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Abstract—In this paper, we propose and analyze a subdivision scheme which unifies 3-point approximating subdivision 
schemes of any arity in its compact form and has less support, computational cost and error bounds.  The usefulness of the 
scheme is illustrated by considering different examples along with its comparison with the established subdivision schemes. 
Moreover, B-splines of degree 4and well known 3-point schemes [1, 2, 3, 4, 6, 11, 12, 14, 15] are special cases of our 
proposed scheme. 
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1. Introduction
In recent years, subdivision schemes has becomeone of 

the most popular methods of creating geometric objects in 
computer aided geometric design and animation industry. 
Their popularity is due to the facts that subdivision 
algorithms are easy to implement and suitable for computer 
applications. Subdivision schemes can be classified into 
approximating and interpolating ones.  

The beginning of the subdivision story can be dated back 
to the papers of Chaikin [2] over thirty years ago, but the 
idea of families of subdivision schemes of higher arity is 
relatively new. Based on wavelet theory, Lian [8] 
introduced 2� � point � -ary for any � #2 and (2� +
 1) �point �-ary for any odd �#3 interpolatory subdivision 
schemes for curve design. These schemes include the 
extended family of the classical 4- and 6-point interpolatory 
$-ary schemes [9] and the family of the 3- and 5-point �-
aryinterpolatory schemes [10]. Mustafa and Khan [7] 
offered a new 4-point quaternary approximating subdivision 
scheme. Siddiqi and Rehan [15] introduced a modified form 
of binary and ternary 3-point subdivision schemes which are 
C1 and �2  in the intervals ��1

8
, 1

5
�and ��1

72
, 7

72
� respectively.  

Most work in the area of subdivision schemes has 
considered binary and ternary schemes. But the research 
communities are gaining interest in introducing higher arity 
schemes (i.e. ternary, quaternary,…,	-ary) that give better 
results and less computational cost. This motivates us to 
present the family of schemes with higher arity and more 
degree of freedom for curve designing. We decided to 
investigate schemes with an odd number of control points, 
specifically 3-point schemes. This led to a more general 
investigation of higher arity subdivision schemes. 

In this paper 3-point subdivision schemes are extended to 
$-ary 3-point approximating subdivision schemes for any 
integer   � 
 2.In � -ary 3-point approximating subdivision 
schemes, we introduced new families of subdivision 
schemes for curve design. The first family is binary 
approximation, second is ternary approximation and onto �-
ary approximation. A general formula for the mask of �-ary 
3-point approximating subdivision scheme is defined as 
follows 

�3
� (�) =

1
(2�)2 


1 � ��

1 � �
�

3

�� 

2
�

� ��
2

�=0

�,             (1) 

where “�” represents the arity. 
In this paper we recall basic definitions and preliminary 

results in Section II.  The family of � -ary 3-point 
approximating scheme is presented in Section III. 
Comparison with the existing 3-point scheme, basic 
properties of the limit function, error analysis and effect of 
parameters �-ary 3-point schemes are discussed in Section 
IV. Conclusion isalso discussed in Section IV. 

I. ANALYSIS OF THE GENERAL � �ARY  SCHEME

A general form of univariatea-ary subdivision scheme S
which maps a polygon � � B�	 ii

kk ff to a refined polygon

� � Zi
k

i
k ff �



 	 11  is defined by 

��
�+1 = � ��� ����

� ,      � � �                              (2
���

) 

where the set � = {��: � � �}�of coefficients is called the 
mask at �-th level of refinement. Anecessary condition for 
the uniform convergence of subdivision scheme (2) is  
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� ��� =
���

� ��� +1=
���

� ��� +2=
���

… � ��� +��1=
���

1.           (3) 

A subdivision scheme is uniformly convergent if for any 
initial data �0  =  {��

0:  � � �}, thereexistsa continuous 
function �  such that for any closed interval  � �  � , it 
satisfies 

���
���

!"#
���� �

|�� � �(���� )| = 0. 

Obviously, � =  $��0. 
Introducing a symbol called Laurent polynomial 

�(�) = � ����

���

,                                            (4) 

of the mask � = {��: � � �}� which play an efficient role to 
analyze the convergence andsmoothness of subdivision 
scheme. From (3) and (4) the Laurent polynomial of 
convergentsubdivision scheme satisfies 
�%&4�'*/� - = 0,   ' � � 6 (0, �)and�(1) = �.      (5) 
This condition guarantees the existence of a related 
subdivision scheme for the divided differencesof the original 
control points and the existence of an associated Laurent 
polynomial $(�) 

�(1)(�) = ����1 

1 � �

1 � �� � �(�). 

The subdivision scheme $1 with Laurent polynomial �(1)(�), 
is related to the scheme $ withLaurent polynomial �(�) by 
the following theorem. 

Theorem 1[5] Let$ denote a subdivision scheme 
with Laurent polynomial �(�) satisfying (5). Then there 
exists a subdivision scheme $1 with the property

9�� = $19���1,
where�� = $� �0 and 9�� ={(;�� )� = �� %��+1

� � ��
� -;   � �

�}.Furthermore, $ is a uniformlyconvergent if and only if 
1

$1
converges uniformly to zero function for all initial data�0,

in the sense that

lim
���



1
�

$1�
�

�0 = 0. 
The above theorem indicates that for any given scheme $, 
with the mask $ satisfying (3), wecan prove the uniform 
convergence of $  by deriving the mask of 1

�
$1 and 

computing >�1
�

$1�
�
>

�
for � =  1, 2, 3. . . , ? , where ?  is the 

first integer for which >�1
�

$1�
?

>
�

< 1. If such an ? 

exists,then $ converges uniformly. Since there are � rules for 
computing the values at the nextrefinement level, so we 
define the norm 
A$A�

= ��B D�E��� E,
���

�E��� +1E
���

, �E��� +2E
���

, … ,� ��E��� +��1E
���

F,   (6) 

and 
 

H

1
�

$1�
?

H
�

= ��B D� IJ�+�?
	,?

�
I ; �

���

= 0,1,2, … , �? � 1K , (7) 

where 

J[	,   ?] =
1

�? L �(	) ���� �
?�1

� =0

,                           (8) 

and 

�(	)(�) = ����1 

1 � �

1 � �� � �(	�1)(�)           

= ����1 

1 � �

1 � �� � �(�), 	 
 1. 
Definition 1. The number of points inserted at the level 
� +  1 between two consecutive points from a level � is 
called arity of the scheme. In the case when number of 
points inserted are 2, 3, . . . �, the subdivision schemes are 
called binary, ternary,...,�-ary, respectively. 

 
Figure 1: (a), (b) and (c) represent binary, ternary and 
quaternary refinement of coarse polygons using (1) for 
	 =  2, 3, 4, respectively. 

2. Family of the general Q-ary 3-point 
approximating scheme
In this section, we are introducing a family of 3-point �-
ary approximating subdivision schemes for curve design 
for any integer �  2, which is an extension of “B-spline”. 
We have proved this family by using Chaikin [2], Hassan 
and Dodgson [4]. The Chaikin’s algorithm for curve 
design introduced in 1974 is given by 

D
�2�

�+1 = 3
4

��
� + 1

4
��+1

� ,

�2�
�+1 = 1

4
��

� + 3
4

��+1.
�

�                                                (9) 

About twenty seven years later, it was extended to the 3-
point scheme by Hassan and Dodgson and is given by 

X
�2�

�+1 = 5
16

���1
� + 10

16
��

� + 1
16

��+1
� ,

�2�
�+1 = 1

16
���1

� + 10
16

��
� + 5

16
��+1.

�
�(10) 

The Laurent polynomials of (9) and (10) are 

Z
�2

2(�) = 1
4

�1�� 2

1��
�

2
%\ %1

� -��1
�=0 -,

�3
2(�) = 1

16
�1�� 2

1��
�

3
%\ %2

� -��2
�=0 -.

� (11) 

If “�” represents the arity, then by generalizing, we get 
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�=0

�.               (12) 

where integers � 
 2 . From the coefficients of Laurent 
polynomial (12), we get the mask �3

� of family of 3-point �-
ary approximating subdivision schemes for curve design for 
any integer� 
  2. 

By adjusting the shape parameter in eq (12), we get the 3-
point �-ary parametric approximatingsubdivision scheme 

�3
� (�) =

1
(2�)2 


1 � ��

1 � �
�

3

�� 

2
�

� ^���
2

�=0

�,                       (13) 

and 

�
�
22 


2
�

� ^� = �, ^� = ^2�� ,   � =0,1.                             (14)
2

�=0

 

From the coefficients of Laurent polynomial (13) and 
using (14), we get the mask �3

�  of afamily of the 3-point �-
ary parametric approximating subdivision schemes for curve 
design forany integer � 
  2. 

Remark:For a = 2, 3, 4, in (12), we get the mask of the 
following 3-point binary, ternary and quaternary schemes, 
respectively, 

_
`

j�3
� = 1

16
{1, 5,10,10,5,1},                         

�3
� = 1

36
{1, 5,13,22,26,22,13,5,1},       

�3
� = 1

64
{1, 5,25,38,46,46,38,25,5,1}.

� 

For a = 2, 3, 4, in (12) and using (13) we get the mask of the 
following 3-point binary, ternary and  quaternary schemes, 
respectively, 

_
~
`

~
j�3

� = 1
16

{^0, 4 + ^0, 12 � 2^0, 12 � 2^0, 4 + ^0, ^0},                              

�3
� = 1

36
�^0, 4 + ^0, 12 + ^0, 24 � 2^0, 28 � 2^0,

24 � 2^0, 12 + ^0, 4 + ^0, ^0
� ,      (15)               

�3
� = 1

64
�^0, 4 + ^0, 12 + ^0, 24 + ^0, 40 � 2^0, 48 � 2^0,

40 � 2^040 � 2^0, 24 + ^0, 12 + ^0, 4 + ^0, ^0
�.               

� 

3. Comparison with existing
approximating schemes
In this section, we will show that the popular existing 
Chaikin scheme and 3-point schemes arespecial cases of our 
proposed family of schemes. Here we will also present 
support of the basiclimit function and compare the error 
bounds between the limit curve and the control polygonafter 
the �-fold subdivision of the 3-point schemes. 

A. Special cases
Here we see that the existing symmetric schemes are the 
special cases of our scheme (15). 

A By taking ^0  =  0, ^0 =  �48�, ^0  =  1, ^0  =
� 3

2
, ^0  = 2

3
+  4�, ^0  =  1/2 and ^0  =  � 3

2
+

 16^  in �3
2,  we get the 3-point binary scheme of 

[2,3,4,6,11,14,15], respectively 
A By setting ^0 =  "– 1

3
,   ^0  = 4

3
, ^0  =  �4, ^0  =

 1/3 +  4�   and ^0  =  1/2 +  36^  in �3
3, we get 

the 3-point ternary scheme of Aslam et al. [1, 4, 10, 
15],  respectively. 

B. Support of basic limit function
The basic function of a subdivision scheme is the limit 
function of the proposed scheme forthe following data 

��
0 = �1,   � = 0,

0,    � � 0.
�                                           (16) 

Theorem 2.The basic limit functions of ��3   proposed �-ary 
3-point approximating schemes have support width   ! =
 3� �1

� �1 , 
for� =  2, 3, 4, . . . , �, which implies that it vanishes outside 
theinterval�� 3��1

2(��1)
, 3��1

2(��1)
�. 

Figure 2: In this figure (a), (b), and (c) represent the basic 
limit functions of 3-point binary, ternary andquaternary 
schemes, respectively.

C. Error bounds
In Table 1 by using [13], with � =  0.1, we have computed 
the error bounds between limit thecurve and the control 
polygon after the �-fold subdivision of the 3-point schemes. 
It is clearfrom Table 1 and Fig. 3 that the error bounds of the 
3-point schemes (13) at each subdivisionlevel decrease by 
increasing the arity of the schemes. Moreover, the support, 
computationalcost and error bounds of higher arity schemes 
are better than the lower arity schemes. 

TABLE 1: ERROR BOUNDS OF 3-POINT SCHEME WITH VARYING ARITY: 

k/a 1 2 3 4 5
binary 0.075000 0.037500 0.018750 0.009375 0.004687
ternary 0.033333 0.011111 0.003704 0.001235 0.000412 

quaternary 0.020833 0.005208 0.001302 0.000326 0.000081 

 
Figure 3: Comparison: Error bounds between the �-th level 
control polygons and the limitcurves of 3-point schemes of 
varying arity.

4. Effects of parameters in proposed 
We will discuss the three major effects/upshots of parameter 
in schemes (13). Effects ofparameters in other schemes can 
be discussed analogously. 

D. Continuity
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The effects/upshots of the parameter u in schemes (3.7) on 
order of continuity are shown inTable 2. One can easily find 
the order of continuity over the parametric intervals by using 
theapproach of [5]. 

TABLE 2:THE ORDER OF CONTINUITY OF PROPOSED 3-POINT BINARY, 
TERNARY AND QUATERNARY APPROXIMATING SCHEMES FOR CERTAIN 
RANGES OF THE PARAMETER: 

Scheme Parameter �	 Scheme Parameter �	

binary �2 � ^0 � 6 0C ternary �6 � ^0 � 12 0C

…….. �1 � ^0 � 3 1C ……… �4 � ^0 � 8 1C

…….. 0 � ^0 � 2 2C ……… 0 � ^0 � 4 2C

…….. ^0 = 1 3C

quaternary �12 � ^0 � 20 0C

……… �6 � ^0 � 10 1C
……… 0 � ^0 � 4 2C

E. Shapes of limit curves
In Figure 4 the effect of the parameter in (13) on the graph 
and continuity of the limit curveis shown. This figure is 
exposed to show the role of the free parameter when 3-point 
schemes(14) applied on discrete data points. From these 
figures, we see that the behavior of thelimiting curve acts as 
tightness/looseness when the values of free parameter vary. 
 

 
Figure 4: The initial polygons and effect of the parameter 
on limit curves of the 3-point binary, ternary and 
quaternary schemes.

F. Error bounds
The effects of parameter on error bounds at different 
subdivision levels of the control polygonand the limit curves 
are shown in Figure 5 and Table 3. From Table 3 and Figure 
5,we conclude that: In the case of the 3-point binary scheme, 
the continuity is maximum over0 < ^0 < 2 and the error 
bound is minimum over 0 < ^0 <  4. On each side of the 
interval 0< ^0 < 2 , the continuity decreases while error 
bound increases on each side of the interval 0 < ^0 < 4. In 
the cases of the 3-point ternary and quaternary schemes, the 

continuity is maximumover 0 < ^0 < 4  , while the error 
bounds are minimum over 0< ^0 <6 and 0 < ^0 <
8 ,respectively. On each side of the interval 0<^0 <4, the 
continuity decreases while the errorbound increases on each 
side of the interval 0 <^0< 6 and 0 <^0< 8, respectively. 

TABLE 3: ERROR BOUNDS FOR 3-POINT BINARY, TERNARY AND 
QUATERNARY SCHEMES:

Scheme Parameter k = 1 k = 2 k = 3 k = 4 
binary ^0  =  4 0.075000 0.037500 0.018750 0.009375 

... ^0 = �1
3

 0.110833  0.064653  0.037714  0.022000 

... ^0 = �2
3

 0.166667 0.111111 0.074074 0.049383 

... �0 = �1 0.262500 0.196875 0.147656 0.110742 
ternary ^0 = 6 0.033333 0.011111 0.003704 0.001235 

... ^0 = 7 0.053333 0.023704 0.010535 0.004682 

... ^0 = �3
2

 0.075000 0.037500 0.018750 0.009375 

... ^0 = �2 0.097222 0.054012 0.030007 0.016670 
quaternary ^0 = 8 0.020833 0.005208 0.001302 0.000326 

... ^0 = 9 0.025068 0.007050 0.001983 0.000558 

... �0 = �1
2

 0.028409 0.008878 0.002774 0.000867 

... �0 = �5
4

 0.032431 0.010641 0.003492 0.001146 

Figure 5: Comparison: Error bounds between k-th level 
control polygons and limit curvesgenerated by 3-point 
schemes (13). 

G. Conclusions and future research 
We have shown that the 3-point approximating subdivision 
schemes [1,2,3,4,6,11,12,14,15] can be derived from a-ary 
3-point approximating subdivision scheme. In context of 
binary and ternary subdivisions, we exploited a constructive 
method for generating 3-point schemes. As observed, our 
approach is more universal because it allows us to present 
general formula for 3-point approximating schemes and 
additionally it is applied to schemes of arbitrary arity. 
Therefore, we conclude that 3-point schemes with higher 
arity are better than lower arity schemes in the sense of 
support, computational cost and error bounds. These 
advantages motivates us to extend the proposed result to 
surface subdivision. 
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