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Abstract 
The significance of the correspondence between the classical limit of quan-
tum theories and the laws of classical physics is explained. It is proved that 
this correspondence yields constraints on acceptable quantum theories. The 
variational principle is taken as the basis of the analysis. The discussion shows 
that the first order Dirac equation abides by these constraints, whereas 
second order quantum equations fail to do that. 
 

Subject Areas 
Theoretical Physics 
 

Keywords 
The Correspondence Principle, Constraints on Quantum Theories,  
the Variational Principle, First Order Quantum Equations, Second Order 
Quantum Equations 

 

1. Introduction 

The correspondence between quantum theories and classical physics is an 
important element of the analysis presented below. Considering a closed system 
of n classical particles, the principle of least action can be used for a derivation of 
the system’s equations of motion. These equations are derived from a 
Lagrangian of the form  

( ), ,L q q t .                           (1) 

Here q denotes 3n generalized coordinates that are the particles’ location, q  
denotes the time derivatives of these coordinates, and t denotes the time (see [1], 
p. 2). 

The principle of least action yields for every generalized coordinate iq  an 
Euler-Lagrange equation  
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− = ∂ ∂ 
                         (2) 

This is a set of 3n second order differential equations, and a specific solution is 
obtained for every set of 6n appropriate initial conditions which depend on 

,q q . 
It is well known that this Lagrangian formalism is not a unique theoretical 

description of the system. The mathematical procedure called Legendre 
transformation casts the Lagrangian formalism to an expression which depends 
on a different set of independent variables. An important example is the 
Hamiltonian ( ), ,H p q t  which depends on n generalized coordinates and on n 
conjugate momenta p. Thus, one derives a Hamiltonian from a given Lagrangian  

( ) ( ), , , ,i i
i

H p q t p q L q q t= −∑                       (3) 

(see [1], p. 131, [2], p. 337). The Hamilton equations of motion are  

;i i i iq H p p H q= ∂ ∂ = −∂ ∂                       (4) 

(see [1], p. 132, [2], p. 337). 
The number of degrees of freedom of the initial conditions of the Lagrangian 

formalism (1), (2) is the same as that of the Hamiltonian formalism (3), (4). This 
evidence indicates the mathematical equivalence of these formalisms (see [1], p. 
131, [2], p. 334). However, it is interesting to point out that unlike the 
Lagrangian formalism that yields differential equations of the second order, the 
equations of motion of the Hamiltonian formalism (4) are first order differential 
equations. 

An important property of an elementary classical particle is its pointlike form 
(see [3], pp. 46-47). Therefore, the general description of a system of elementary 
classical particles takes the following structure. A set of coordinates is defined. 
(This set is sometimes called background.) The position and the velocity of each 
particle are described by appropriate products of Dirac delta functions of the 
coordinates. The equations of motion yield a specific solution for every 
appropriate set of initial conditions. 

The main objective of the present work is to examine the Lagrangian 
formalism and the Hamiltonian formalism in the quantum domain. The classical 
limit of quantum mechanics is an element of the analysis. The success of classical 
mechanics means that “classical mechanics must therefore be a limiting case of 
quantum mechanics” ([4], p. 84, see also [5], pp. 25-27, 137, 138; [6]). 
Furthermore, quantum field theory (QFT) corresponds to quantum mechanics. 
For example, a well-known textbook states: “First, some good news: quantum 
field theory is based on the same quantum mechanics that was invented by 
Schroedinger, Heisenberg, Pauli, Born, and others in 1925-26, and has been used 
ever since in atomic, molecular, nuclear and condensed matter physics” (see [7], 
p. 49). This statement means that there are certain relationships between 
quantum theories and classical physics. Below, these relationships are called the 
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Weinberg correspondence principle. A general discussion of the correspondence 
between physical theories is presented on pp. 3 - 6 of [8]. 

It turns out that quantum theories cannot directly use a classical Lagrangian 
or a classical Hamiltonian as a basis for the theory. This problem stems from the 
uncertainty relations  

.xx p∆ ⋅∆ ≥                               (5) 

Indeed, if ,i iq q  are well-defined quantities then the conjugate momentum 

i ip L q= ∂ ∂   is well defined, and the uncertainty relation (5) is violated. Hence, 
a Lagrangian of the form (1) cannot be used in quantum theories. 

The same is true with the Hamiltonian formalism of classical physics (3). Here 
the coordinates and their conjugate momenta are used as independent variables. 
However, the uncertainty relations (5) proves that a coordinate and its conjugate 
momentum cannot be simultaneously used as independent variables. 

The previous arguments explain why the mathematical structure of quantum 
theories differs from that of classical physics. Therefore, a quantum theory should 
be constructed on the basis of different principles. However, the correspondence 
between classical physics and the classical limit of quantum theories is a 
constraint on this limit. The main objective of the present work is to examine the 
Lagrangian and the Hamiltonian of quantum theories. The discussion is 
restricted to quantum theories of elementary massive particles. 

Units where 1c= =  are used. Greek indices run from 0 to 3. Most 
formulas take the standard form of a relativistic covariant expression. The metric 
is diagonal and its entries are (1, −1, −1, −1). The second section shows 
constraints on quantum theories. The third section shows that the first order 
Dirac equation is compatible with these constraints. By contrast, the fourth 
section proves that second order quantum functions are incompatible with these 
constraints. The analysis shown in the fifth section approves the results of the 
fourth section. The last section summarizes this work. 

2. Constraints on a Quantum Theory 

Constraints that are relevant to quantum theories are presented below. Classical 
physics is consistent with several conservation laws, like that of energy, 
momentum, angular momentum and charge. Therefore, the classical limit of a 
quantum theory should abide by these laws. The general approach to this issue is 
to write an appropriate Lagrangian density that yields the quantum equation, 
and to use the Noether theorem which connects symmetries of this Lagrangian 
density with conservation laws that are satisfied by the quantum differential 
equation (see [9], pp. 17-22). 

The de Broglie principle says that a quantum particle has wave properties. 
Hence, an elementary quantum particle is described by a wave function ( )xψ  
which depends on the four space-time coordinates ( ),x t= x . This form of 
( )xψ  indicates that an elementary quantum particle is pointlike. Indeed, the 

four space-time coordinates x can describe the probability of the particle’s 
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location at x, but these variables cannot determine the degrees of freedom that 
are required for a description of the internal structure of a composite particle. 

These arguments show that a quantum theory of an elementary particle 
depends on a Lagrangian density of the following form  

( ) ( )( ),,x x
µ

ψ ψ .                         (6) 

Special relativity requires that the Lagrangian density (6) is a Lorentz scalar. 
The Euler-Lagrange equation of (6) is  

( )
0

x xµ µψ ψ
∂ ∂ ∂

− =
∂ ∂ ∂ ∂ ∂

 
                     (7) 

(see [7], p. 300). In the case of several functions, one derives an appropriate 
equation for each function. These equations are regarded as the equations of 
motion of the quantum system. As a matter of fact, this approach is adopted by 
the present mainstream textbooks. For example: “All field theories used in 
current theories of elementary particles have Lagrangians of this form” (see [7], 
p. 300). This kind of Lagrangian scheme is used below. 

Another requirement imposed on a physical theory is an adequate description 
of experimental results that are carried out within the theory’s domain of validity. 
A measurement device whose state changes with time is an important element of 
an experiment. Hence, the required quantum equation must take the form of a 
time-dependent differential equation. Time is the 0-component of the 4-vector 
( ),t x . 

Moreover, an essential aspect of measurement is a change of the system’s state. 
Therefore, the Lagrangian density of a quantum particle must contain an 
interaction term that produces the transition between the initial state and the 
final state of the quantum system. 

Important cases of time-dependent quantum transitions are described by the 
Fermi Golden Rule (see [10], pp. 475-481). The transition probability per unit 
time is proportional to the square of the Hamiltonian’s matrix element  

2
.w f V i∝                          (8) 

Here i  denotes the initial state, f  denotes the final state, and V is the 
interaction part of the Hamiltonian. The Hamiltonian is an energy operator, and 
for this reason it is a 0-component of a 4-vector. This property indicates its 
relationships to the above mentioned time-dependent processes. 

The Fermi Golden Rule (8) is an illustration of the significance of the 
Hamiltonian in quantum mechanics. The Weinberg correspondence principle 
means that the Hamiltonian is also an important element of QFT. QFT theories 
depend on the Lagrangian density (6). Therefore, the first step aims to obtain an 
expression for the corresponding Hamiltonian density. A particle’s density is the 
0-component of a 4-vector (see [3], pp. 73-75), and energy is the 0-component 
of the energy-momentum 4-vector. Hence, the Hamiltonian density is the 
00-entry of a second rank tensor, called the energy-momentum tensor. This 
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tensor is derived from the Lagrangian density    

( )
( )
,

,

,n
n

n
T g gµν µλ µν

λ
ν

ψ
ψ
∂

= −
∂

∑ 
                     (9) 

where n runs on all independent fields (see [3], p. 83; [11], p. 310). The 00T  
entry of this tensor is the Hamiltonian density  

( ) ( ) ,n n

n
π ψ= −∑                           (10) 

where  

( )
( ) ( )( )

( )
,, , ,

,
,

t t
t

t
µψ ψ

π
ψ

∂
=

∂

x x
x

x


                   (11) 

(see [9], pp. 15-16). The dependence of the Hamiltonian density   of (10) on 
the Lagrangian density   indicates that this Hamiltonian density is consistent 
with the Lagrangian density. 

The energy-time uncertainty relation  

E t∆ ⋅∆ ≥                              (12) 

restricts the accuracy of quantum expressions for energy. However, stable 
quantum states like that of a free particle or of an atomic ground state last a long 
time. Hence, a quantum theory should provide a consistent expression for 
energy, whose classical limit agrees with the classical value of energy. The 
Noether theorem proves that a Lagrangian density that does not depend 
explicitly on the space-time coordinates yields a Hamiltonian that conserves 
energy, momentum and angular momentum (see [9], pp. 17-19). If the analysis 
takes a covariant form then a consistent expression for the Hamiltonian also 
guarantees a consistent expression for momenta. Therefore, momentum issues 
are not discussed below. 

The following experimental data illustrate the previous discussion. Consider 
the e e− +  decay mode of the Z boson in its rest frame [12]  

.e Z e− +← →                           (13) 

The outgoing e e− +  leptons are measured by detectors and “so long as the 
particles involved in the reaction are outside the region of mutual interaction 
their mean motion can be described by classical mechanics” (see [2], p. 300). 
The Z particle has a short half-life and its energy width is about 2.5 GeV [12]. 
On the other hand, the outgoing e e− +  leptons of (13) are stable particles that 
have a well-defined energy. Hence, also the Z quantum theory must provide an 
appropriate expression for energy. 

A classical equation of motion yields the particle’s location. Hence, a quantum 
theory of an elementary massive particle should provide an expression for the 
particle’s spatial density. In particular, electromagnetic interactions depend on 
local fields. Therefore, a quantum description of a charged particle depends on 
an appropriate expression for the spatial density of the charged quantum 
particle. 
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The Z-decay process of (13) illustrates this issue. The experimental trajectories 
of the outgoing e e− +  leptons are measured. These particles are identified as 
decay product of the Z particle provided these trajectories intersect at a certain 
space-time point. The common spatial point of these trajectories should 
belong to the spatial region where the primary beams collide. It means that a 
theory of the Z particle should provide an expression for density. An analogous 
conclusion holds for other elementary quantum particles. 

A covariant expression for the quantum particle’s density is derived from an 
application of the following version of the Noether theorem. Let α  be a real 
variable. The invariance of the quantum field Lagrangian density under a global 
phase transformation ( )exp iα  yields  

( ) ( )
0 i iµ µ

µ µ

α ψ α ψ
ψ ψ ψ

    ∂ ∂ ∂    = − ∂ + ∂
   ∂ ∂ ∂ ∂ ∂    

  
          (14) 

(see [13], p. 314). The overall value of the terms inside the square brackets 
vanishes due to the Euler-Lagrange equation. Furthermore, the variation 
parameter 0α ≠  means that the expression inside the last brackets represent a 
conserved 4-current  

, 0,jµµ =                             (15) 

where  

( )
.jµ

µ

ψ
ψ

∂
=
∂ ∂


                        (16) 

Here 0j  is the required density. 
The following list summarizes the constraints that are derived above. 
C.1 The equations of motion of a theory of an elementary quantum particle 

should be derived from an appropriate Lagrangian density. 
C.2 A quantum theory should provide an expression for the Hamiltonian that 

is derived from this Lagrangian density. 
C.3 The Lagrangian density of a quantum theory should have an interaction 

term. 
C.4 A quantum theory should provide a consistent expression for density of 

the quantum particle. 

3. First Order Quantum Equations 

The Dirac equation of the electron is an example of a relativistic first order 
quantum equation. It is derived from this Lagrangian density  

( ) ,D i eA mµ
µ µψ γ ψ = ∂ − −                   (17) 

where ( ),A Vµ = A  denote the electromagnetic 4-potential (see [9], p. 84, [11], 
p. 78). The term that contains Aµ  is the interaction term of a charged Dirac 
particle. 

The covariant form of the Dirac equation for ψ  is obtained from an 
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application of the Euler-Lagrange Equation (7) to ψ  of (17)  

( ) 0i eA mµ
µ µγ ψ ∂ − − =                        (18) 

(see [11], p. 42). Multiplying (18) by 0γ  and using the relations 0 0 1γ γ = , 
0 i

iγ γ α= , one obtains the Hamiltonian form DH  of the Dirac equation, where 
the Hamiltonian operates on the function ψ   

( )Di H i e m eV
t
ψ ψ β ψ∂

= = ⋅ − − + +  ∂
Aα ∇               (19) 

(see [14], p. 11). This Hamiltonian is free of time-derivatives. Hence, the Dirac 
Equation (19) is an explicit first order partial differential equation. 

The same form of the Hamiltonian is obtained from the general expression for 
the Hamiltonian density (10). The Hamiltonian density that is derived from (17) 
is  

( )† ,i e m eVπψ ψ β ψ= − = ⋅ − − + +  A  α ∇              (20) 

where the relation † 0ψ ψ γ=  is used. The Noether theorem (14) yields the 
4-current of a Dirac particle  

.jµ µψγ ψ=                            (21) 

This 4-current satisfies the continuity equation  

, 0jµµ =                              (22) 

(see [14], pp. 9, 23, 24). Hence, the Dirac density is †ψ ψ  and the Hamiltonian 
operator is factored out from the Dirac Hamiltonian density (20). 

Solutions of the Dirac equation of a free electron and of the hydrogen atom 
are documented in textbooks (see e.g. [14], chapters 3, 4.4). These solutions fit 
experimental data. It can be concluded that the Dirac equation, namely the first 
order quantum equation, satisfies the requirements that are shown at the end of 
Section 2. Furthermore, this theory has a strong experimental support. 

4. Second Order Quantum Equations 

Consider the Lagrangian density of a second order quantum field equation  
2

, , ,g m OTµν
µ νφ φ φ φ= − + † †                     (23) 

where OT  denotes other terms. This form is analogous to the Lagrangian 
density of the Klein-Gordon (KG) field (see e.g. [9], chapter 12), to that of the 

,W Z±  bosons (see e.g. [15], p. 309), and to that of the Higgs boson (see e.g. [11], 
p. 715). The first term of (23) is a product of derivatives of the quantum 
functions † ,φ φ . Hence, the Euler-Lagrange Equation (7) yields second order 
derivatives of the † ,φ φ  functions. 

An observation of the Dirac Lagrangian density (17) and that of the second 
order quantum Equation (23) indicates an intrinsic difference between the 
quantum functions ,ψ φ , whose dynamical properties are derived from these 
Lagrangian densities. For example, the 4L−    dimension of a Lagrangian 
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density proves that the dimension of a Dirac quantum function ψ  of (17) is 
3 2L−   . By contrast, the dimension of the quantum function φ  of (23) is 
1L−   . This difference indicates that the impressive success of the Dirac theory 

cannot be automatically copied to second order theories of a quantum particle. 
Hence, a specific analysis of these theories is required. 

First, let us examine mathematically real quantum functions. For example, see 
the real KG field ([9], p. 26), the Z boson ([15], p. 309) and the Higgs boson (see 
[11] p. 715). The de Broglie hypothesis of the wave nature of a free massive 
particle is a fundamental principle of quantum theories (see [5], p. 3). This 
hypothesis says that the following relation holds between the particle’s wave 
length and its linear momentum  

2 .pλ π=                            (24) 

The form of the factor that describes the undulating properties of the particle’s 
wave function can be written as a linear combination of these expressions (see 
[5], p. 18)  

( ) ( ) ( )sin , cos , exp .t t tω ω ω⋅ − ⋅ − ± ⋅ −k x k x k x           (25) 

Mathematically real functions can be written as a linear combination of the 
first and the second functions of (25). Hence, a real wave function of a free 
massive particle moving along the positive x-direction takes the form  

( ) ( ), sin ,t x A kx tψ ω δ= − −                    (26) 

where A is a real normalization factor and δ  is a real constant. The free 
quantum particle that is analyzed here is massive and it has a rest frame. In this 
frame the particle’s linear momentum is 0p k= = , and its wave function (26) 
reduces to the form  

( ) ( ), sin .t x A tψ ω δ= − −                      (27) 

It follows that for every integer n, the real wave function (27) vanishes 
identically throughout the entire 3-dimensional space at the instant t when 

t nω δ π+ = . This result means that the particle disappears at these instants. 
Therefore, no conserved expression for density can be defined for a 
mathematically real quantum function. This conclusion is consistent with the 
Noether expression for density (14). Indeed, (14) is based on the invariance of 
the Lagrangian density with respect to a multiplication by the complex factor 

( )exp iα . However, this complex factor is unacceptable for a mathematically 
real function. Furthermore, the fact that textbooks do not show a density 
expression for any mathematically real quantum function is another indication 
of the validity of this result. An analogous argument can be found in the 
following textbook (see [16], pp. 42, 43). 

The Weinberg correspondence principle means that this result also holds for 
real QFT functions. The foregoing analysis proves that in the case of massive 
particles, mathematically real quantum functions are inconsistent with 
requirement 4 of Section 2. 
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Let us examine mathematically complex second order quantum equations like 
those of the electrically charged KG particle and the W ±  bosons. The first term 
of (23) is a product of two space-time derivatives of the quantum function 

†
, ,,µ µφ φ . The standard procedure of the introduction of an electromagnetic 

interaction is  

i i eAµ µ µ∂ → ∂ −                          (28) 

(see [7], p. 343, [9], p. 84, [17], p. 198). Therefore, the electromagnetic part of 
the Lagrangian density (23) contains a product  

2 .EM e A A OTµ
µ= +                        (29) 

The first term of (29) is inconsistent with Maxwellian electrodynamics, 
because the Lagrangian density of this theory depends linearly on Aµ  (see [3], 
p. 75, [18], p. 596). It means that the electroweak theory of the electrically 
charged W ±  particles lacks a consistent interaction term, and it violates the 3 
constraint of Section 2. This outcome proves that an intrinsic error exists in 
second order quantum theories of an electrically charged particle. 

5. Discussion 

This section examines the present literature and presents further evidence of 
intrinsic inconsistencies of second order quantum equations that take the form 
of (23). 

Let us examine the W ±  electroweak particles. The continuity equation  

, 0jµµ =                              (30) 

is the mathematical expression of charge conservation. Here 0j  denotes 
charge density. Charge conservation is a crucial element of Maxwellian 
electrodynamics, which is recognized since the original work of Maxwell (see 
e.g. [18], pp. 217, 218). The electric 4-current is an element of the standard form 
of electromagnetic interaction (see [9], p. 84, [11] p. 78). 

The following striking evidence demonstrates the different status of the Dirac 
equation and that of the second order electroweak equation of the electrically 
charged W ±  particles. A consistent expression for a conserved 4-current of the 
Dirac equation of the electron (and of its associated density) was found about 
one month after the publication of this equation [19] [20]. By contrast, many 
decades have elapsed since the birth of the electroweak theory, but textbooks still 
do not show a consistent expression for the W ±  4-current. Thus, for example, 
important research institutes like FermiLab and CERN use an effective 
expression for the W ±  electromagnetic interaction [21] [22]. 

Let us turn to another issue. The equation of motion of a quantum particle 
and its solution ψ  are fundamental elements of the theory’s structure. For 
example, the compatibility between the theory and the relevant experimental 
data is based on the solution ψ  of the quantum equation. Furthermore, the 
Noether theorem guaranties that the theory satisfies conservation laws. An 
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important element of the proof of this theorem is that ψ  satisfies the 
Euler-Lagrange equation of motion (see [7], p. 307, [9], p. 17). 

Considering this issue, one finds a dramatic difference between the status of 
the Linear Dirac equation of Section 3 and that of the second order equations of 
Section 4. Indeed, an explicit form of the Dirac equation is shown in textbooks 
(see e.g. [7], p. 9, [14], pp. 6-9), and solutions of this equation fit the data (see, 
e.g. [14], pp. 52-60). By contrast, textbooks that discuss second order quantum 
theories of the ,Z W ±  and of the Higgs boson do not show an explicit form of 
the Euler-Lagrange equation of the corresponding quantum theory. A fortiori, 
no physically acceptable solution of each of these equations is analyzed in 
textbooks. 

The Higgs boson is coupled to other massive particles, and heavier particles 
dominate the process (see [11], p. 716). Therefore, the above mentioned ,W Z±  
discrepancies also affect the status of the Higgs boson. 

Let us examine just one more issue. As pointed out above, the dimension of 
the quantum function φ  of a second order equation is 1L−   , whereas the 
dimension of density is 3L−   . Hence, density of a second order quantum 
function must depend on a derivative. Relativistic covariance means that it 
depends on time-derivatives. Therefore, in the case of second order quantum 
functions, no consistent expression can be found for the Heisenberg picture, 
because this picture is based on functions that are time-independent. It means 
that any analysis that relies on the Heisenberg picture (see e.g. [7]) does not 
apply to second order quantum functions. 

6. Conclusions 

This work discusses the significance of the correspondence between classical 
physics, quantum mechanics and QFT. The crucial role of the Lagrangian 
density of an elementary quantum particle and of its Hamiltonian are pointed 
out. Well-known constraints on an acceptable quantum theory are explained in 
Section 2. The analysis proves that the first-order Dirac equation is compatible 
with these constraints. In contrast, the second-order quantum equations of the 
KG, ,W Z±  and the Higgs bosons are incompatible with these constraints. 

It is interesting to mention that these results agree with Dirac’s lifelong 
objection to second-order quantum equations (see [7], p. 14, [23], p. 3). 
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