2.070e-7 2.16  .530e-4
32 0.2488 0.91 7.96 4.646¢-8 252  476e-4
64 0.1320 0.95 8.45 8.078e-9 2.74  33le-4
128 0.0681 0.98 8.71 1.205e-9 2.87  .197e-4
256 0.0346 0.99 8.85 1.649¢-10 292  .108e-4
512 0.0174 0.98 8.93 2.175e-11 298  .570e-5

Form the theoretical analysis and the numerical results, we

conclude that S-S, S-BS, M-S and M-BS are robust, efficient
and & -uniform convergent.
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