The uniform convergence of upwind schemes on layer-adapted meshes for a singularly perturbed Robin BVP

Quan Zheng, Fengxi Huang, Xiaoli Feng, Mengbin Han
College of Sciences, North China University of Technology, Beijing 100144, China
zhengq@ncut.edu.cn

Abstract

In this paper, we discuss the uniform convergence of the simple upwind scheme on the Shishkin mesh and the Bakhvalov-Shishkin mesh for solving a singularly perturbed Robin boundary value problem, and investigate the midpoint upwind scheme on the Shishkin mesh and the Bakhvalov-Shishkin mesh to achieve better uniform convergence. The elaborate ε -uniform pointwise estimates are proved by using the comparison principle and barrier functions. The numerical experiments support the theoretical results for the schemes on the meshes.

Keywords-Singularly perturbed Robin BVP; simple upwind scheme; midpoint upwind scheme; layer-adapted mesh; uniform convergence

1. Introduction

Let us consider a singularly perturbed convection-diffusion Robin boundary value problem:

$$
\left\{\begin{array}{c}
L u \equiv-\varepsilon u^{\prime \prime}-b(x) u^{\prime}+c(x) u=f(x), x \in(0,1) \tag{1}\\
B_{0} u \equiv u(0)=A, B_{1} u \equiv u(1)+u^{\prime}(1)=B,
\end{array}\right.
$$

where $0<\varepsilon \ll 1$ is a small perturbation parameter, A and B are given constants, and function $b(x), c(x)$ and $f(x)$ are sufficiently smooth with $b(x) \geq \beta_{0}>\beta>0$ and $c(x) \geq 0$. Under these conditions, the singularly perturbed problem (1) has a unique solution with a boundary layer at $x=0$. Singularly perturbed problems arise in many branches of science and engineering such as modeling fluid flows and simulating semiconductor devices (see [1-4]). A wide variety of numerical methods, including the simple upwind scheme and the midpoint upwind scheme on layer-adapted meshes, were constructed to solve the problems in the past few decades (see [5-9]).

In this paper, the properties of the exact solution and the Shishkin mesh are introduced in section 2 . In section 3, we discuss the simple upwind scheme on the Shishkin mesh for solving the singularly perturbed Robin BVP (1) and prove its ε-uniform pointwise convergence of order $O\left(N^{-1}\right)$ on the nodes in coarse part and $O\left(N^{-1} \ln N\right)$ on the nodes in fine part. In section 4, the simple upwind scheme on the Bakhvalov-Shishkin mesh, and the midpoint upwind scheme on the Shishkin mesh and the Bakhvalov-Shishkin mesh are studied to reach higher orders of uniform convergence. In section 5, several numerical examples support the elaborate error estimates.

2. The Solution and the Mesh

Lemma 1 (see [5]) For any positive integer $q>0$, if $u(x)$ is the solution of problem (1) with sufficiently smooth data then $u(x)$ can be decomposed as $u=S+E$, where the smooth part S satisfies

$$
L S(x)=f(x) \quad \text { and }\left|S^{(i)}(x)\right| \leq C, \quad 0 \leq i \leq q,
$$

while the part E satisfies $L E(x)=0$, and $E^{(i)}(x) \leq C \varepsilon^{-1} \exp \left(-\frac{\beta x}{\varepsilon}\right), \quad 0 \leq i \leq q$.

Let $\tau=\min \left\{\frac{1}{2}, \frac{2 \varepsilon \ln N}{\beta}\right\}, N$ be an even positive number, and τ be the transition point, where $\varepsilon \leq N^{-1}$ as generally in practice. We have the Shishkin mesh:

$$
x(i)=\left\{\begin{array}{c}
\frac{2 \tau}{N} i, 0 \leq i \leq \frac{N}{2} \tag{2}\\
\tau+\frac{2(1-\tau)\left(i-\frac{N}{2}\right)}{N}, \frac{N}{2} \leq i \leq N
\end{array}\right.
$$

which is simply piecewise equidistant. Denoting $h_{i}=x_{i}-x_{i-1}$, we have

Lemma 2. $h_{i} \leq \frac{4 \varepsilon \ln N}{\beta N} \quad, \quad N^{-1} \leq h_{N / 2+i} \leq 2 N^{-1} \quad$, $i=1,2, \ldots, N / 2$.

Throughout the paper, C is a generic positive constant that is independent of ε and h_{i}, and note that C can take different values at each occurrence, even in the same argument.

[^0]
3. The Scheme and Its Estimate

For the simple upwind scheme:

$$
\left\{\begin{align*}
& L^{N} u_{i}^{N} \equiv-\varepsilon D^{+} D^{-} u_{i}^{N}-b_{i} D^{+} u_{i}^{N}+c_{i} u_{i}^{N}=f_{i} \tag{3}\\
& i=1,2, \ldots, N-1 \\
& B_{0}^{N} u_{0}^{N} \equiv u_{0}^{N}=A, B_{1}^{N} u_{N}^{N} \equiv u_{N}^{N}+D^{-} u_{N}^{N}=B
\end{align*}\right.
$$

where

$$
D^{+} u_{i}^{N}=\frac{u_{i+1}^{N}-u_{i}^{N}}{h_{i+1}}, D^{-} u_{i}^{N}=\frac{u_{i}^{N}-u_{i-1}^{N}}{h_{i}}, \quad D^{+} D^{-} u_{i}^{N}=\frac{2\left(D^{+} u_{i}^{N}-D^{-} u_{i}^{N}\right)}{h_{i+1}+h_{i}}
$$

we have

$$
\begin{aligned}
L^{N} u_{i}^{N} & =-\frac{2 \varepsilon}{\left(h_{i+1}+h_{i}\right) h_{i}} u_{i-1}^{N}+\left(\frac{2 \varepsilon}{h_{i+1} h_{i}}+\frac{b_{i}}{h_{i+1}}+c_{i}\right) u_{i}^{N}-\left(\frac{2 \varepsilon}{\left(h_{i+1}+h_{i}\right) h_{i+1}}+\frac{b_{i}}{h_{i+1}}\right) u_{i+1}^{N} \\
& =-r_{i}^{-} u_{i-1}^{N}+r_{i}^{c} u_{i}^{N}-r_{i}^{+} u_{i+1}^{N}
\end{aligned}
$$

and $r_{i}^{-}, r_{i}^{c}, r_{i}^{+}>0,-r_{i}^{-}+r_{i}^{c}-r_{i}^{+}=c_{i} \geq 0, \quad i=1,2, \ldots, N-1$.
Lemma 3. If grid function $v_{i}(x)$ and $w_{i}(x)$ satisfy $\mathrm{B}_{0}^{N} v_{0} \leq \mathrm{B}_{0}^{N} w_{0}, \quad \mathrm{~B}_{1}^{N} v_{N} \leq \mathrm{B}_{1}^{N} w_{N}$ and $L^{N} v_{i} \leq L^{N} w_{i}, i=1,2, \ldots, N-1$, then $v_{i}(x) \leq w_{i}(x), i=0,1,2, \ldots, N$, and the equation (3) has a unique solution.

Proof. It is proved by that the coefficient matrix associated with L^{N} is an M-matrix.

By direct computation and Taylor formulas as usual, we have the following two lemmas.

$$
\text { Lemma 4. If } Z_{0}=1, Z_{i}=\prod_{j=1}^{i}\left(1+\frac{\beta h_{j}}{2 \varepsilon}\right)
$$

$$
\text { then } L^{N} Z_{i} \geq \frac{C Z_{i}}{\max \left\{\varepsilon, h_{i+1}\right\}}, \quad i=1,2, \ldots, N-1
$$

Lemma 5. $\left|L^{N}\left(u_{i}-u_{i}^{N}\right)\right| \leq C\left[\varepsilon \int_{x_{i-1}}^{x_{i+1}}\left|u^{\prime \prime \prime}(t)\right| d t+\int_{x_{i-1}}^{x_{i}}\left|u^{\prime \prime}(t)\right| d t\right]$.
As in the continuous case, decompose the numerical solution into the smooth part and the layer part by $u_{i}^{N}=S_{i}^{N}+E_{i}^{N}$, we have $L^{N} S_{i}^{N}=f_{i}, i=0,1,2, \ldots, N-1$, $B_{0}^{N} S_{0}^{N}=S(0)$,

$$
B_{1}^{N} S_{N}^{N} \equiv S_{N}^{N}+\frac{S_{N}^{N}-S_{N-1}^{N}}{h_{N}}=S(1)+S^{\prime}(1)
$$

and $L^{N} E_{i}^{N}=0, i=0,1, \ldots, N-1, B_{0}^{N} E_{0}^{N}=E(0)$,

$$
B_{1}^{N} E_{N}^{N} \equiv E_{N}^{N}+\frac{E_{N}^{N}-E_{N-1}^{N}}{h_{N}}=E(1)+E^{\prime}(1)
$$

Therefore, the error can be estimated by

$$
\left|u_{i}-u_{i}^{N}\right| \leq\left|S_{i}-S_{i}^{N}\right|+\left|E_{i}-E_{i}^{N}\right|
$$

For the smooth part, we have $\left|B_{0}^{N}\left(S_{0}-S_{0}^{N}\right)\right|=0$,

$$
\left|B_{1}^{N}\left(S_{N}-S_{N}^{N}\right)\right|=\left|B_{1}^{N} S_{N}-\left(B_{1} S\right)_{N}\right| \leq C N^{-1}
$$

$$
\left|L_{1}^{N}\left(S_{i}-S_{i}^{N}\right)\right|=\left|L_{1}^{N} S_{i}-\left(L_{1} S\right)_{i}\right| \leq C N^{-1}
$$

for $i=1,2, \ldots, N-1$, by Lemma 1 and Lemma 5. Setting $\omega_{i}=C N^{-1}\left(3-x_{i}\right)$ for all i, we have $L^{N} \omega_{i} \geq C N^{-1}$ $\geq\left|L^{N}\left(S_{i}-S_{i}^{N}\right)\right|$. By the discrete comparison principle, we get

$$
\begin{equation*}
\left|S_{i}-S_{i}^{N}\right| \leq \omega_{i} \leq C N^{-1}, \quad i=0,1,2, \ldots, N \tag{4}
\end{equation*}
$$

For the layer part, we have
Lemma 6. There exists a constant C such that

$$
\left|E_{i}-E_{i}^{N}\right| \leq C N^{-1}, \quad i=N / 2, \ldots, N
$$

Proof. By Lemma 1, we have $\left|B_{0}^{N} E_{0}^{N}\right|=|E(0)| \leq C$ and

$$
\begin{aligned}
\left|B_{1}^{N} E_{N}^{N}\right| & \leq|E(1)|+\left|E^{\prime}(1)\right| \leq C\left(\varepsilon^{-1}+1\right) e^{\frac{-\beta}{\varepsilon}} \leq C e^{\frac{-\beta}{2 \varepsilon}} \\
& =C \prod_{j=1}^{N} e^{\frac{-\beta h_{j}}{2 \varepsilon}} \leq C \prod_{j=1}^{N}\left(1+\frac{\beta h_{j}}{2 \varepsilon}\right)^{-1}
\end{aligned}
$$

Let $Y_{i}=C_{0} Z_{i}+C_{0} \frac{\beta}{2 \varepsilon} Z_{N}$ and C_{0} to be sufficiently large, then $\quad B_{0}^{N} Y_{0} \geq C_{0} \geq\left|B_{0}^{N} E_{0}^{N}\right| \quad, \quad B_{1}^{N} Y_{N}=C_{0} Z_{N} \geq\left|B_{1}^{N} E_{N}^{N}\right| \quad$ and $L^{N} Y_{i} \geq 0=\left|L^{N} E_{i}^{N}\right|, \quad i=1,2, \ldots, N-1$. So, Y_{i} is a discrete barrier function for E_{i}^{N}, and noting

$$
\begin{aligned}
& \ln \prod_{j=1}^{N / 2}\left(1+\frac{\beta h_{j}}{2 \varepsilon}\right) \geq \sum_{j=1}^{N / 2}\left(\frac{\beta h_{j}}{2 \varepsilon}-\frac{1}{2}\left(\frac{\beta h_{j}}{2 \varepsilon}\right)^{2}\right) \\
& \geq \frac{\beta x_{N / 2}}{2 \varepsilon}-\frac{2 \ln ^{2} N}{N} \geq \frac{\beta x_{N / 2}}{2 \varepsilon}-C \\
& \prod_{j=1}^{N / 2}\left(1+\frac{\beta h_{j}}{2 \varepsilon}\right)^{-1} \leq C e^{-\frac{\beta x_{N / 2}}{2 \varepsilon}} \leq C N^{-1} \\
& \frac{\beta}{2 \varepsilon} \prod_{j=N / 2+1}^{N}\left(1+\frac{\beta h_{j}}{2 \varepsilon}\right)^{-1} \leq \frac{\beta}{2 \varepsilon} \prod_{j=N / 2+1}^{N}\left(1+\frac{\beta}{2 \varepsilon N}\right)^{-1} \leq \frac{\frac{\beta}{2 \varepsilon}}{1+\frac{\beta}{4 \varepsilon}} \leq 2 \\
& \frac{\beta}{2 \varepsilon} \prod_{j=1}^{N}\left(1+\frac{\beta h_{j}}{2 \varepsilon}\right)^{-1} \leq 2 \prod_{j=1}^{N / 2}\left(1+\frac{\beta h_{j}}{2 \varepsilon}\right)^{-1} \leq C N^{-1}
\end{aligned}
$$

we have

$$
E_{i}^{N} \leq Y_{i} \leq Y_{N / 2} \leq C N^{-1}, \quad i=N / 2, \ldots, N
$$

From Lemma 1, we have

$$
\left|E_{i}\right| \leq C e^{-\frac{\beta \tau}{\varepsilon}} \leq C N^{-1}, \quad i=N / 2, \ldots, N
$$

Thus, the proof is complete.
Lemma 7. There exists a constant C such that

$$
\left|E_{i}-E_{i}^{N}\right| \leq C N^{-1} \ln N, \quad i=1, \ldots, N / 2
$$

Proof. By Lemma 5, Lemma 1, the mesh generating function (2) and noting that

$$
\sinh \left(\frac{\beta h_{i}}{2 \varepsilon}\right)=\sinh \left(2 N^{-1} \ln N\right) \leq C N^{-1} \ln N, \quad i=1, \ldots, N / 2
$$

we have

$$
\begin{aligned}
& \left|L^{N}\left(E_{i}-E_{i}^{N}\right)\right| \leq C\left[\varepsilon \int_{x_{i-1}}^{x_{i+1}}\left|E^{\prime \prime \prime}(x)\right| d x+\int_{x_{i-1}}^{x_{i}}\left|E^{\prime \prime}(x)\right| d x\right] \\
& \leq C \int_{x_{i-1}}^{x_{i+1}} \varepsilon^{-2} \exp \left(\frac{\beta x}{2 \varepsilon}\right) d x=C \varepsilon^{-1} \exp \left(\frac{-\beta x_{i}}{2 \varepsilon}\right) \sinh \left(\frac{\beta h_{i}}{2 \varepsilon}\right), \\
& \leq C \varepsilon^{-1} N^{-1} \ln N \prod_{j=1}^{i} \exp \left(\frac{-\beta h_{j}}{2 \varepsilon}\right) \leq C \varepsilon^{-1} N^{-1} \ln N \prod_{j=1}^{i}\left(1+\frac{\beta h_{j}}{2 \varepsilon}\right)^{-1} .
\end{aligned}
$$

Let $\phi_{i}=C_{0} N^{-1} \ln N\left(1+Z_{i}\right)$, from Lemma 4 and 6, we have $L^{N} \phi_{i} \geq C_{0} \varepsilon^{-1} N^{-1} \ln N Z_{i} \geq\left|L^{N}\left(E_{i}-E_{i}^{N}\right)\right|$,

$$
\phi_{0} \geq 0=\left|E_{0}-E_{0}^{N}\right|, \quad \phi_{N / 2} \geq C_{0} N^{-1} \geq\left|E_{N / 2}-E_{N / 2}^{N}\right|,
$$

provided that the constant C_{0} is chosen sufficiently large. So, $\left|E_{i}-E_{i}^{N}\right| \leq \phi_{i} \leq C N^{-1} \ln N$ by a discrete comparison principle.

Theorem 1. The simple upwind scheme on the Shishkin mesh for the singularly perturbed Robin boundary value problem (1) satisfies:

$$
\left|u_{i}-u_{i}^{N}\right| \leq\left\{\begin{array}{c}
C N^{-1} \ln N, 0 \leq i \leq \frac{N}{2}, \tag{5}\\
C N^{-1}, \frac{N}{2}<i \leq N .
\end{array}\right.
$$

Proof. It is proved by (4), Lemma 6 and 7.

I. Further results

On the Bakhvalov-Shishkin mesh (see [8]):

$$
x_{i}=x\left(t_{i}\right), t_{i}=\frac{i}{N}, i=0,1,2, \ldots, N,
$$

where the mesh generating function is as follows:

$$
x(t)=\left\{\begin{array}{c}
-\frac{2 \varepsilon}{\beta} \ln \left(1-2\left(1-\frac{1}{N}\right) t\right), 0 \leq t \leq \frac{1}{2}, \tag{6}\\
\frac{2 \varepsilon \ln N}{\beta}+2\left(1-\frac{2 \varepsilon \ln N}{\beta}\right)\left(t-\frac{1}{2}\right), \frac{1}{2} \leq t \leq 1,
\end{array}\right.
$$

the simple upwind scheme for solving the singularly perturbed Robin BVP was proved to be uniform first-order convergence (see [4]):

$$
\begin{equation*}
\left|u_{i}-u_{i}^{N}\right| \leq C N^{-1}, 0 \leq i \leq N . \tag{7}
\end{equation*}
$$

Further, we consider the midpoint upwind scheme for Dirichlet BVP in [9] to be modified for the Robin BVP (1) as follows:

$$
\left\{\begin{array}{c}
L^{N} u_{i}^{N} \equiv-\varepsilon D^{+} D^{-} u_{i}^{N}-b_{i+\frac{1}{2}} D^{+} u_{i}^{N}+c_{i+\frac{1}{2}} \frac{u_{i+1}^{N}+u_{i}^{N}}{2}=f_{i+\frac{1}{2}}, i=1,2, \ldots, N-1, \tag{8}\\
L^{N} u_{N}^{N} \equiv\left(-\frac{\varepsilon}{h_{N}^{2}}+\frac{b_{N}}{2 h_{N}}\right) u_{N-1}^{N}+\left(\frac{2 \varepsilon}{h_{N}^{2}}+c_{N}\right) u_{N}^{N}+\left(-\frac{\varepsilon}{h_{N}^{2}}-\frac{b_{N}}{2 h_{N}}\right) u_{N+1}^{N}=f_{N}, \\
B_{0}^{N} u_{0}^{N} \equiv u_{0}^{N}=A, B_{1}^{N} u_{N}^{N} \equiv u_{N}^{N}+D u_{N}^{N}=B,
\end{array}\right.
$$

where $D u_{N}^{N}=\left(u_{N+1}^{N}-u_{N-1}^{N}\right) /\left(2 h_{N}\right)$. For $i=1,2, \ldots, N-1$, we have

$$
\begin{aligned}
L^{N} u_{i}^{N} & =-\frac{2 \varepsilon}{\left(h_{i+1}+h_{i}\right) h_{i}} u_{i-1}^{N}+\left(\frac{2 \varepsilon}{h_{i+1} h_{i}}+\frac{b_{i+1 / 2}}{h_{i+1}}+\frac{c_{i+1 / 2}}{2}\right) u_{i}^{N}-\left(\frac{2 \varepsilon}{\left(h_{i+1}+h_{i}\right) h_{i+1}}+\frac{b_{i+1 / 2}}{h_{i+1}}-\frac{\left.c_{i+1 / 2}\right) u_{i+1}^{N}}{2}\right. \\
& =-r_{i}^{r} u_{i-1}^{N}+r_{i}^{c} u_{i}^{N}-r_{i}^{+} u_{i+1}^{N},
\end{aligned}
$$

Supposed that $h_{i}<2 \beta_{0} /\|c\|_{\infty}$, we have $r_{i}^{-}, r_{i}^{c}, r_{i}^{+}>0$,

$$
-r_{i}^{-}+r_{i}^{c}-r_{i}^{+}=c_{i+1 / 2} \geq 0, \quad i=1,2, \ldots, N-1 .
$$

For $i=N$, from (8), we have
$L^{N} u_{N}^{N} \equiv-\frac{2 \varepsilon}{h_{N}^{2}} u_{N-1}^{N}+\left(\frac{2 \varepsilon}{h_{N}^{2}}+c_{N}+\frac{2 \varepsilon}{h_{N}}+b_{N}\right) u_{N}^{N}=f_{N}+\left(\frac{2 \varepsilon}{h_{N}}+b_{N}\right) B$.

The coefficient matrix associated with this L^{N} is also an M-matrix and a discrete comparison principle holds. By using barrier functions, we can obtain the same error estimate on the Shishkin mesh for Robin BVP as that for Dirichlet BVP in the
following: $\left|u_{i}-u_{i}^{N}\right| \leq\left\{\begin{array}{c}C N^{-1} \ln N, 0 \leq i \leq \frac{N}{2}, \\ C N^{-2}, \frac{N}{2} \leq i \leq N .\end{array}\right.$
Moreover, we can prove that the midpoint upwind scheme on the Bakhvalov-Shishkin mesh has the uniform convergence: $\left|u_{i}-u_{i}^{N}\right| \leq\left\{\begin{array}{l}C N^{-1}, 0 \leq i \leq \frac{N}{2}, \\ C N^{-2}, \frac{N}{2} \leq i \leq N .\end{array}\right.$

4. Numerical Examples

The numerical results in tables 1 and 2 agree with the error estimates for the simple upwind scheme on the Shishkin mesh and the Bakhvalov-Shishkin mesh, denoted by S-S and S-BS, and the midpoint upwind scheme on the Shishkin mesh and the Bakhvalov-Shishkin mesh, denoted by M-S and M-BS. The numerical convergence rates are computed by
$\log _{2}\left(\max \left|u_{i}-u_{i}^{N}\right| / \max \left|u_{i}-u_{i}^{2 N}\right|\right)$ on the coarse part and the fine part, respectively. Denoting the error estimate by $\left|u_{i}-u_{i}^{N}\right| \leq C \sigma(N)$, the constant is computed by $\max \left|u_{i}-u_{i}^{N}\right| / \sigma(N)$.

Problem 1. $\left\{\begin{array}{c}-\varepsilon y^{\prime \prime}-y^{\prime}+y=0,0<x<1, \\ y(0)=0, y(1)+y^{\prime}(1)=1 .\end{array}\right.$
The exact solution of this problem is
$y(x)=\left(e^{m_{1} x}-e^{m_{2} x}\right) /\left[\left(1+m_{1}\right) e^{m_{1}}-\left(1+m_{2}\right) e^{m_{2}}\right]$, where $m_{1}, m_{2}=(-1 \pm \sqrt{(1+4 \varepsilon)}) /(2 \varepsilon)$.

Table 1. The errors for Problem 1 with $\varepsilon=10^{-6}$ and $\beta=0.75$

N	$i \leq N / 2$	rate	const	$i \geq N / 2$	rate	const
S-S:						
64	0.0069	0.59	.107	0.0077	0.98	.492
128	0.0046	0.67	.122	0.0039	1.04	.496
256	0.0029	0.77	.133	0.0019	0.96	.498
512	0.0017	0.79	.140	$9.746 \mathrm{e}-4$	1.00	.499
1024	$9.851 \mathrm{e}-4$	0.82	.146	$4.878 \mathrm{e}-4$	1.00	.500
2048	$5.565 \mathrm{e}-4$	0.85	.149	$2.440 \mathrm{e}-4$	1.00	.500
$\mathrm{~S}-\mathrm{BS}:$						
64	0.0055	0.97	.353	0.0077	0.98	.492
128	0.0028	1.00	.362	0.0039	1.04	.496
256	0.0014	1.00	.366	0.0019	0.96	.498
512	$7.170 \mathrm{e}-4$	0.97	.367	$9.746 \mathrm{e}-4$	1.00	.499
1024	$3.590 \mathrm{e}-4$	1.00	.368	$4.878 \mathrm{e}-4$	1.00	.500
2048	$1.796 \mathrm{e}-4$	1.00	.368	$2.440 \mathrm{e}-4$	1.00	.500
$\mathrm{M}-\mathrm{S}:$						
64	0.0103	0.71	.660	$1.497 \mathrm{e}-5$	2.00	$.613 \mathrm{e}-1$
128	0.0063	0.77	.809	$3.744 \mathrm{e}-6$	2.00	$.613 \mathrm{e}-1$
256	0.0037	0.82	.956	$9.366 \mathrm{e}-7$	2.00	$.111 \mathrm{e}-1$
512	0.0021	0.81	1.10	$2.344 \mathrm{e}-7$	2.00	$.985 \mathrm{e}-2$
1024	0.0012	0.85	1.23	$5.874 \mathrm{e}-8$	1.99	$.889 \mathrm{e}-2$
2048	$6.663 \mathrm{e}-4$	0.87	1.36	$1.475 \mathrm{e}-8$	1.99	$.812 \mathrm{e}-2$
$\mathrm{M}-\mathrm{BS}:$						
64	0.0055	0.97	.350	$1.497 \mathrm{e}-5$	2.00	$.613 \mathrm{e}-1$
128	0.0028	1.00	.354	$3.746 \mathrm{e}-6$	2.00	$.614 \mathrm{e}-1$
256	0.0014	1.00	.356	$9.373 \mathrm{e}-7$	2.00	$.614 \mathrm{e}-1$
512	$6.981 \mathrm{e}-4$	1.00	.357	$2.347 \mathrm{e}-7$	2.00	$.615 \mathrm{e}-1$
1024	$3.496 \mathrm{e}-4$	1.00	.358	$5.882 \mathrm{e}-8$	1.99	$.616 \mathrm{e}-1$
2048	$1.749 \mathrm{e}-4$	1.00	.358	$1.478 \mathrm{e}-8$	1.99	$.619 \mathrm{e}-1$

Problem 2. $\left\{\begin{array}{c}-\varepsilon y^{\prime \prime}-y^{\prime}=1+2 x, 0<x<1, \\ y(0)=1, y(1)+y^{\prime}(1)=0 .\end{array}\right.$
Its exact solution is given by
$y(x)=\left[(5-4 \varepsilon)-\left(1-\frac{1}{\varepsilon}\right) e^{\frac{-1}{\varepsilon}}+4(\varepsilon-1) e^{\frac{-x}{\varepsilon}}\right] /\left[1-\left(1-\frac{1}{\varepsilon}\right) e^{\frac{-1}{\varepsilon}}\right]-\left(x+x^{2}-2 \varepsilon x\right)$.
TABLE 2. THE ERRORS FOR PROBLEM 2 WITH $\varepsilon=10^{-6}$ AND $\beta=0.5$

N	$i \leq N / 2$	rate	const	$i \geq N / 2$	rate	const
S-S:						
16	0.8961	0.64	5.170	.3594	0.97	5.75
32	0.5749	0.63	5.310	.1836	0.98	5.87
64	0.3706	0.70	5.700	.0928	0.99	5.94
128	0.2280	0.77	6.010	.0466	0.99	5.97
256	0.1336	0.80	6.170	.0234	1.00	5.98
512	0.0764	0.84	6.270	.0117	0.99	5.99

S-BS:

16	0.7088	0.90	11.30	. 3594	0.97	5.75
32	0.3796	0.93	12.10	. 1836	0.98	5.87
64	0.1986	0.97	12.70	. 0928	0.99	5.94
128	0.1017	0.98	13.00	. 0466	0.99	5.97
256	0.0515	0.99	13.20	. 0234	1.00	5.98
512	0.0259	0.99	13.30	. 0117	0.99	5.99
M-S:						
16	0.6784	0.56	10.9	6.081e-8	3.37	. $561 \mathrm{e}-5$
32	0.4614	0.54	14.8	5.902e-9	3.92	. $174 \mathrm{e}-5$
64	0.3174	0.69	20.3	$3.895 \mathrm{e}-10$	4.13	. $384 \mathrm{e}-6$
128	0.1974	0.73	25.3	$2.231 \mathrm{e}-11$	4.18	. $753 \mathrm{e}-7$
256	0.1191	0.79	30.5	$1.228 \mathrm{e}-12$	2.25	. $145 \mathrm{e}-7$
512	0.0689	0.82	35.3	$2.576 \mathrm{e}-13$	2.00	.108e-7
M-BS:						
16	0.4455	0.84	7.13	$2.070 \mathrm{e}-7$	2.16	. $530 \mathrm{e}-4$
32	0.2488	0.91	7.96	4.646e-8	2.52	.476e-4
64	0.1320	0.95	8.45	8.078e-9	2.74	. $331 \mathrm{e}-4$
128	0.0681	0.98	8.71	1.205e-9	2.87	.197e-4
256	0.0346	0.99	8.85	$1.649 \mathrm{e}-10$	2.92	.108e-4
512	0.0174	0.98	8.93	$2.175 \mathrm{e}-11$	2.98	.570e-5

Form the theoretical analysis and the numerical results, we conclude that S-S, S-BS, M-S and M-BS are robust, efficient and ε-uniform convergent.

References

[1] J.J.H. Miller, R.E. O'Riordan, G.I. Shishkin, Fitted Numerical Methods for Singular Perturbation Problems. World Scientific, Singapore, 1996.
[2] H.-G. Roos, M. Stynes, L. Tobiska, Robust Numerical Methods for Singularly Perturbed Differential Equations, Springer-Verlag, Berlin, Heidelberg, 2008.
[3] S. Natesan, N. Ramanujam, An asymptotic-numerical method for singularly perturbed Robin problems-I, Appl. Math. Comput. 126 (2002) 97-107.
[4] Z.-D. Cen, H.-Y. Gao, Uniform convergence analysis of a singularly perturbed Robin problem on a Bakhvalov-Shishkin mesh, J. Zhejiang Univ. (Science Edition) 31 (2004) 373-375 (in Chinese).
[5] R.B. Kellogg, A. Tsan, Analysis of some difference approximations for a singular perturbation problem without turning points, Math. Comput. 32 (1978) 1025-1039.
[6] A.S. Bakhvalov, On the optimization of methods for solving boundary value problems in the presence of boundary layers, Zh . Vychisl. Mat. Mat. Fiz. 9(1969) 841-859 (in Russian).
[7] G.I. Shishkin, Grid approximation of singularly perturbed elliptic and parabolic equations, Second doctorial thesis, Keldysh Institute, Moscow, 1990 (in Russian).
[8] T. Lin β, An upwind difference scheme on a novel Shishkin-type mesh for a linear convection-diffusion problem, J. Comput. Appl. Math. 110 (1999) 93-104.
[9] M. Stynes, H.-G. Roos, The midpoint upwind scheme, Appl. Numer. Math. 23 (1997) 361-374.

[^0]: Supported by Beijing Natural Science Foundation (No. 1122014).

