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Abstract

In this article we consider a mathematical model for the weak decay of muons
in a uniform magnetic field according to the Fermi theory of weak interac-
tions with V-A coupling. With this model we associate a Hamiltonian with
cutoffs in an appropriate Fock space. No infrared regularization is assumed.
The Hamiltonian is self-adjoint and has a unique ground state. We specify the
essential spectrum and prove the existence of asymptotic fields from which
we determine the absolutely continuous spectrum. The coupling constant is
supposed sufficiently small.
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1. Introduction

In this paper we consider a mathematical model for the weak decay of muons
into electrons, neutrinos and antineutrinos in a uniform magnetic field accord-

ing to the Fermi theory with V-A (Vector-Axial Vector) coupling,
uo—e +v,+v, (1.1)
U, e +v,+v, (1.2)
(1.2) is the charge conjugation of (1.1).
This is a part of a program devoted to the study of mathematical models for

the weak interactions as patterned according to the Fermi theory and the Stan-
dard model in Quantum Field Theory. See [1].
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In this paper we restrict ourselves to the study of the decay of the muon pu_
whose electric charge is the charge of the electron (1.1). The study of the decay of
the antiparticle u, , whose charge is positive, (1.2) is quite similar and we omit it.

In [2] we have studied the spectral theory of the Hamiltonian associated with
the inverse B decay in a uniform magnetic field. We proved the existence and
uniqueness of a ground state and we specify the essential spectrum and the spec-
trum for a small coupling constant and without any low-energy regularization.

In this paper we consider the weak decay of muons into electrons, neutrinos
associated with muons and antineutrinos associated with electrons in a uniform
magnetic field according to the Fermi theory with V-A coupling. Hence we neg-
lect the small mass of neutrinos and antineutrinos and we define a total Hamil-
tonian H acting in an appropriate Fock space involving three fermionic massive
particles—the electrons, the muons and the antimuons—and two fermionic
massless particles—the neutrinos and the antineutrinos associated with the
muons and the electrons respectively. In order to obtain a well-defined operator,
we approximate the physical kernels of the interaction Hamiltonian by square
integrable functions and we introduce high-energy cutoffs. We do not need to
impose any low-energy regularization in this work but the coupling constant is
supposed sufficiently small.

We give a precise definition of the Hamiltonian as a self-adjoint operator in
the appropriate Fock space and by adapting the methods used in [2] we first
state that H has a unique ground state and we specify the essential spectrum for
sufficiently small values of the coupling constant.

In this paper, our main result is the location of the absolutely continuous
spectrum of H. For that we follow the first step of the approach to scattering
theory in establishing, for each involved particle, the existence and basic proper-
ties of the asymptotic creation and annihilation operators for time ¢ going to
foo. We then have a natural definition of unitary wave operators with the right
intertwining property from which we deduce the absolutely continuous spec-
trum of H. Scattering theory for models in Quantum Field Theory without any
external field has been considered by many authors. See, among others, [3]-[19]
and references therein. A part of the techniques used in this paper is adapted
from the ones developed in these references. Note that the asymptotic com-
pleteness of the wave operators is an open problem in the case of the weak inte-
ractions in the background of a uniform magnetic field. See [20] for a study of
scattering theory for a mathematical model of the weak interactions without any
external field.

In some parts of our presentation we will only give the statement of theorems
referring otherwise to some references.

The paper is organized as follows. In the second section we define the regula-
rized self-adjoint Hamiltonian associated to (1.1). In the third section we con-
sider the existence of a unique ground state and we specify the essential spec-

trum of H. In the fourth section we carefully prove the existence of asymptotic

DOI: 10.4236/0alib.1105352

2 Open Access Library Journal


https://doi.org/10.4236/oalib.1105352

J.-C. Guillot

limits, when time t goes to oo, of the creation and annihilation operators of
each involved particle, we define a unitary wave operator and we prove that it
satisfies the right intertwining property with the Hamiltonian and we deduce the
absolutely continuous spectrum of H. In Appendices A and B we recall the Dirac
quantized fields associated to the muon and the electron in a uniform magnetic
external field together with the Dirac quantized free fields associated to the neu-

trino and the antineutrino.

2. The Hamiltonian

In the Fermi theory the decay of the muon 4 is described by the following four
fermions effective Hamiltonian for the interaction in the Schrodinger represen-
tation (see [1], [21] and [22]):

H, = %J‘d%(q’w (x)r*(1-75)¥, (x))(‘?’e (x)7, (1=p5)Y,, (x))
G _ 3 (2.1)
+T; Jax (%, ()7, (1=7) ¥, (0)(F, ()7 (1-75) W, (%))

here y»%,a=0,1,2,3 and p, are the Dirac matrices in the standard represen-
tation. AL (x) and ‘TT‘(_) (x) are the quantized Dirac fields for e,u,v, and
v, . ‘I”(A)(x)=‘I’(A)(x) 7" . G, is the Fermi coupling constant with

e

G, ~1.16639(2)x107° GeV . See [23].

We recall that m, <m,. v, and v, are massless particles.

2.1. The Free Hamiltonian
Throughout this work notations are introduced in appendices A and B.
Let
§=3.93,03,03, 03, (22)

Let
a)(f}): E’(le)(pS) for ézl =(S,I’l,p1,p3)
o(&)=EY (p*) foré =(s.np',p’)

o(&)=lp| forg, :[,,,%j @

w(éﬂ) = |P| for &, = [Pa_%j

Let H' (resp. HY), H") and H")) be the Dirac Hamiltonian for the
electron (resp. the muon, the antimuon and the neutrino).

The quantization of H Ef) , denoted by H, (()62, and acting on 3, is given by

H) =[o(&)b](&)b, (&)d& (2.4)

Likewise the quantization of H'-), H) H) and Hg"), denoted by
Héfg, Héi”)) and H(ﬂfg) respectively, acting on §,, §, and SV/‘ respec-
tively, is given by
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(2.5)

HYy) = [o(&)b] (& )b, (£)dE,
H((),M) :J‘a)(é) j(52) (égz)déz
]

HY) =[o(&)0 (é) (&)dé,
HYY = [o(&,)b, (&), (£)dé,

Weset H) =HS @1 +1 ®H0fg : Hgfg is definedon 3, ®3F, .

For each Fock space § let ® denote the set of vectors ®eF" for
which each component @) is smooth and has a compact support and
@) =0 for all but finitely many r. Then Hé;)D is well-defined on the dense
subset D" and it is essentially self-adjoint on " . The self-adjoint extension
will be denoted by the same symbol H é » with domain D(Hé;)D) )-

The spectrum of HO’D in §, isgivenby

spec(Héi))) ={0}U[m,,») (2.6)
{0} is a simple eigenvalue whose the associated eigenvector is the vacuum in
3 denoted by Q. [m,,0) is the absolutely continuous spectrum of
H(f)
0,D * B
Likewise the spectra of H(() [2 , H(()ff,) and Hgfl‘;) in §,®35,, 3§, and
S(v#) respectively are given by
spec( H" ) U[mﬂ,oo)
spec( % ) [0,00) (2.7)

spec(H(()fg ) =[0,)

@)

@, Q%) and Q') are the associated vacua in S ®§ S{} and
( )

S(V respectively and are the associated eigenvectors of Hyy, Hyj and

;)
H (: ;;) respectively for the eigenvalue {0} .
The vacuum in §, denoted by Q, is then given by

0= Q(@) ®Q(ﬂ) ® Q(Ve) ® Q(Vﬂ) (2.8)
The free Hamiltonian for the model, denoted by H, and actingin §, is now
given by

H,=H) @1 @1 @101 +1®H") @1 ®1 ®1 29
‘ ‘ 2.9

HRICIeH™ @1+1010101®H!).
H, is essentially self-adjoint on © =9 @D &™) & o),
Here ® is the algebraic tensor product.
spec(H,)=[0,00) and Q is the eigenvector associated with the simple ei-
genvalue {0} of H,.
Let S be the set of the thresholds of H, ((fl)) :

s = (s,(f);n € N)

with s\ = /m? +2neB .
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Likewise let S be the set of the thresholds of H, 3’3 :
s = (s,(f‘);n € N)
with sg”) = Jm;, +2neB .
Then
S = S(f) U S(/’) (2.10)

is the set of the thresholds of H,,.
Throughout this work any finite tensor product of annihilation or creation
operators associated with the involved particles will be denoted for shortness by

the usual product of the operators (see e.g. (2.13) and (2.14)).

2.2. The Interaction

Similarly to [2] [24]-[29] in order to get well-defined operators on §, we have
to substitute smoother kernels F(&,,£,) and G(&,&) for the d-distribution
associated with (2.1) (conservation of momenta) and for introducing ultraviolet
cutoffs.

Let

r=p;+p, (2.11)

We get a new operator denoted by H, and defined as follows

H, = H! +(H)) +H +(H}) (2.12)
here
Id§1d§2d§3d§4(jdx2 ”( (&) (1- )U(”)<x2,§2))
(T9 (%8 )7, (1-7:) ) (2.13)
F(&.£,)G(4.4)b:(&)b: (fl)b*(é) (&)-
and

= [agasdads,fere ™ (0% ()7, 1) (.4)

(09 (.8)7 (1= )9 (&) (2.14)
F(&,8,)G(£,5)b.(5,)b.(5)b,(5)b(&)-

Hﬁl) describes the decay of the muon and H,(2) is responsible for the fact
that the bare vacuum will not be an eigenvector of the total Hamiltonian as ex-
pected from physics.

We now introduce the following assumptions on the kernels F(¢&,,&,) and
G(&,&,) inorder to get well-defined Hamiltonians in .

Hypothesis 2.1

F(&.&,)el (T, xR?)

(2.15)
G(&.&)el’ (T xR*)
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These assumptions will be needed throughout the paper.
By (2.12)-(2.15) H, is well defined as a sesquilinear form on © and one
can construct a closed operator associated with this form.

The total Hamiltonian is thus

H=H,+gH,, g>0. (2.16)

gis the coupling constant that we suppose non-negative for simplicity. The con-
clusions below are not affected if geR.

The self-adjointness of His established by the next theorem.

Let

C=1"ra =) 7 (1=75)] -
11 (217)
—_—
M m, m,

For ¢e D(H,) wehave

|H,4) < 2C||F (...)

2
G| A @19

(2.18) follows from standard estimates of creation and annihilation operators

Lz(rlxR3)

in Fock space (the N, estimates, see [30]). Details can be found in ([31], prop-
osition 3.7).
Theorem 2.2 (Self-adjointness). Let g, >0 be such that

G(...

Then for any g such that g<g, H is self-adjoint in § with domain

480%”1:(':) )< 1. (2.19)

LZ(FIXIR3) LZ(F| xR

D(H)=D(H,) . Moreover any core for H, isa core for H.

By (2.18) and (2.19) the proof of the self-adjointness of H follows from the
Kato-Rellich theorem.

o(H) stands for the spectrum and o, (H) denotes the essential spectrum.
We have

Theorem 2.3 ( The essential spectrum and the spectrum) Setting

E=info(H)
we have for every g < g,

o(H)=0,(H)=[E,»)
with E<0.

In order to prove the theorem 2.3 we easily adapt to our case the proof given
in [29] (see also [2], [32] and [33]). The mathematical model considered in [29]

involves also one neutrino and one antineutrino. We omit the details.

3. Existence of a Unique Ground State

In the sequel we shall make some of the following additional assumptions on the

kernels F(&,,&,) and G(&.&).
Hypothesis 3.1 There exists a constant K (F,G)>0 such that for o >0
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) fMRz' Eot) o, <o
1 .|
[olEE g
1 |7,

3 (LWGI §Z,§4|d§2d§4) <K(F,G)o.

4) (J.rx\p3\<0 |G 51’53)| dédé}) <K(F G)o‘

We then have

Theorem 3.2 Assume that the kernels F(.,.) and G(.,.) satisfy Hypothesis
2.1 and 3.1. Then there exists g, €(0,g,| such that H has a unique ground
state for g< g,.

In order to prove theorem 3.1 it suffices to mimic the proofs given in [2] [25]
and [29]. We omit the details.

In [34] fermionic Hamiltonian models are considered without any external
field. Without any restriction on the strength of the interaction a self-adjoint
Hamiltonian is defined for which the existence of a ground state is proved. Such

a result is an open problem in the case of magnetic fermionic models.

4. The Absolutely Continuous Spectrum

As stated in the introduction, in order to specify the absolutely continuous spec-
trum of H, we follow the first step of the approach to scattering theory in estab-
lishing, for each involved particle, the existence and basic properties of the
asymptotic creation and annihilation operators for time ¢ going to +o . The ex-
istence of a ground state is quite fundamental in order to get a Fock subrepre-
sentation of the asymptotic canonical anticommutation relations from which we

localize the absolutely continuous spectrum of H.

4.1. Asymptotic Fields

Let
B (1) =6 8 ()
2+t(f2)_ e ! (£, )e e
(f3)=e””e*’”lob# (f;)e" e
() e

where, for i=1,2, fel (F) and, for j=3,4, f; ELZ(R3).
The strong limits of 5" (.) when the time t goes to o for models in

(4.1)

Quantum Field Theory have been considered for fermions and bosons by [14]
[15] [16] and [8] [9] [10] [11] [12] and, more recently, by [3] [5] [7] [17] [18]
and [19] and references therein.

In the sequel we shall make some of the following additional assumptions on
the kernels  F(&,,&,) and G(&,&).
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Hypothesis 4.1

é,é)

( EJZG(;@)

d@dga <w.[|v,G é,é)r dgdg, <oo.

dgdg; <eo.

1) j (éz,ei)

0 ’ 2
(&6

Hypothesis 4.2
2
&)

dé,dg, dgdg; <.

2

2) dgdg; <oo.

—

d&dé, <o, |

(&:4)

) [

We then have
Theorem 4.3 Suppose Hypothesis 2.1-Hypothesis 42 and g<g,. Let
fi.fpel(T)) and f,,f,el’ (R3) Then the following asymptotic fields

bl#Hw(f) =s- hmblﬂ(fl)
ijw(fz)::s—hmbzﬂ(fz)
by . (fy)=s- 11mb3# )
(

. 63 52,54) dgdé, < ooj

163

(4.2)

4++oo ﬂ) _S hmbjﬂ(ﬁt)

€xist.

Proof. The norms of the 5 ,(f)’s are uniformly bounded with respect to &
Hence, in order to prove theorem 4.1 it suffices to prove the existence of the
strong limits on D(H)=D(H,) with smooth f.

Strong limits of bff” (/) and b;’i’, (f2)-

Let
= {f el>(T)| f(s.n,.,.)eCy (]R2 \{O}) for all s and n, 43)
and f'(.,n,.,.) =0 for all but finitely many n}
Let f,,f, €® . According to [8] (lemma 1) we have
bl (#)D(H)cD(H) and by, (f,)D(H)cD(H).  (44)
Moreover we have
eitHl,blﬁ)‘+ (fl )e—itH“\P — in (eitEefl )‘P,
(4.5)

e”HOb;i (A)e—itHOT _ bj,i (eitEufz )\P

where W eD(H).

Let us first prove the existence of b1 4450 (f)

Let P, @ e D(H) and f,(&) ( i ) . By (4.4), (4.5) and the strong
differentiability of ¢" we get

((D b1+T(f)\P)_(q) b1+T0 (fl)ly)
! d(cD b ()W) =ig]] (@ [H,by (£,)]e )

(4.6)
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By using the usual canonical anticommutation relations (CAR) (see (A.4)) we
easily get forall W e D(H)

(1.6 (1) ¥
= [d&dg,dé&dé, ( [ ((7(“') (&)7, (1-75)U™ (xz,gz))

(4.7)
(09 (.8 ) 7 (1= ) (&) £ (&)
~F(§2,§4)G(§l,§3)b:(@)bj(é)@(é)\{}.
[HPb (£)]
__ 2 i () a(q_ (1) ({2
= Id§1d§2d§3d§4 (J-dx € (U (‘:54)7 (1 75)W (x ,52)) (4.8)

'(U(E) (xzaél)}/a (1_75)W(‘7€)(§3

[(H}” ) b (4, )}P - [(Hf) ) b (4, )}P ~0 (4.9)

where U=U"y’.
Similarly we get

(@807 (1)) = (@0 (1))

o o * _ (4.10)
=g, (@b (£))=ig], (@.e [ H,.7, (f,)]e " )de
with
(a1 5, (h) [ =[ P8 (£,) 2 =0 #10
and
[(H;U ) .00 ( )}\P
--[agdzagag, ([ace™ (P (&) (-0 (.4)
-(U(!I)(xzagz)% (1_75)U(Vﬂ)(§4)))
-F(cfz,é)G(cfpé) 1t (él)bi (‘fz)bf (53)b+ (54)\1'['
[(H;z) ) b (f )]‘{’
-Jasagasdz (fore™ (T (@) ()0 (a)

‘(W(”) (xzaégz )7a (l ~7s )U(V”) (54 ))j
F(&,,86)G (8.6, (6)b-(&)b.(&)b. (&) -

By (4.6) and (4.10), in order to prove the existence of bf 40 (/;), we have to

estimate

et ':H1 ’b1,+ (f“ ):| e it \p
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and
et [Hl,b:’+ (fn )J e

for large |i|.
By (B.5), the N_ estimates (see [30] and [31], Proposition 3.7), (A.8), (A.11)
and (A.13) we get

e 4
< C(J.dx2 (Id§3
g L -

[aeu'(¥,8)£,(8)G(£.4)

24 Dz (4.14)
C

(N/L +1)% ey

and

“eitH |:H§2)’b1,+ (flt ):| e—itHlP”

< c(jdxz ( [dg,

><||F(.

Jdgu (x.&) 4, (6)6(4.4)

y Dz (4.15)
C

(V.. +1)% e

> ')"LZ(F, xR3)

By (2.18) and (2.19) we have
|H,¥| < a|H,g|+b|¥| (4.16)

with

C
a= 4M"F ("')||L2(rlxR3) G

(" ')||L2(r1 x1R3)
and

b=2C|F(..)

2(ryx3) "G(’)

2 (rl ><JR3)

Hence we obtain

|H,¥| < a|ae|+b]¥| (4.17)
with
a= - and b =%
Therefore we have
1

<

1
(N, +1)z e "

(alr]+(6+m, )| ])
| el ) (4.18)
(v, +1)2e™ | < m—(&||H‘P||+(b +m”)||‘1’||).

u

where m 18 the mass of the muon.

Hence we get
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e o 1. Je ]

< 2C(jdx2 Udé

O mL(d||H‘P||+(5+mﬂ)||‘P").

2
4

y DZ (4.19)
C

[deU'(¥.5) £,(£)G(&.4)

Moreover we have

jae'(faz, jdaflU(“)(xz,fl)ﬁ,t(cfl)G(fwfs)

\ y , (4.20)
e it
=zjdx2{jd§3 Jagu (#.8)e 1 5 ()G (E.&) j
=1
where (szlUﬁ.“)(xz,fl)) are the four components of the vectors (A.8) and
(A.11) eC*.
Note that

: () (3 e
)1 E, (3pe) A ()

4.21
it p,  dp; (421

By (4.20) and (4.21), by a two-fold partial integration with respect to p’ and
by Hypothe51s 4.1 one can show that there exits for every ja function, denoted

by H (§1,§3) such that
o fos ]
i%jdxz[jd«:s [agU (2,6 ) (&,8)e ) j (122)

=L
2
<o

Here g, () is the characteristic function of the support of f;(.) and (A.13) is

Jagu® (v.8)e 1 ()6 (8.8

Mu

1

J

IA

C/ii4 (J.dégldélfl 981)

19(¢.4)

used.

By (4.6) and (4.19)-(4.22) the strong limits of 5, (f;) on § when fgoes to
+o and forall f el’ (Fl) exist for every g<g,.

By (4.11)-(4.13) and by mimicking the proof of (4.14) and (4.15) we get

sup[ e [(Hfl) )* b, (f,J )} e | lle™ {(Hfz) )* b, (fu )} ey D
< c( [ar® ( [dg, ; DZ (4.23)

P —(alere] (5 m, )]

"

[aeu'(¥.5) £, (£)G(&.8)

It follows from (4.10) and (4.20)-(4.23) that the strong limits of b1*,+,;(f1)
exist when ¢goesto +wo,forall f; € L’(I|) and forevery g<g,.

We now consider the existence of b5, ., (/3 )
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Let W,d < D(H) and fz,,(fz)z(e’”” fz)(é) with f, €D. By (4.4), (4.5)
and the strong differentiability of ¢ we get

(q)9bz,+,r (f)ql)_(q)sbz,+,fo (fz )LP)

rd

. » _ (4.24)
=g T@(cb,bzﬁ,, (£,)¥)=ig], (@.e" [ H,y.by, () e W) ae

with

[ ()] = (1) ()= () s (1) =0 029

and
() b ()]
= —Id§1d§2d§3d§4 (Idxz o (w ve 7 (1_75 )U(e) (x2>§1 ))

(09,87, (-0 )(54)))
F(6,6,)G(8.86) 1, (£)b- ()b, ()0, (&) Y-

Similarly we obtain

e [H, N (fz,t )] eiitHlP“

sCdez(J'dé

><||G(.,.)

(4.26)

1

y DQ (427)
C

[deU (x.8)F(&,.8)14,(£)

1
(N, +1)2e7y|.

"L2 (rix?)

It follows from (4.16)-(4.18) that

(N, +1)2 "'

<_( ]+ (B4 m, ) ] (4.28)

Hence

e [#,.8,.. ()] )
< c( fax® ( [deg,
6 G (¥ (5 m )1

Moreover we have
jdx2(jd§4 fdfo(”)(xz,iz)fQ,t(gz)F(gz,@)24]
=ijdx2 {J.dé‘ f2(§2) (52’54)
where (Uj:lUﬁ.*‘ ) (x2 ,52)) are the four components of the vectors (A.8) and

(A11) eC* for a=u.
By (4.30), by a two-fold partial integration with respect to pi and by Hypo-

1

y Dz (4.29)
C

[de U (2,8)F (&.4) . (&)

- ()

5 (4.30)
[AsU (., )e J
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thesis 4.1 one can show that there exits for every ;j a function, denoted by

H'")(&,£,), such that
Sfur o )
fagu (2.6) 1 (6.6 )e " <>2] 431
<

41
2_4,[ dv? [I dg,
here y, () is the characteristic function of the support of £, (.) and (A.13) is

ttE

o L (e)rF (&.4)

[aeui (¥.&)e

Jj=

IA

Oy o[ Jage, () (. 6)

used.

Similarly we have

(®@.brr () ¥) (@055, (12) W)

o d ‘ (4.32)
—gTd (0.6, (f,)¥)=ig[ (CD " [Hyby (fi)]e " )dt
with
[(Hf') ) by (fo )}P =[H7.6, (£)]¥ = [(H?) ) b, (o )]\P =0 (4.33)
and
() 8. ()]
—jd;dédédé(jdxz T (x,6) 7 (1= )W () )

G(‘;»é)(U( g (54)}/11 (1—}/5)U g (xz’fz)))
F(£,6)G(8.8) 1., (&b (£)b (&) (&)W

Similarly we obtain

“euH |:HI ,b;+ (f2t )] e_”H\P“

< c( [dx’ ( [de,
GG ey (@l ¥ (B )11,

It follows from (4.29), (4.31) and (4.35) that the strong limits of
b (2,+,1)(f,) exist when tgoesto +w,forall f, e’ (F, x ]R3) and for every

g=8-
Let us now consider the strong limits of 5" (2,—,¢)(f;).
Wehave forall f,e€®

(©.0, 7 (/)¥)~(@.s_1, (1))
ofl (@ (1w)=ief] (0.0 1, (5, )] ¥ e

y Dz (4.35)
C

[de U (¥,5)F(&.8) 4, (&)

(4.36)

with

DOI: 10.4236/0alib.1105352 13 Open Access Library Journal


https://doi.org/10.4236/oalib.1105352

J.-C. Guillot

[0 ()] = (1) (1) =] (1) s (1) =0 a7
[(#17). 2o (1) ¥
= -[d&d&,déde, ( Jace (T (,8)r (1-r) W™ (£))

6(6.6)(0" (@7, (-7 (7.2
F(&,8,)G(8.8) £, (&)b(,)b(6)b7 (&)Y

By mimicking the proofs given above we get

(4.38)

e [H, b, (fz,t )] einH\P“

gCdeZUd§4

><||G(.,.)

y Dz (4.39)
C

[dem) (2,8 ) F(&.6,) £, (&)

)
)

N E)F(6.8)

(e (b+m,)

||L2(r,xR3
and
Jae Ja
_ 24; fax? { ae,

where (Uj:lW/.(”) (x2,§2 )) are the four components of the vectors (A.14)-(A.16)
eC* for a=u.

[dem ) (&.5) £ (&)F(£:£,)

ttE

, (4.40)
[aem (.6, )e J

By (4.40), by a two-fold partial integration with respect to pi and by Hypo-

thesis 4.1 one can show that there exists for every j a function, denoted by
I:Iﬁ.”) (&,,&,), such that

ifde(Id§4 Idéngj(”)(xz, ) =i, )fz(":zz)F(éz,éil) }
-3 fas [Idé Jagu (.6) A0 (&,6) )2] (4.4

IA

A'%(&,.¢,)

2
<0

Here . () is the characteristic function of the support of f,(.) and (A.17)

¢, %i(]dfzdf“lﬁ (&)

is used.
It follows from (4.36), (4.39)-(4.41) that the strong limits of 5(2,—,¢)(f,)
exist when t goes to +w, forall f, € I’ (Fl X R3) and forevery g<g,.
We now have forall f, e®
(@857 (£2)¥)=(D.b1 5, (/o) ¥F)
d . it * —it,
=g[ (0.0, (f,)¥)= zgjrz(d),e “H, b (f,)]e )

To dt

(4.42)

with
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H ;. ( f )}P _ [( 1) 5 (5, )}y =[5 (f)]¥=0  @3)
s
- —Idédédéd@ (j (&) (1-p)UY (¥4 ))

(7028 )r 00t ()))

F(6.6,)0(5.6)0,(5)b.(8)b.(5)b.(£,) Y.
Similarly to (4.39) we get

e [#,.85_(£,) ]|
< c[ fax* ( [ag, 3 Dz (4.45)
><"G "L2 T R3 ( "H\P" (b+me)||‘11||),

It follows from (4.43), (4.45), (4.40) and (4.41) that the strong limits of
b(2,-,1) (f,) exist when t goesto +wo, forall f, €I’ (Fl ><]R3) and for every

(4.44)

[d& ) (.6 F (&,.6,) £, (&)

858p-
Strong limits of b;_,(f;) and b;,, (/).
Let
o' =1 () (R {(0.0.0°) )i <R}, (4.46)
Let f,,f, €®'. According to ([8], lemmal) we have
b;.(f;)D(H)cD(H) and b (f;)D(H)=D(H). (4.47)

Moreover we have
bl (fy)e "W =b) (e”‘“‘f3 )‘I’,
&b}, (f)e oW = by (e 7, ).
where ¥ eD(H).
Let W,deD(H) and f,, (&)= (e’”‘”"‘fj)(gj) where j=3,4. By (4.4),
(4.5) and the strong differentiability of e we get

(® b3 T (fs)qj)_(q)>b3,—,n, (fl)\y)

=g TT c(iit (d) b3 t(f:;) igjrz (d),enH [H“b% (]g,t)]ef'm‘{’)dt

By using the usual anticommutation relations (CAR) (see (A.4) and (B.4)) we
easily get for all W e D(H)

|16, (1)

= -[d&d&,dEdE, ( [dxte™ (17(“) &)y, 1=y ) U™ (xz,é‘z))
(09(8)r (=W (@) £, &
F(6:6,)G(6.6)b0 (&b (& )lh(é)

(4.48)

(4.49)

(4.50)

w

t
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[H}Z),b% (%, )]\P
_jd§1d§2d§3d§4(jdx2 (" (&) (1- )W<”)(x2,§2))

(4.51)
'(_ ( 51)7a( )fst
F(£,.6,)G(8.4) +(«*54) b.(&)b (&)Y
and
[(H}l) ) by (£, )} ¥ = [( 2% ) by (£, )} ¥=0 (4.52)

By (B.5) we get

[, (5.)]4
< [ar? ( [dg \(Uw (3,8 )77 (1-75) [d&e W) (£)G(6,8) o (4‘3)) j (4.53)

'Hfdcfzdz:f”'”b (0" ()7 (1= U (v 52))5(‘5“)[)*(52)?”'

and

17 (.)]¥]

1

dexz(fd‘i‘( I(x,8) 7" (1-7) [dge " (V“)(é)G(fSpfa)f;,,(é))sz (4.54)

'Hfdfzd@e""’%xz(W(V”)(é)n(1—75)U“')("2"52)) (€)e(@)7]

Moreover we have

Jag[Jace ) () (@6 @ 4|

(C4

4 22 (o — 5 (4.55)
= Z_:J.dé Udéefipzx [/Vj(Ve) (53)ezt‘1’3‘f3 (53 )G(§1,§3) )

where (Uj:le(V“) (& )) are the four components of the vector (12) e C*.
By a two-fold partial integration with respect to p*’ and p' and by Hypo-

thesis 4.2 one can show that there exit for every ;j a function, denoted by
Hﬁv“) (&.£,), such that

iIdéU dee W (&) 7 (6)6 (6.6

:i%Jdé age ™ w (&) i) (&.8)¢|

(4.56)

H(Ve) (51753 )‘2 <o

<G SJasasz, (5)e

Here y, () is the characteristic function of the support of f;(.).
By the N_ estimates and by (4.18), (A.13), (A.17) and (B.14) it follows from
(4.52)-(4.56) that, for every W e D(H),
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e [H, N (fzt )] eiitH\P“

1

H (&, 2 ]2 (4.57)

<CC, %(Zjdédéﬂé@ (&)

Py o (AP (5 m, ) 9])

"

Furthermore we have

(CD b; T(f3)‘P) ( by _ T (f;) )
rd | * | (4.58)
(CD b3 y (f3) ) igj'T0 (q)’e’fh' |:H,,b3’_ (f31 )] eiltH\P)dt

To dt
with
[(H;‘))*,b;_(ﬂ[)}‘l‘
—_ 2 lxr U@ (2
[dededzde, (Idx ( (&) (1-75)U (.8)) s
'(_ ( 51 7/a )
'F(§2»§4) (51 §3) 3t(§2) (gz)b (51) (54)
[(H;z) ) b (fs )} v
= Jagd&deae, (Jace ™ (7 (&) (1=, )u" (+.4)) e
(w9 (&) (700" ()
'F(§2,§4)G(§1,§3) 3.t (égz)b+ (4:1) (52) (54)
and
[(#).b0 (f) ] =] ()i (£)] ¥ =0 (4.61)
By adapting the proof of (4.53)-(4.57) to (4.58)-(4.61) we obtain
e I:HI ,b;_ (f3t )] ety
SCC@%@Id;déxﬁ (&) 5“)(«:1,53)2j2 (4.62)
><||F(.,.)||L2(rlxR3)mL(d||H‘P||+(I;+m”)||‘P").

o

here 7, () is the characteristic function of the support of f; (.).
It follows from (4.49), (4.47), (4.58) and (4.62) that the strong limits of
bzﬁt (f3) exist when t goes to oo, forall f; € I’ (R3) and for every g<g,.

(cD b4+ T (fl )T)_((Drb4,+,ro (fl )‘P)

:gJ-T i(@ by, (f,)¥)= igJ’TZ(q),efw |:H[’b4’+(f;"t):|e—it[1q})dt

(4.63)
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By using the usual canonical anticommutation relations (CAR) (see (A.4) and
(B.4)) we easily get for all W e D(H)

|10, ()]

- —[dede,dede, ( [arre ™ (U(Vﬂ) (&)7. (1) UW (2., ))
(09 (.8) 7 (=)W (8))) i (&)
F(6:6)G(6:6)b2(6)2(6,)6. (&) ¥

[H;z),b“ (fr )} ¥

—-[d&d&dede, ( [axre (U(Vﬂ) (&) (1=7s) W (3¢, ))

'(U(‘)) (xz"’:l)Va (I_VS)W(VQ) (égz)))ﬁ;l (54
F(6.8)G(6.6)5 (£)b (&) (&)W,

(4.64)

N

~—

and

[(H ! ) by (s )} Y= [(H . ) by (fa )}‘P =0 (4.66)

By (B.5) we get
[#90.. (5.)] ]

< fa? U ds, 2 jz (4.67)

[fazaze s (092,847, (1- )W) (£) (5,25 (20 (5)¥]

([420") (&) 1, (2)e ™ FEd)r'" (=)0 (+.6))

where <,> is the scalar productin C*.
And

[0 1}

< Jdv® (I dé, 2 Jz (4.68)

'Hj.dédéeiip}zxz <U(e) (xz’ g )97’07’a (1 =7s )W(m (53 )G(égl ,& )> (621 53 \P“

<J'déz4 54)f4t(§4) zpu F(§2a§4)n707a (1_75)W(”)<x2952)>

By adapting the proof of (4.57) to (4.67) and (4.68) one can show that there
exists for every ja function, denoted by H'*(¢,,&, ), such that

“e”” [H, by, (fM )] e’”’“l’”
<cc, —(Z [d&déx,, (&)|H ] (4.69)

1o sy (HFW( m,)|¥])

with
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(g, <

Zl [d&,dé,x, (&)

Here z,, () is the characteristic function of the support of f,(.).
Similarly we have

(@55 (£ %)~ (@01, (1))

rd » » (4.70)
=g dt(q) by, (f)¥)=ig[ (@ [H,.b; (1) ] )t
with
[(ng) ) by (fu )}‘P
_ 2 i (77(%) a(1_ (e) (2
Jdsagdads, ([ace™ (7 (&) (1-r,)U" (v.5)) o
.((7(#) (xz’él)ya (1_},5)(]@;:)(54 )))
'F(§2,§4)G(§1,§3) 4.t (54)b (é) (53) (51)
() () |
= [dgde,dede, ([ave™ (W) (&) (1-7)U" (x.&)) W
.(W(u) (xz’gz)}/a (1_}/5)U(v,,) (&, )))
'F(§2,§4)G(§1,§3) 4,tb—(§3) (gl)b (52)
and
LA () [= [ #71 () ] =0 (473)
By (B.5) we get
H[(Hgl) ) by (o, )} ¥ H
< [dv? Udz;z <U(ﬂ)(xz’§2)’yoya (1—75)Jd§4U(V“)(§4)ﬁ,t (§4)ew%x2F(§z,§4)> ]2 (4.74)
fagage ™ (W (£).17, (1-7)U" (2.6) G (&8, (&b (5) ]
where <,> is the scalar product in c*.
And
o .
< fav’ ( fag, <U<“> (#.6). "7 (1) [a50™) () 1, (8)e7 F(6.8) j (475)

Jlazage s (w (&), (1= )u (+.6) G (& 8))b. (4)6. (5) ).

By adapting the proof of (4.57) and (4.67) to (4.74) and (4.75) one gets
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e[ 5 e

< e, | Sfustsr, (@) 6.)

] (4.76)

><||G(.,.

) Lz(l"lx]R3) m_e(d"HlP” + (l; +m, )"\P")

It follows from (4.63), (4.69), (4.70) and (4.76) that the strong limits of
by.,(f,) existwhentgoesto +w,forall f,el’ (R3) and for every g<g,.
This concludes the proof of theorem 4.3.

4.2. Existence of a Fock Space Subrepresentation of the
Asymptotic CAR

From now on we only consider the case where the time # goes to +oo. The fol-
lowing proposition is an easy consequence of theorem 4.1.

Proposition 4.4

Suppose Hypothesis 2.1- Hypothesis 4.2 and g < g,. We have

1) Let f,g,f8g €L’ (T)) and f,85. /184 el (R3). The following an-
ticommutation relations hold in the sense of quadratic form.

{b1:+s°° (fi)’b:+w (gl )} = <fiag1>L2 l-l) 1
by (fz 2,600 gz

{ )b (22)f =
{ba,—,oo (fs) gs }
i ( )

f‘Z’gZ LZ

< 3,g3 L2 R*
(

by s ’b4+oc g4)}= ﬁug 2 Rz
bl+oc fl l+oo(g1 } {b1*+ao( 1) 14,00 gl)}:()
b, .. (/)b Zeoo 1 }:{b1+oo( 1 b3# ao(fs)}zo

4+oo 4

0
{b2€00 fz 2(00 2)}:0

{bm(fz ! (1))
{b g3)}:

’ 2

0
0

}
&)}
}
by (23))
)} =0
by (20)} =1 (£1)oBisn (24)} =0

Here e=+.
2)

E
_@‘
T+
5
K]
—

fi)= bftw (e"“'(él)’fl )eitH
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and the following pull trough formulae are satisfied:
[, b1+w(f)]= Iloo( ) [Hb o (F)]= b (@(8) 1)
m( f)]=b s‘z fz) (.0, (1)) =bre (0(£) 13)
L (W)]=0 (&) 5).[H. _w(.fs)]?s—w(w(é)ﬂ)
4+»o( I)J e (@(80) 1) [ 4+w(f4ﬂ by (@(&) 1)

[,
[#.5
[#

3)
Do (F1) Qg =l (/)R = b1 (£5) QR =4 ()R, =
Here Q, Is the ground state of H.

Our main result is the following theorem

Theorem 4.5 Suppose Hypothesis 2.1-Hypothesis 4.2 and g<g,. Then we

have
=[E,»).
Proof. By (2.2) we have, for all sets of integers (p,q,q,r,s) in N,
= @ o (4.77)
(p.q.q.r.9)

with
Frerr) = (@2 (1)) ®(®1 L (T)))® (@] L (T,))

®(e) L (R))8(®; 1 (). (4.78)

Here p is the number of electrons, g (resp. g ) is the number of muons (resp.
antimuons), r is the number of antineutrinos ¥, and sis the number of neutri-
nos v,.

Let {e} |i=1,2,~-} , {ejz. |j=1,2,w} and {sz |k=1,2,---} be tree ortho-
normal basis of I’ (Fl). Let {e,3 |l=1,2,~~} and {e,: |m=1,2,.---} be two
orthonormal basis of L’ (]R3 ) .

Consider the following vectors of §

Hbf,+(efa)lgqb§,+(ei)lgllqb§,( )(HbH( ) 16i. (e, )@ (479

I<a<p 1<a<s
The indices are assumed ordered, ; <---<i,, j <</, k<--<k;,
L <<l and m <---<my.

The set, for (p,q,q,r,s) givenin N°,
D7) = {CD e §797) | @ is a finite linear combination

of basis vectors of the form (4.79)}

is a dense domain in F”*7"*)  The set of vectors of the form (4.79) is an or-
thonormal basis of F7%7") (see [35], Chapter 10). Hence the vectors ob-
tained in this way for p,q,q,7,s =0,1,2,--- form an orthonormal basis of §
and the set

D= {‘I’ € § | ¥ is a finite linear combination of basis vectors

of the form (4.79) for p,q, q,r,s = 0,1,2,~~~}

DOI: 10.4236/0alib.1105352

21 Open Access Library Journal


https://doi.org/10.4236/oalib.1105352

J.-C. Guillot

is a dense domain in §.

On the other hand we now introduce the following vectors of §
11‘[ b, (e )IH by . (€ )1H by (12 ) H b . (e ) H b;... (e, ), (4.80)
<as<p <a<q <a<q

Let &(Op 4475) denote the closed linear hull of vectors of the form (4.80). It
follows from proposition 4.4 that the set of vectors of the form (4.80) is an or-

thonormal basis of 3 Pagrs)
The set, for (p,q,q,r,s) givenin N,
DPa-rs) = {® e F, | is a finite linear combination of basis vectors of the form|.
is a dense domain in S Pagrs)

The asymptotic outgoing Fock pace denoted by §, is then defined by
@ g, (4.81)

Ps4595158
The vectors of the form (4.80) obtained for p,q,q,r,s=0,1,2,--- form an

orthonormal basis of § and the set
D, = {CD € 5, | @ is a finite linear combination of basis vectors

of the form (4.80) for p,q, q,r,s = 0,1,2,---}

is a dense domain in § .

We now introduce the following linear operators, denoted by W.”47"*) ‘and
defined on D747 by
S I (e,) T1 () T () T () TTAs (en, )2
I<as<p lSajr 3 I<a<s (482)
- 1H b] 4,0 ( za ) H b2+oo ( Ja )1H b2,—,oo (f}‘a )1H b ,—,0 (ela )1H b4,+,oo (ema )Q :
<a<p <asq <asr <as<s
w747") can be uniquely extended to linear operators from D7) to
D'747") It then follows from prposition 4.4. that the operators W"*7") can
be uniquely extended to unitary operators from D7) to D7)
Let
) (4.83)

Ww: (-B
0.4

Hence W, isa unitary operator from § to F, .

The operators b, (f})» b1*,+,oo (gl) » by (f2)s b;,+,oo (g2) » by (12)
b, (), b_.(f)> b5 ..(g) b,..(f,) and b,,,(g,) defined on §,
generate a Fock representation of the ACR (see Proposition 4.4 1)).

By proposition 4.4 2) we have

' T18.o(e,) 1A () T o (A2) TT 85 fel) TT e (2, )2
<a<p q

1<ass

_ it Hbl*m( ZEV ) Hb Ho( (&) 2 ) Hb w(efw(éz)f ) (4.84)

I<a<p

T8 (¢ 53’3)Hb4m( “Erel ),

I<as<r

Hence ¢’ leaves §, invariant and A is both reduced by §, and F..
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Thus
F~3F,. 08,
In view of (4.5), (4.48) and (4.84) we get

e T1 (o) T1E () 1o () T () TT6: (<)o
<a<q <asr <ass

1<a<p 1<a<g

, (4.85)
=", T (el ) TTbs.(e),) T1os (£2) TTos (e ) TT2i. (el )2
1<a<p 1<a<q 1<a<g I<as<r 1<a<s
This yields
W, " HotE) = gttty (4.86)

Hence the reduction of H to §, is unitarily equivalent to H,+E. Thus
0,.(H)=[E,»). This concludes the proof of theorem 4.5.
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Appendix

Appendix A. The Dirac Quantized Fields for the Electrons and
the Muons

The appendices are based on the section 2 and section 3 of [2]. See also [36] [37]
[38] and [39].

(s,n, P, p3) are quantum variables of the electrons, the positrons, the muons
and the antimuons in a uniform magnetic field. Here s=+1, n>0, p'eR,
peR.

Let & = (s,n, P, pj) be the quantum variables of a electron and let
& = (S,n, pL, pf,) be the quantum variables of a muon and of an antimuon.

Weset I'| = {—1,1} xNxR? for the configuration space for the electrons, the
muons and the antimuons. L’ (Fl) is the Hilbert space associated to each spe-

cies of fermions.
r(n)=r(r(®))er(r(r)) (A1)
Let §, and §, denote the Fock spaces for the electrons and the muons re-
spectively. Remark that §, is also the Fock space for the antimuons.
We have
3.=3,=-0Qx L)) (A2)

n=0 a

(2 r (T',) is the antisymmetric n-th tensor power of r (Fl) .
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Q, = (1, 0,0,0,-- ) is the vacuum statein §, for a=e,u.

We shall use the notations

.46 =2 ] .dpldp;
n=0

.45 = XX .. dp,dp;.

s=*1n>0

(A.3)

b, (&) (resp. bi («fl) is the annihilation (resp. creation) operator for the
electron.

Let e=+.

b (&) (resp. b: (62)) are the annihilation (resp. creation) operators for the
muon when ¢ =+ and for the antimuon when e=-.

The operators b,_(&), b, (&), b.(&) and b (&) fulfil the usual anti-
commutation relations (CAR)(see [2] and [40]). Therefore the following anti-

commutation relations hold
{b.(&).6. (&)} =0(&-4),
{b.(&)0:(8)}=6.6(&-&), (A4)
(b1 (&).81 (&)} =0.

where {b,b'} =bb'+b'b and b*=b or b .

In addition, following the convention described in ([40], Section 4.1) and

([40], Section 4.2), we assume that the fermionic creation and annihilation oper-
ators of different species of particles anticommute (see [24] arXiv for explicit de-
finitions). In our case this property will be verified by the creation and annihila-
tion operators for the electrons, the muons, the antimuons, the antineutrinos
associated with the electron and the neutrinos associated with the muons..

Recall that for ¢ € I (Fl ) , the operators

(A.5)

are bounded operators on 3@) and S(#) respectively satisfying
"bli (¢)” = "¢"L2
[e%. (o) =Tl

Set a =e,u. The Dirac quantized fields for the electron and the muon, de-

(A.6)

noted by ¥, (x), are given by

1 i plllxl+pgx3 a 2
T<a>(x)=§fd§1(e( lus (%8 )b. (&)
(A7)

.\ e—i(ﬂzlxlerPix})W(a) ()c2 N )bj (& )j

where &, =& and &, =¢,. See [41].
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Throughout this work e will be the positive unit of charge taken to be equal to

the proton charge.
For & = (s,n,p;,pi) we have U@ (xz,fa ) = Us(a) (xz,n,p;,pi) .

For s=1 and n>1 Ul(a)(xz,n,pl,p3) is given by

]n—l (5)
] 0
EX(p*)+m, |} p’
UE?)(xz’n’pl’pa):[ ZE((Z ();;" J mln—l(g) (A.8)
\2neB
E) e, £,(€)

where

wale-g

eB
. ' (A.9)
eB ? )
1 = -&°/2)H
O e RO
Here H, (&) isthe Hermite polynomial of order nand we set
1,(£)=0 (A.10)
For n=0 and s=1 weset
Ul (¥,0,p'p%)=0
For s=-1 and n>0 UET)(x2,n,pl,p3) is given by
0
| 1)
E(a)(p3)+m 2 /2neB
(@ (42 )| VP T e | 1, (8)
U] (X n,p,p ) { ZE(a)(p3) ES )(p3)+ma 1 (A.ll)
3
p
— P g
9 (p)em, )
EEQ)(p3), n>0,is given by
E(p')= \/m§ +(p’ )2 +2neB (A.12)
Note that
jdszfa) ()CQ,n,pl,p3 )T Ui,a) (xz,n,pl,p3 ) =48, (A.13)

where 1 isthe adjointin C*.
In order to study the spectral theory of our Hamiltonian it is not necessary to

know W (xz,fl) in (6). We have to know W (xz,fz) explicitly.

For fzz(s,n,pL,pi) with n>0 we have
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W(”)(xz,éz):V_(I”)(xz,n,—pL,—pZ) for &, :(l,n,pil,pz),nzo.
W(”)(xz,ﬁz):fo‘)(xz,n,—pil,—pf[) for &, :(—l,n,pL,pZ),nZI. (A.14)
W(”)(xz,(fz):o for & =(—1,0,p}l,pz>.

For s=1 and n>1 fo)(xz,n,pl,ﬁ) is given by

_r
EE”)(P3)+mﬂ 1 (‘f)

1
V(ﬂ)(x2 n,p' p3)_ Ei#)(p3)+mu ’ \2neB
T E,S”)(p3)+mﬂ

1,.(8)
0

1,(¢) (A.15)

and for n=0 we set
fo‘)(xz,o,pl,ﬁ):o

For s=-1 and n>0 I/ff')(x2,n,p1,p3) is given by

| EW (p3)+ m, 1y (5)
(#) ()3 2
v (x.np',p) = [E,,ZE((Z () p: ’;% J T ;3) - 1,(¢) (A.16)
0
1,(8)
Note that
(&) (2n, p', p*) VI (32m,p' 1) = 6, (A.17)

where 1 isthe adjointin C*.

Appendix B. The Dirac Quantized Fields for v, and v,

We suppose that neutrinos and antineutrinos are massless as in the Standard
Model.

The quantum variables of the neutrinos and antineutrinos are the momenta
and the helicities.

Let P= (PI,PZ,P3) be the generators of space-translations. H® is the helic-

ity operator 1Pz where |P|=[ Zf_l(P")zj and Z=(21,22,23) with for

2 |P|
T A (B.1)
0 o '

1
The helicity of the neutrino associated with the muon is 5 is

j=12,3
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left-handed. The helicity of the antineutrino associated with the electron is %
v, isright-handed.

1
Let &, :( p,Ej be the quantum variables of the antineutrino ¥, where

1 1
peR’ is the momentum and 5 is the helicity. Let &, :(p,—gj be the
quantum variables of the neutrino v, where pe R’ is the momentum and
1
3 is the helicity.

r (R3) is the Hilbert space of the states of the neutrinos v, and of the an-
tineutrinos v,. Let S(V#) and 8’(%) denote the Fock spaces for the neutrinos
and the antineutrinos respectively.

We have

3, =%, O L (R) (B.2)
n=0 a

Q, =(1,0,0,0,---) isthe vacuum statein F, for B=v_, u,.

In the sequel we shall use the notations
[.dg=[.dp
[.ag =[.dp

b (&) and b (Af})) are the annihilation and creation operators for the an-

(B.3)

tineutrino associated with the electron respectively. b, (£,) and b, (54)) are
the annihilation and creation operators for the neutrino associated with the
muon respectively. The operators b’ (&) and b!(¢,), fulfil the usual anti-
commutation relations (CAR) and they anticommute with b (gﬁ) and b’ (52)
according to the convention described in ([40], Section 4.1). See [24] arXiv for
explicit definitions.

Therefore the following anticommutation relations hold

{b.(£).6°(&)}=6(&-&)

1. (). (&) =6(5-4)

{67 (&).61 (&)} =0 (B.4)
{67 (&).00(&)f = {0 (&)-61 (&)} =0

(b1 (&) (&)} = {] (£,).80 (&)} =0

(B.5)

are bounded operators on S(V ) and %(Ve) respectively satisfying
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[6: ()] =[P (2)] =] -- (B.6)

The Dirac quantized fields for the neutrinos and antineutrinos associated with
the electron and the muon respectively are denoted by Y (x) and

‘P(V“) (x).
We have

)55 )

and

N W

(J'déz3 Py vg)(ég’3)b+<g3)+'|'d§3e—i(px (53) ( ))(B7)

W ()= 55 [ (a0 (2o, (2)+ fode ) (E)p () e
where §3=(p,—%j and §4=(p,%) with, for f=3,4,

485 =[P

B.
.[R3dg:ﬂ :jR3d3p >

See [5].

For the purpose of this paper one only needs to know e (53) and
yls )(54) explicitly. Ul )(cf}) and W™ )(§4) are given in [2].

By ([2], (3.6), (3.7), (3.24), (3.32)) and [35] we have

, v 1 1 (h(p
with
3 J—
i (p) = 211 1
2lp|(|p|-p*)\P +ip
and for |p| =p’ we set
0
ol
Moreover we have
y . 1 1 (=h (-
e (&) =1 E)(_”’Ej:_z{h ((_S)J (B.12)
with
1 _ 1 + .2
U 0] B
20pl(|pl+p*) L IPIFP
and for |p| =—p° we set
1
h+ (_p) = [0]
Note that
DOI: 10.4236/0alib.1105352 28 Open Access Library Journal


https://doi.org/10.4236/oalib.1105352

J.-C. Guillot

HU(V“) (&) -1 (B.14)

c* - “W@) (53) c*
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