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Abstract 
 
A theoretical investigation has been made on the nonplanar (cylindrical and spherical) dust-ion-acoustic (DIA) 
double layers (DLs) in a dusty plasma system, containing inertial ions, Boltzmann electrons, and negatively 
charged stationary dust. In this investigation, in order to analyze the time dependent nonplanar DIA DLs, we 
have used the modified Gardner equation, which has been obtained by employing the reductive perturbation 
method. It has been found that the behaviors of DIA DLs have been significantly modified by the time period 
and the nonplanar geometry. The nonplanar DIA DLs has been found to be similar with planar DIA DLs 
only at large time scale and the cylindrical DIA DLs have been found to be smaller than the spherical DLs, 
but larger than the planar DLs. 
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1. Introduction 
 
The existence of novel dust-ion-acoustic (DIA) waves 
was first predicted by Shukla and Silin [1] about twenty 
years ago. Nearly four years later, the prediction of Shu- 
kla and Silin [1] was conclusively verified by a labo- 
ratory experiment of Barkan et al. [2]. Then the linear 
features of the DIA waves have been rigorously investi- 
gated by a number of authors [1,3,4]. The linear proper- 
ties of the DIA waves in dusty plasmas are now well 
understood from both theoretical and experimental points 
of view [1-5]. 

The nonlinear structures (viz., solitary waves, shock 
structure, and double layers) associated with the DIA 
waves have also received a great deal of interest because 
they have a great impact in understanding the basic pro- 
perties of the localized electrostatic perturbations not 
only in space [6-9], but also in laboratory dusty plasmas 
[10-14]. A number of investigations have been made on 
these nonlinear structures [6-12], particularly DIA soli- 
tary waves (SWs) [11,15-19], shock waves [12,13,20-24], 
and double layers (DLs) [25-28]. All of these work [11, 
12,15-19] are confined in planar geometry. Since the 
waves observed in laboratory devices are certainly not 
bounded in one-dimension, the investigations made on 
1D (planar) nonlinear DIA waves, may not be appropri- 
ate for realistic space or laboratory dusty plasma situa- 

tions. Recently, a few investigations have been made on 
finite amplitude nonplanar DIA solitary and shock struc- 
tures [29-31]. But in all of these investigations [29-31], 
authors have used the K-dV or Burgers equations, which 
are not valid for a parametric regime corresponding to A 
= 0 or A ~ 0 (where A is the coefficient of the nonlinear 
term of the K-dV or Burger equation [29-31], and A ~ 0 
means here that A is not equal 0, but A is around 0). This 
is because, the latter gives rise to infinitely large ampli- 
tude structures which break down the validity of the re- 
ductive perturbation method [32]. 

On the other hand, to the best of our knowledge, no 
attempt has been made on nonplanar DIA DLs. There- 
fore, in our present work we are going to analyze the 
nonplanar DIA DLs in dusty plasma system by deriving 

e modified Gardner (mG) equation. th
 
2. Basic Equations 
 
We consider the nonlinear propagation of the DIA waves 
in an unmagnetized nonplanar (cylindrical and spherical) 
dusty plasma, consisting of inertial ions, Boltzmann 
electrons, and negatively charged stationary dust. Thus, 
at equilibrium we have 0 0 0 , where d=i e d dn n Z n Z  is 
the number of electrons residing onto the dust grain 
surface, and 0d ( 0in ) is the dust (ion) number density at 
equilibrium. The nonlinear dynamics of the DIA waves, 
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whose phase speed is much smaller (larger) than the 
electron (ion) thermal speed, in a nonplanar geometry is 
governed by 
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 = 1 exp( )in ,              (4) 

where = 0  for 1D planar geometry, and = 1(2)  for 
a nonplanar cylindrical (spherical) geometry; i  is the 
ion number density normalized by its equilibrium value 

;  is the ion fluid speed normalized by 

n

0in iu
=i B e i ; C k T m   is the electrostatic wave potential 

normalized by B ek T e ,   is the surface charge den- 
sity normalized by B ek T e ; 0 0= d d iZ n n , is the 
ratio of dust number density to the ion number density 
(the quantity   is often used to measure the quantity of 
dust particles present in the plasma system); i  is 
the mass of the ion (electron);  is the ion (ele- 
ctron) temperature, d

m ( )em
( )i eT T

Z  is the number of electrons resid- 
ing on a dust grain surface; Bk  is the Boltzmann con- 
stant, and e is the magnitude of the electron charge. The 
time and space variables are in units of the ion plasma 

period  1 21
0= 4 epi i im n  2  and the Debye radius 

 1 22
0= 4π eDm B e ik T n , respectively. 

 
3. Derivation of mG Equation 
 
To study finite amplitude DIA DLs by employing the 
reductive perturbation method [27,33,34], we first in- 
troduce the stretched coordinates:  

 = pr V t   ,

,

           (5) 

3= t                  (6) 

where   is a smallness parameter ( 0 < < 1 ) measur- 
ing the weakness of the dispersion, and pV

in

 (normalized 
by i ) is the phase speed of the perturbation mode. We 
then expand all the dependent variables (viz. , , 

C

iu  , 
and  ) in power series of  : 
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(1) 2 (2) 3 (3)= 0 ,               (9) 

(1) 2 (2) 3 (3)= 0 ,              (10) 

Now, Expressings (1)-(4) in terms of   and  , and 

substituting (7)-(10) into the resulting [Equations (1)-(4) 
expressed in terms of   and  ], one can easily deve- 
lop different sets of equations in various powers of  . 
To the lowest order in  , one obtains 

(1) (1)
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where (1)=   and = 1e  . The expression for 2
pV  

in (12) represents the linear dispersion relation for the 
DIA waves propagating in a dusty plasma under 
consideration. This equation clearly indicates that the 
DIA wave phase speed ( pV ) increases with the increase 
of the dust charge density ( 0d dZ n ). To the next higher 
order in  , we obtain a set of equations, which, after 
using (11) and (12), can be simplified as 
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It is obvious from (14) that  since = 0A 0  . Now 
by solving  for = 0A  , we found A  can be zero for 
both = 1  and = 3 2 . But when = 1 , 0d dZ n

n
 

(dust number density at equilibrium) will be equal to 0i  
(ion number density at equilibrium), which means that 
there is no electron present in the system, i.e., all 
electrons will be captured by dust particles. As our 
model contains all of electron, ion, and dust, this is an 
invalid condition for our present model. For our system 

< 1 . Therefore the only valid solution of  for = 0A
  is given by 

= = 2 3c .              (15) 

For   around its critical value ( c ), i.e. for 
=c    corresponding to 0=A A , we can express 

0A  as  

0
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where c   is a small and dimensionless parameter, 
and can be taken as the expansion parameter  , i.e. 

c    , and  for = 1s < c   and = 1s   for 
> c  . So, (2)  can be expressed as  

(2) 21
,

2
s            (17)  

This means that for c  , (2)  must be included 
in the third order Poisson’s equation. To the next higher 
order in  , we obtain a set of equations:  
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Now, using (11)-(14) and (18)-(20), we finally obtain 
a nonlinear dynamical equation of the form:  
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Equation (21) is known as modified Gardner (mG) 
equation. The modification is due to the extra term, 

2

 


, which arises due to the effects of the nonplanar  

geometry. Because of the existence of both 2  and 3  
term, this equation supports both Sws and DLs solutions. 
We have already mentioned that = 0  corresponds to a 
1D planar geometry which reduces (21) to a standard 
Gardner (sG) equation. We are now going to numerically 
analyze the mG equation. However, for a better under- 
standing, before going to numerical solutions of mG 
equation, we first briefly discuss the stationary double 
layer (DL) solution of this standard Gardner equation [i.e. 
(21) with = 0 ]. The stationary DL solution of the sG 
equation [i.e. (21) with = 0 ] is obtained by con- 
sidering a moving frame (moving with speed 0U ) 

0= U   , and imposing all the appropriate boundary 
conditions for DL solution, including 0  , 
d d 0   , 2 2d d 0   at    . These boun- 
dary conditions for the stationary DL solution allow us to 
express the sG equation as  
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The conditions (26) and (27) imply that DL solution of 
(24) exist if and only if 
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where m  is the amplitude of the DLs. The latter can 
be expressed as  
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Now, using (25) and (30) in (24) we have  
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where = 6  . Now, integrating (31) the stationary DL 
solution of sG equation [i.e. (21) with = 0 ] can be 
directly given by  

= 1 tanh
2
m  ,
       

         (32) 

where   is the DL width of the DLs, and is given  

2
= .

m 



              (33) 

From (32) and (33), it is clear that DLs can be formed 
in the dusty plasma system if and only if < 0 , i.e. 

< <L U   , where = 0.74L  ( = 1U ), obtained 
from = 0 , is the lower (upper) limit of   above 
(below) which DLs exist. 

In Figures 1 and 2, the variations of m  with 0U  
(Figure 1) and e  (Figure 2) have been graphically 
shown. On the other hand, since > 0  and > 0 , (32) 
and (33) indicate that the DLs are associated with 
positive potential if , i.e. = 1s < c 

= 1
, and associated 

with negative potential if , i.e. cs >  . It is 
obvious from Figures 1-3 that >L c   which indicates 
that our DLs are associated only with negative potential. 
The parametric regimes for the existence of negative  
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Figure 1. Showing the variation of the amplitude of DIA 
DLs with U0 at μ = 0.75. 
 

 

Figure 2. Showing the variation of the amplitude of DIA 
DLs with μ at U0 = 0.1. 
 

 

Figure 3. Showing the parametric regime for the existence 
of DLs. The upper (lower) surface plot represents the lower 
(upper) limit of μ below (above) which DLs exist. 
 
DLs are bounded by the lower and upper surface plot of 
Figure 3, and DLs exist for parameters corresponding to 
any point in between two ( = 0 ) surface plots. 

The point to be noted here that if we would keep only 
the lower order nonlinear term of (21) (viz. the third term 
of (21) or the term containing 2 ) instead of the higher 

order nonlinear term (viz. the fourth term of (21) or the 
term containing 3 ), we would obtain the solitary 
structures. On the other hand, in our present work, we 
have kept both the terms containing 2  and 3 , and 
have obtained the DL structures (associated with 2  
and 3 ). 
 
4. Numerical Analysis 
 
Now in order to analyze the nonplanar DIA DLs, we turn 
to (21) with the term  2   , which is due to the 
effects of the nonplanar (cylindrical or spherical) geo- 
metry. An exact analytic solution of (21) is not possible. 
Therefore, we have numerically solved (21), and have 
studied the effects of cylindrical and spherical geome- 
tries on time-dependent DIA DLs. The results are de- 
picted in Figures 4 and 5. The initial condition, which 
we have used in numerical analysis, is in the form of the 
stationary solution of (21) without the term  2   . 
Figure 4 shows how the effects of a cylindrical geometry 
modify the DIA DLs, and Figure 5 shows how the 
effects of a spherical geometry modify the DIA DLs. 

From the numerical solutions of (21) (displayed in 
Figures 4 and 5) we may conclude that for a large value 
of   (e.g. = 40  ), the cylindrical ( = 1 ) and sphe- 
rical ( = 2 ) DLs are almost similar to 1D planar ( = 0 ) 
structures. This is because when the value of   is large, 
the term  2   , which is due to the effects of the 
cylindrical or spherical geometry, is no longer dominant. 
However, as the value of   decreases, the term 
 2    becomes dominant, and spherical and cylin- 
drical DL structures differ from 1D (planar) ones. It has 
been observed that as the value of   decreases, the 
amplitude of these localized pulses increases. It is also 
found that the amplitude of cylindrical DIA DL stru- 
ctures is larger than those of 1D planar ones, but smaller 
than that of the spherical ones. 
 
5. Discussion and Conclusions 
 
In this paper we have investigated time-dependent non- 
planar dust-ion-acoustic Gardner double layers in a dusty 
plasma system (composed of inertial ions, Boltzmann 
electrons, and negatively charged stationary dust), by 
deriving modified Gardner (sG) equation. The outcomes, 
which have been obtained from this investigation can be 
pinpointed as follows:  

1) The dusty plasma system under consideration su- 
pports both finite amplitude planar and nonplanar DLs, 
whose basic features (polarity, amplitude, width, etc.) de- 
pend on the ion and dust number densities. 

2) The DLs having large width exist for 0.74 < < 1  

and only have negative potential, i.e., no positive DLs  

Copyright © 2011 SciRes.                                                                                  OJA 
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Figure 4. Showing the effects of cylindrical geometry on 
DIA DLs at μ = 0.75. 
 

 

Figure 5. Showing the effect of spherical geometry on DIA 
DLs at μ = 0.75. 
 
have been formed. 

3) The magnitude of the amplitude of the DLs in- 
creases with the increase of , but decreases with the 
increase of 

0U
 .  

4) The magnitude of the amplitudes of both cylindrical 
and spherical DLs increase with decrease of  . 

5) The spherical DLs have larger amplitude and poten- 
tial than the cylindrical and planar DLs. 

We, finally hope that our results may be useful in un- 
derstanding the localized electrostatic disturbances in 
both space environments [6-9], and laboratory devices 
[11-14]. 
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