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Abstract 
Trace minerals are dietary elements required by the body in minute amounts, rang-
ing from 0.10 to 50.0 mg/kg dry matter in beef cattle diets [1]. These trace minerals 
are all necessary for the biochemical processes of the body that support proper 
growth and maintenance. For example, Cu is necessary for the function of superox-
ide dismutase and its removal of toxic byproducts from metabolic pathways [2]. The 
removal of these toxic byproducts allows for metabolism to proceed efficiently, un-
inhibited by damaging oxygen free radicals. Zinc, an important trace mineral for en-
zyme function, aides in the regulation of nucleic acid production, carbohydrate me-
tabolism, and protein synthesis, thus providing a stable framework for development 
[3]. The immune system is part of the host’s defense against destructive forces from 
outside the body, such as bacteria, viruses, and parasites, or from within, such as ma-
lignant cells or those that produce autoantibodies [4]. This system is composed of 
two branches: the innate or non-specific immune system, and the adaptive or specific 
immune system [5]. In this review paper, an attempt has been made to review effects 
of mineral supplements in Rumen Metabolism, effects on Immune Function in dif-
ferent species of animals. 
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1. Introduction 

At present time, 111 chemical elements are officially accepted by the International Un-
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ion of Pure and Applied Chemistry [6]. Out of them, 93 are classified as naturally oc-
curring, and approximately 50 have been identified as useful to sustain a normal health 
status in mammals. In addition to the six core elements (C, H, N, O, S and P) that make 
up nucleic acids, proteins, carbohydrates, and lipids and thus the bulk of living matter 
[7], many other elements are essential to the nutritional requirements of superior ani-
mals. Minerals required in relatively large quantities (g/d) are named “macro” minerals. 
In opposition, minerals required in mg or μg amounts are referred to as “micro” or 
“trace” minerals [1]. Minerals are usually classified into four broad groups according to 
their physiological roles: 
• Structural: minerals forming structural components of the body organs and tissues 

which include Ca, P, Mg, Fl and Si in bones and teeth and P and S in muscle proteins. 
• Physiological: minerals occurring on body fluids and tissues as electrolytes, involved 

in the maintenance of osmotic pressure, acid base-equilibrium, membrane permea-
bility and tissue stimuli (e.g. Na, K, Cl, Ca and Mg in blood and cerebrospinal fluid).  

• Catalytic: minerals acting as catalysts in enzymatic systems, as integral compounds 
in the structure of metalloenzymes or as cofactors required for enzymatic activation 
(e.g. Fe, Cu, Zn, Mn, and Se involved in cytochromes, ceruloplasmin, carbonic an-
hydrase, pyruvate carboxylase, and glutathione peroxidase, respectively). 

• Regulatory: minerals involved in regulation of cell replication and differentiation 
(e.g. Ca, in signaling transduction; Zn, in DNA transcription).  

However, this classification is arbitrary and not exclusive since the same element can 
fulfill more than a single function [8]. 

Ideally, dietary supply of minerals to livestock must be sufficient to ensure the main-
tenance of body reserves, and to provide adequate concentrations in edible products. 
However, in some occasions, drinking water can be an exceptionally rich source of 
minerals, sometimes responsible for mineral toxicity [9]. The accomplishment of an 
adequate supply of minerals is especially challenging since requirements for most min-
erals are not constant, but affected by physiological factors including genetics, age, sex, 
type of production (maintenance, growth, reproduction, and lactation), and level of 
production [10]. 

2. Availability of Minerals to Animals 

The evaluation of feedstuffs and mineral supplements for the host animal depends not 
only on the mineral content in the sources but also on the potential availability and ab-
sorption of the minerals from the gastrointestinal tract and the mineral’s utilization by 
the animal tissues [11]. However the potentially absorbable fraction of a mineral is 
greatly influenced by several factor including age and species of animal, intake of min-
eral relative to amount required, chemical form of the mineral, and the amount and 
proportions of other dietary compounds involved in specific interactions with the min-
eral [12]. Livestock diets are often supplemented with trace minerals in the form of in-
organic salts, usually oxides, chlorides, sulfates and carbonates. In recent years there 
has been considerable interest in the use of organic trace minerals in ruminant diets 
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[13]. According to the Association of American Feed Control Officials [14], organic 
trace minerals in the United States are available in one of the following forms: 
• Metal Proteinate: the product resulting from the chelation of a soluble salt with 

amino acids and/or partially hydrolyzed protein, e.g. Cu proteinate, Zn proteinate, 
Co proteinate and Mn proteinate. 

• Metal Amino Acid Chelate: the product resulting from the reaction of a metal ion 
from a soluble metal salt with amino acids with a mole ratio of one mole of metal to 
one to three (preferably two) moles of amino acids forming coordinate covalent 
bonds. For example, Cu-lysine-sulfate is the sulfate salt of 2:1 molar ratio of L-lysine 
and Cu. Similarly Cu methionine-bisulfate is the bisulfate salt of a 1:1 molar ratio of 
DL-methionine and Cu. Other commercially available metal amino acids are Cu 
amino acid chelate, Zn amino acid chelate and Mn amino acid chelate in addition to 
chelates for macro minerals like Ca and Mg.  

• Metal Amino Acid Complex: the product resulting from complexing a soluble metal 
salt with an amino acid. Commercially available metal complexes are Zn-methio- 
nine, Zn-lysine, Mn-methionine, Fe-methionine and Cu-lysine.  

• Metal Polysaccharide Complex: the product resulting from complexing a soluble salt 
with a polysaccharide solution declared as an ingredient of the formulation (e.g. Cu 
polysaccharide complex, Zn polysaccharide complex, etc).  

While the effectiveness of organic minerals for ruminants has been strongly criticized 
[9] [15] established that for chelation to be effective, the chelating agent should have a 
stronger stability for the metal than the metal binding substances in feed, but smaller 
stability constant than the tissue system where the metal is required. In addition, other 
factors including metal ion equilibria, kinetic factors, pH gradients and redox equili-
brium (in case of redox active metals such as Cu2+), may also affect the uptake mechan-
ism of metal ions [16]. Several studies have been conducted to address the benefits of 
including organic sources of minerals on the productive performance of ruminants. 
However, in many cases a combination of several organic elements has been used, mak- 
ing difficult to assess which one is responsible for the effects noticed, as discussed later. 

The aim of this review is to explore the factors involved in bioavailability of Zn, Mn 
and Cu at the gastrointestinal tract, affecting the mineral status of the host animal. In 
addition, the role of Zn, Mn and Cu on ruminal physiology is presented. 

3. Zinc 
3.1. Interaction of Zinc with Dietary Factors 

Early studies from [17] showed that in ruminants, the percentage of dietary Zn ab-
sorbed decreases as dietary Zn increases. [18] found a linear increment in endogenous 
fecal loss of Zn when rats were feed increasing levels of dietary Zn ranging from 0 to 
8400 ppm. Similarly, in a study conducted in growing pigs receiving 67 Zn, the addition 
of phytase increased Zn absorption but also resulted in higher endogenous fecal loss 
[19]. Concurrently, reductions of urinary and fecal Zn excretion by 48% and 46%, re-
spectively were found in humans when dietary Zn was reduced from 85 to 12 μmol/d. 
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Despite the influence of dietary levels, the requirement of Zn appears to be affected by 
other dietary factors. However, all of the factors and interactions that play a role on Zn 
bioavailability are not clearly defined [20]. According to [21], the two major dietary 
factors affecting Zn bioavailability are the presence of organic chelating agents and the 
interaction with metallic ions, with Cu and Ca being the most important antagonists. 

3.2. Role of Zinc on Rumen Fermentation 

Early studies from [22] showed that in vitro microbial protein synthesis was increased 
together with a reduction in NH3-N concentration when rumen fluid was incubated 
with additional Zn as ZnCl2 or ZnSO4. According to the authors, this response is due to 
an effect of Zn in increasing microbial enzymatic activity. However, further studies 
from [23] showed differences in the behavior of rumen microbial populations in the 
presence of Zn. While protozoa easily incorporated Zn and were tolerant to high Zn 
concentrations (25 μg/mL), cellulose degradation from rumen bacteria was deeply de-
pressed, along with bacterial urease activity. In partial agreement, [24] found that addi-
tion of 5 μg Zn/mL of rumen fluid increased cellulose digestion by 24%, but addition of 
20 μg/mL of Zn depressed it by 31%. [25] found that low supplementation levels (10 to 
15 ppm Zn in incubation fluid) inhibited in vitro urea hydrolysis and retarded ammo-
nia accumulation. Similarly, when Zn was added in vivo at 250 ppm Zn on DM basis, 
molar proportion of propionate was increased with the consequent decrease in acetate: 
propionate ratio, and rumen ammonia was decreased due to microbial urease inhibi-
tion. However, when Zn was added to achieve a level of 470 ppm on DM basis, a ten-
dency for depressed DM digestibility was noticed. In addition, [26] found a decrease in 
total VFA when Zn was provided to steers as Zn methionine or Zn glycine compared 
with ZnSO4 at concentrations closer to physiological levels (20 ppm). In the same study, 
molar proportion of propionate was increased by Zn methionine and that of butyrate 
was decreased, with the consequent reduction in the acetate: propionate ratio. The au-
thors conclude that supplementation of Zn methionine may alter ruminal fermentation.  

While these differences can be partially explained by the dose of Zn and the fermen-
tation substrate used by the different authors, an alternative mechanism is proposed by 
[27], who found that addition of 50 μg/mL of Zn to in vitro incubations decreased cel-
lulose digestion at 24 h, but not at 48 h, resulting in an overall decrease in the rate, but 
not the extent of digestion. The authors conclude that the initial decrease in cellulose 
digestion might be related to a direct effect of Zn on inactivation of bacterial cellulase, 
since heavy metal salts can precipitate and denature soluble proteins and enzymes. 
However, enough cellulase activity may be present to overcome those negative effects of 
high Zn concentrations. In addition, the accumulation of Zn in bacterial wall [28] 
might be affecting the adhesion of microbial cells to cellulose particles, a limiting step 
in cellulose fermentation as previously established [29]. 

3.3. Zinc Availability from Organic and Inorganic Sources 

There is scientific evidence showing that organic Zn is metabolized differently than in-
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organic sources. In four consecutive studies conducted by [30], Zn was better retained 
when added as Zn methionine than ZnO in lambs and heifers. However, the observed 
improvement was not due to higher absorption but to a lower urinary Zn excretion in 
animals receiving Zn methionine, and only minor changes in blood parameters were 
noticed. Similarly, in a study conducted by [31] in calves, organic or inorganic Zn sup-
plementation did not affect concentration of serum enzymes (alkaline phosphatase, 
glutamate oxaloacetate transaminase, glutamate pyruvate transaminase and super oxide 
dismutase) or mean concentrations of different serum vitamins (retinol, β-carotene, 
α-tocopherol) and hormones (triiodothyronine, thyroxin, insulin and testosterone). 
Furthermore, blood parameters from supplemented groups did not differ from unsup-
plemented controls. In a comparative study, [32] found no differences in liver Zn and 
plasma Zn concentration of steers receiving ZnSO4 or Zn amino acid complex. Howev-
er, confounding effects may account for these findings, given the differences in mineral 
status of the animals at the beginning of the study. In partial agreement, no differences 
in plasma Zn concentration of steers receiving ZnSO4, Zn methionine complex or Zn 
glycine were found by [26]. Although large variations prevented from obtaining differ-
ences in absorbed or retained Zn, Zn glycine resulted in larger liver Zn concentrations. 
Conversely, using organic and inorganic Zn. [33] found higher concentrations of Zn in 
plasma of supplemented beef steers than in controls, despite the Zn source. Interestingly, 
in animals receiving an implant containing estradiol benzoate and testosterone propio-
nate, weight gain resulted higher when Zn was supplemented as ZnSO4 that of Zn pro-
pionate [33]. In a large production study including 250 dairy cows, only a tendency for 
improvement in milk production was obtained when Cu, Zn, Mn and Co as sulfates, 
were replaced by organic forms of the minerals. Liver concentration of minerals was 
unaffected by mineral source, but supplementation with organic minerals resulted in 
increased milk solids and a decreased incidence of sole ulcers [34]. In another large 
scale study conducted on 573 dairy cows [35], supplementing 75% of the requirement 
of Zn as Zn methionine achieved the same hepatic Zn concentration than supplement-
ing 100% of the requirement as ZnSO4. Based on the lack of differences in health and 
productive performance the authors suggest that mineral content of liver is not an ac-
curate predictor of cow’s response to different sources and levels of trace minerals. In 
agreement, [34] suggest that Zn, Mn, and Cu content of liver is a poor indicator of trace 
mineral status. According to [2], the supposed benefits of organic sources of Zn on Zn 
availability claimed in studies conducted in monogastrics cannot be adopted in rumi-
nants since phytic acid, a major antagonist of Zn absorption, is largely hydrolyzed in 
the rumen. An additional difficulty in the evaluation of Zn availability from different 
sources relies on the fact that Zn is absorbed according to the animal needs and ho-
moeostasis in ruminants is achieved primarily by control of intestinal absorption [36]. 

4. Manganese 
4.1. Interaction of Manganese with Dietary Factors 

According to the [1], there is no exact data regarding the maintenance requirements of 
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Mn in dairy cattle. However, the coefficient of intestinal absorption for Mn in adult cat-
tle is known to be as low as 1% of ingested Mn or even lower (37; 20), but the absorp-
tion in young calves is considerably higher [37]. Despite the generalized idea of poor 
Mn absorption, [8] suggested that this situation is partly a reflection of the substantial 
surplus of Mn provided by most practical rations, since higher coefficients of absorp-
tion were obtained when animals received diets marginal in Mn [38]. For this reason, 
the [1] adopted a conservative coefficient of 0.75% for Mn absorption. In agreement, 
[39] reported a coefficient of 0.54% for Mn absorption in dairy cows. The study of die-
tary factors influencing Mn bioavailability has received little attention, probably be-
cause Mn deficiency is not considered to be a major problem in ruminants [20]. In ad-
dition, most of the information available has been generated in monogastric models. 
[40] observed a 10% and 13% increase in kidney and bone Mn, respectively from chicks 
receiving 12 ppm of virginiamycin in the diet. In a further study [41], the addition of 4 
ppm lincomycin resulted in higher concentrations of Mn in bone. However, while vir-
giniamycin and other antibiotics are currently used as feed additives for ruminants 
[42], their role in Mn absorption in cattle remains unknown. According to [43], the in-
testinal absorption of Mn is negatively affected by dietary levels of Ca and P. Similar 
results were found by [44], who found a 45% reduction in Mn in the tibia of chicks fed 
excess Ca and P. However, further evidence provided by [45] indicated that while P has 
a negative effect on Mn absorption, no deleterious effects on Mn metabolism are ob-
tained with excess of dietary Ca, but effects of Ca and P are difficult to distinguish since 
diets are usually enriched with both minerals to maintain a Ca:P physiological ratio [9]. 
There have been no reports relating Mn absorption with forage composition in rumi-
nants, but phytate and fiber are known to be the main antagonists in monogastrics spe-
cies including human [46], swine [47]. Through microbial activity, both phytates and 
fiber are broken down in rumen [48]. For that reason, [9] suggests that Mn absorption 
in ruminants may not be affected by the presence of phytates, being higher than that 
usually reported for monogastrics. 

4.2. Role of Manganese on Rumen Fermentation 

Limited information is available regarding the role of Mn in rumen fermentation. Ac-
cording to [49], Mn has a slight stimulatory effect on urease activity. [25] reported a 6% 
increment in IVDMD when Mn was added to incubations at a dose of 100 ppm. In a 
previous study, [50] found a reduction in cellulose digestion when Mn was omitted 
from in vitro incubations. However, [24] reported that cellulose digestion peaked at Mn 
concentrations of 10 to 20 ppm but was completely abolished when Mn was added at 
300 ppm. Using 54 Mn, [51] [52] observed that Mn accumulation was higher in rumen 
bacterial cell walls than in cytoplasm, and that the uptake was similar in bacteria and 
protozoa, but the biological implications of this fact are not established. [53] fed ram 
lambs diets that contained from 13 to 45 mg of Mn/kg DM during 84 days. While the 
number of rumen bacteria was not affected by Mn, the large rumen bacteria (identified 
as those with a diameter of 12.9 to 16.2 μm) resulted lower with the lowest Mn intake 
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and highest with dietary Mn provided at 30 mg/kg. This may be particularly relevant 
since large rumen bacteria contain more protein than small rumen bacteria [54]. How-
ever, despite this variation in microbial populations, no effect of Mn on DM digestibili-
ty was observed. [55] suggested that sheep consuming a diet high in fiber and low in 
protein may respond to Mn supplementation in excess of 36 μg/g DM, but Mn re-
quirements of the rumen microbes may be increased by the consumption of low quality 
roughages. In agreement, [56] suggest that the optimum content of Mn in the diet may 
be as high as 120 μg/g DM on the basis of results from in vitro studies. 

4.3. Manganese Availability from Organic and Inorganic Sources 

The aim of mineral supplementation is to increase the biological availability of the tar-
get mineral(s), defined as the degree to which an ingested element is absorbed and can 
be utilized in metabolism by the animal [57]. Different sources of Mn are currently 
available as supplements for animal diets. Among the inorganic sources, the most 
commonly used include manganese carbonate (MnCO3), hausmannite (Mn3O4), man-
ganese oxide (MnO), manganese dioxide (MnO2), manganite (Mn2O3), manganous 
chloride (MnCl2∙4H2O) and manganese sulfate (MnSO4) [8] [58] [59] [60]. Conversely, 
sources of Mn classified as “organic” include Mn-methionine, Mn-proteinate and 
Mn-polysaccharide [42] [61] [62] [63]. Unfortunately, only few studies have been con-
ducted comparing the relative bioavailability of Mn sources in ruminants fed physio-
logical concentrations of Mn [64]. According to [65], some chelates and complexes may 
improve the mineral bioavailability above that of soluble inorganic forms, as later 
shown by [42] in lambs comparing Mn-methionine with MnO. However, no differenc-
es were obtained in the same study when Mn-methionine was compared with MnSO4. 
Similarly, [66] compared the bioavailability of Mn from different organic sources and 
MnSO4 in broilers. The authors concluded that only organic Mn sources with moderate 
or strong chelation strength can provide higher relative bioavailabilities due to their 
ability to resist Ca antagonisms during the digestion process. In addition, studies con-
ducted on female chicks showed an increase in Mn retention from a Mn-methionine 
chelate compared with MnO [67]. 

5. Copper 
5.1. Interaction of Copper with Dietary Factors 

The amount of dietary Cu needed to supply Cu requirements for maintenance, growth 
and lactation varies with the age of the animal, the chemical form of dietary Cu and the 
presence of dietary substances interfering with Cu absorption [1]. Compared with mo-
nogastrics where Cu is fairly well absorbed (30% - 75%), absorption in adult ruminants 
is low, ranging from 1% to 10% of dietary Cu [8] [68]. However, before developing a 
functional rumen, Cu absorption in lambs can be as high as 70-85% of the dietary 
supply [69]. The reason for this decrease in Cu absorption appears to be related to in-
teractions occurring at the rumen environment, including the Cu-S-Mo [9] [70] [71], 
Cu-S [72] [73], and Cu-Fe [74] [75] antagonisms. More recently, results relating high 
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levels of dietary Mn with Cu deficiency have been reported [76] [77]. 

5.2. Copper-Molybdenum-Sulfur Interaction 

In the presence of ruminal H+ ions, dietary S is reduced to sulfide, which then reacts 
with Mo [78] to form different thiomolybdates (mono-, di-, tri-, tetra-thiomolybdates) 
according to the following reactions:  

− − −↔2 + 2
4 2 3MoO + H + HS H O + MoO S  (monothiomolybdate) 

2− − −↔+ 2
3 2 3 2MoO S + H + HS H O + MoO S  (dithiomolybdate) 

− − −↔+ 2
2 2 2 3 3MoO S +H +HS H O + MoO S  (trithiomolybdate) 

− − −↔2 + 2
3 2 4MoO +H +HS H O + MoS  (tetrathiomolybdate) 

In the gastrointestinal tract, thiomolybdates have been shown to bind Cu preventing 
its absorption, while increasing the Cu fraction associated with the solid phase of the 
rumen content at expense of a reduction in the fluid phase. Thiomolybdates associated 
with solid rumen digesta (bacteria, protozoa, and indigested feed particles) form inso-
luble complexes that do not release Cu even under acidic conditions like the abomasal 
environment [79]. In addition, absorbed thiomolybdates have also been shown to cause 
systemic effects on Cu metabolism including increased biliary excretion of Cu from liv-
er stores, strong binding of Cu to plasma albumin resulting in reduced availability for 
biochemical processes, and inhibition of Cu dependent metalloenzymes such as ceru-
loplasmin, diamine oxidase, cytochrome oxidase, ascorbate oxidase and tyrosine oxi-
dase. [20] [78] [80]. According to [20], when rumen sulfide concentrations are low, Mo 
has little effect on the formation of thiomolybdates. However, Cu bioavailability is 
deeply reduced (up to 70%) when Mo levels are not modified but sulfide concentrations 
are increased [81]. 

5.3. Copper-Sulfur Interaction 

In addition to its role in the Cu-Mo-S interaction, organic or inorganic S can also re-
duce Cu bioavailability per-se [21]. [82] found a 55% reduction in hepatic Cu when 
sheep were fed high levels of S (2 g/kg DM). According to the authors, this reduction 
was due to formation of CuS in the digestive tract, since the diet was very low in Mo. 
Similar results were previously observed by [72] who found a 39% - 56% reduction in 
Cu bioavailability when S was provided to ewes as methionine or as NaSO4 under low 
Mo dietary levels, possibly through the formation of insoluble CuS at sites beyond the 
rumen. However, [83] postulates that the formation of insoluble CuS and Cu2S in the 
rumen is exacerbated by the digestion of insoluble proteins by protozoa, with the con-
sequent increase in available S. Despite the effect of dietary S previously mentioned, 
other S sources have been also responsible for decreasing Cu bioavailability in rumi-
nants. Molasses, a by-product from the sugarcane and beet industry, is a source of die-
tary sugars feed to dairy cows [1]. Benefits of adding molasses to diets include increas-
ing palatability, acting as a binder, and reducing dust in fine-particle feeds [84]. How-
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ever, due to its high content of S, the liberal use of molasses can result in dietary S levels 
considerably in excess of requirements [85]. [73] evidenced a decrease in liver Cu at 29, 
56 or 84 d after feeding heifers with a molasses based supplement. According to the 
authors, this observation was the result of high concentrations of S naturally found in 
molasses. 

In a review of Cu antagonists in cattle, [86] describes other sources of S implicated in 
the Cu-Mo-S and Cu-S interactions, included fertilizers, high S water, and S containing 
supplements. Cows grazing bahiagrass pastures fertilized with ammonium sulfate 
showed lower liver Cu concentrations compared with cows on non fertilized pastures, 
or fertilized with ammonium nitrate [86]. A previous study from [87] showed that 
gypsum fertilization (132 kg S/ha) increased S from 0.33% to 0.40% and from 0.29% to 
0.37% of DM in tall fescue grass and in orchadgrass, respectively. However, feeding 
those pastures to steers resulted in no changes in Cu bioavailability, probably due to the 
high S content of the non fertilized pastures. For this reason [73] suggest that the choice 
of fertilizer source can be critical in areas where grazing cattle may be prone to Cu defi-
ciency Sulfur levels in drinking water can also be detrimental for Cu bioavailability. 
[88] reported a decrease in plasma and hepatic Cu of yearling steers provided with 
high-S water (3651 mg of SO4/L) compared with those receiving low-S water (566 mg of 
SO4/L). Similarly, a decrease in hepatic Cu of growing steers was found by [89] when S 
content in the drinking water was increased from 404 to 4654 mg of SO4/L. While the 
mentioned S concentrations are in excess of that commonly found in water for animals, 
high S-containing water has been reported in USA and Canada [90] [91].  

5.4. Copper-Iron Interaction 

Ruminants consuming forage-based diets are often exposed to high levels of Fe through 
water, forage, and unusually high amounts of soil ingestion [69] [92]. Supplementing 
800 mg of Fe/kg of DM as FeO or FeSO4, decreased Cu absorption from 0.06 to 0.04 in 
sheep [93]. In agreement, a previous study of (94) found a rapid decrease in liver and 
plasma Cu concentrations, activities of erythrocyte superoxide dismutase and plasma 
ceruloplasmin of young heifers receiving 800 mg of Fe/kg of DM. However, according 
to [94] the role of Fe on Cu absorption is partially dependent of S. Indeed, [81] suggest 
that the formation of FeS in the rumen is a critical step for Fe to antagonize Cu absorp-
tion. An alternative explanation is provided by [95] who demonstrate that excess Fe can 
compete with Cu for its absorption at intestinal level, by saturating the DMT-1 Cu 
transporter. 

5.5. Role of Copper on Rumen Fermentation 

In a production study conducted on beef steers [96], the addition of 20 or 40 mg of 
Cu/kg of DM decreased animal performance, compared with animals receiving a basal 
diet containing 10.2 mg of Cu/kg of DM, suggesting that high dietary Cu may inhibit 
ruminal fermentation. Previously, [97] found a decrease in post feeding total VFA con-
centration and VFA molar proportions of yearling steers receiving a high dose of sup-
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plemented Cu (57.3 mg/kg of DM), but average daily gain, feed efficiency, and carcass 
yield and quality grade were not affected. In agreement, [98] found an in vitro depres-
sion in rumen fermentation of concentrates following the addition of high doses of 
CuSO4. Similarly, [99] found a reduction in propionate molar proportion when high 
doses of Cu were added to in vitro rumen incubations. A dose-response study con-
ducted by [100] determined that 21 μg of Cu/mL incubation fluid was required to ob-
tain a 50% inhibition of gas production. However, a large disparity was obtained re-
garding the susceptibility of the different bacterial populations to Cu. While the growth 
of Bacteroides succinogenes, Ruminococcus albus and Butyrivibrio fibrisolvens was in-
hibited by 10, 20 and 30 μg Cu/mL of incubation fluid, respectively, higher concentra-
tions were required to inhibit Megasphaera elsdenii, Selenomonas ruminantium, and 
Streptococcus bovis (100, 100 and 250 μg Cu/mL, respectively). Opposite results were 
reported by [101] who found a reduction in rumen pH and an increase in total VFA 
concentrations when Cashmere wether goats received supplementary Cu in the diet. 
According to the authors, an increase in NDF digestion may be responsible for these 
findings. Conversely, later studies conducted by [102] [103] found that NDF digestion 
was unchanged or maximized by the addition of 10 mg of Cu/kg of DM, but depressed 
when of 30 mg of Cu/kg of DM were added. In addition, no differences were obtained 
for rumen pH, IVDMD and VFA molar proportions when in vitro studies were con-
ducted using rumen fluid donors receiving 0, 10 or 20 mg of Cu/kg of DM [104]. Based 
on previous observations showing that 20 or 40 mg of Cu/kg of DM increased unsatu-
rated fatty acids in adipose tissue of steers [104], a possible role of Cu as an inhibitor of 
ruminal lipids biohydrogenation has been suggested. [105] However, no studies have 
been conducted to assess the validity of this hypothesis. 

5.6. Copper Availability from Organic and Inorganic Sources 

The effectiveness of organic sources of Cu to promote animal benefits has been a sub-
ject of several controversies. [106] reported a higher retention of Cu in steers supple-
mented with Cu-lysine compared with supplementation with CuSO4. In another study 
[107], the use of organic Cu (as Cu proteinate) increased hepatic retention of Cu in 
multiparous beef cows, compared with inorganic Cu. However, no benefits on cow and 
calf performance were obtained. Conversely, [108] found an increase in body weight 
gain in goat kids supplemented with organic Cu, compared with inorganic Cu. In a re-
cent meta-analysis [13] assessing the benefits of organic trace minerals, only marginal 
improvements in milk production, milk fat and milk protein were found. In opposition, 
organic trace minerals did not affect somatic cell count, interval from calving to first 
service, and 21-d pregnancy rate. Similarly, no differences in 60-d pregnancy rate, 
health or performance were found by [109] in 2-year old cows receiving Cu as CuSO4 
or as amino acid complex. In addition, [110] found a decrease in pregnancy rates of 
primiparous cows receiving organic and inorganic minerals (Cu, Co, Mn and Zn) 
compared with non-supplemented cows. According to the authors, excessive supple-
mentation beyond requirements reduced reproductive performance. In a previous 
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study conducted on steers [71], growth rate was higher when animals received CuSO4 
than when Cu-lysine was provided during the initial 21 d, but no differences were ob-
tained after 98 d. Other parameters, including feed efficiency, feed intake, humoral and 
cellular immune response and ceruloplasmin activity, were not affected by Cu source 
[71]. Organic sources of Cu have been seriously criticized by [8] who consider that 
technologies for protection against rumen antagonisms are extravagant and provide no 
additional benefits than conventional CuSO4. In addition the authors questioned the 
scientific legitimacy of some in vivo studies where no proper covariance analyses were 
conducted to account for initial differences between groups of animals [8]. According 
to [9] commercially driven pursuit of trivial advantages over cheap and effective inor-
ganic sources of Cu should cease, and attention should focused on predicting when 
supplementation is needed and to the usual problem of over, rather than under-provi- 
sion of Cu and its environmental impact. In conclusion, Cu, Zn and Mn are required to 
maintain health and production status of livestock, but their functions at the gastroin-
testinal tract of ruminants are not totally elucidated. Like many other minerals, Cu, Zn 
and Mn have the ability to interact with organic compounds of the diet, macro minerals 
and micro minerals, usually resulting in decreased availability for the host. Different 
technologies, including proteinates, amino acid chelates, amino acid complex, and po-
lysaccharide complex are currently available for mineral protection However, these 
technologies appear to be more effective in monogastrics than in ruminants. Mechan-
isms to guarantee optimal levels of ruminally available minerals, and to optimize min-
eral supply to the lower gastrointestinal tract without compromising postruminal ab-
sorption require further research. 

6. Trace Minerals Cu, Zn, Mn and Their Effect on Immune  
Function 

Trace minerals are those needed by the body in minute amounts (generally included in 
the diet in parts per million quantities). Several of these trace minerals such as zinc, 
manganese, copper, and cobalt are required for the functionality of numerous structur-
al proteins, enzymes, and cellular proteins [35]. Trace minerals may function as cofac-
tors, activators of enzymes, or stabilizers of secondary molecular structure and serve 
essential functions in cell metabolism [111]. Numerous studies have shown that feeding 
amino acid complexes of Zn, Mn, and Cu have improved the performance of dairy cat-
tle through improving fertility rates and reducing the incidence of disease [112] [113] 
[114]. These improvements in animal performance appear to be related to increased 
availability of trace minerals for metabolism [115] [116]. 

Ruminants are frequently subjected to severe dietary deficiencies of trace elements 
such as copper, cobalt, selenium, iodine, manganese, and zinc [37]. These deficiencies 
have been linked to a decline in fertility from enzymatic dysfunctions. Hypocuprosis in 
dairy cattle and sheep has been linked to female reproductive disorders such as preven-
tion of embryo implantation and high prenatal mortality, particularly early embryonic 
loss [37]. Several studies in rats and mice have shown that both cell-mediated and hu-
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moral immunity are greatly depressed by copper deficiency [37] [117]. [118] showed 
that marginal copper deficiency in dairy heifers reduced the capacity of neutrophils to 
kill S. aureus. Animals deficient in copper also show an increased susceptibility to bac-
terial pathogens. This has been attributed to the role of copper in superoxide dismutase 
and cytochrome c oxidase enzyme systems [119]. [4] reported that copper deficiency 
impaired the ability of macrophages to kill yeast cells. [120] demonstrated that cop-
per-depleted calves exhibited impaired phagocytic killing activity that was reversed by 
copper supplementation. In another study, low copper status was associated with a re-
duced response of peripheral-blood lymphocytes to stimulation with T-cell mitogens 
[121]. Despite these studies, the overall effect of copper deficiency on macrophage 
function in cattle has not been studied extensively [122]. 

Extensive research conducted on human subjects and laboratory animals suggests 
that zinc deficiency reduces immune responses and disease resistance [123]. In child-
ren, zinc deficiency has been shown to affect T-lymphocyte and neutrophil function 
along with reduced proliferation of lymphocytes in the presence of mitogens and slower 
neutrophil chemotaxis [119]. Zinc deficiency also produces atrophy of the lymphoid 
tissues such as the thymus. Zinc deficiency also negatively impacts phagocyte function 
resulting in decreased ingestion and phagocytosis [124]. A study conducted in labora-
tory animals fed a moderately zinc deficient diet showed that the differentiation and 
function of B-cells may be impaired [125]. In cattle, surprisingly little research has been 
conducted to examine the relationship between dietary zinc and immune function. 
Marginal zinc deficiency appears to have marginal effects on immune function in ru-
minants, but research also suggests that the addition of zinc to practical diets may affect 
disease resistance [22]. Zinc deficiency is most deleterious to the reproductive function 
of male animals; however, the administration of a zinc supplement to cattle was shown 
to increase conception rate by 23% compared to controls, and discontinuation of this 
supplement resulted in decreased conception rate [126]. 

Manganese deficiency has been linked to suppression of estrus, reduction in concep-
tion rates, increased incidence of abortions, and low birth weights. In dairy cattle, the 
main clinical sign of restricted manganese intake is anestrus or irregular return to es-
trus sometimes with extended periods of anestrus [127]. This leads to depressed con-
ception rates [37]. Experimental animals fed a manganese deficient diet have been 
shown to have deficient antibody synthesis and secretion [128]. After adding manga-
nese to the diet, antibody production improved. The mechanism(s) by which manga-
nese affects antibody synthesis or release has not been clearly elucidated and further 
study in this area is needed [128].  

7. Conclusions 

In this review paper, we conclude the following:  
1) Trace elements are essential for health, growth, production and reproduction. 

They are essential for functioning of a number of components of the immune system. 
Thus, they contribute to maintaining proper health and immunity. They are important 
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for functioning of a number of enzymes and proteins which are involved in many phy-
siological and biochemical processes. 

2) Essential trace minerals such as zinc, copper and manganese play a wide variety of 
biological and physiological roles in animal development and health. These minerals 
take part in the antioxidant defense, tissue development, and immune function. 

3) There is almost a consensus that organic trace minerals have higher bioavailability, 
resulting in better animal performance, health, production immune response and stress 
alleviation than their inorganic salts. 

4) Quantifying the requirements for trace minerals of dairy cows is extremely diffi-
cult and the methods and models currently used may not be appropriate because of the 
different metabolic functions of trace minerals. There is also lack of proper acts and 
regulations for monitoring their quality for commercial marketing. 
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