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Abstract 
In this paper, we have investigated and introduced some new definitions of 
transitivity on the set of all continuous maps, denoted by ( ),C X Y , called 

the point-wise convergence transitive, the compact-open transitive and point 
wise convergence topological transitive sets. Relationship between these new 
definitions is studied. Finally, we have introduced a number of very impor-
tant topological concepts and shown that every compact-open convergence 
transitive map implies point wise transitive maps but the converse not neces-
sarily true.  
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1. Introduction 

Let ( ),X τ  and ( ),Y σ  be two topological spaces and ( ),C X Y  be the set of 
all continuous maps from X into Y. Consider all possible sets of maps of the 
form 

[ ] ( ) ( ){ }, , : ,K U f C X Y f K U= ∈ ⊂  

where K is a compact set in X and U an open set in Y. The topology 3τ  gener-
ated by these sets [ ],K U  as a subbase is called the compact-open topology on 
( ),C X Y . Note that any open set in 3τ  is called co-open set and ( )( )3, ,C X Y τ  

is called co-topological space. The compliment of co-open set is called co-closed 
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set. We have introduced some new definitions of transitivity on ( ),C X Y , called 
the point-wise convergence transitive set, the compact-open transitive and point 
wise convergence topological transitive sets in C(X, Y). Relationship between 
these new definitions is studied. Finally, we have introduced a number of very 
important topological concepts and shown that every compact-open conver-
gence transitive set implies point wise transitive set and that every com-
pact-open-mixing system implies point wise convergence system but not con-
versely. Finally, we have shown that every strongly compact-open-mixing set 
implies strongly point wise convergence mixing set but the converse not neces-
sarily true.  

2. New Theorems of Point Wise-Convergence Topology 

Definition 2.1. Consider in ( ),C X Y  the sets  

{ } ( ) ( ){ }1
, , : , 1, ,k

i i i ii
x U f C X Y f x U i k= ∈ ∈ =   

where 1, , kx x X∈ , 1, , kU U  are open sets in Y. 
The topology 2τ  generated by these sets in their capacity as a subset is called 

the topology of point-wise convergence on ( ),C X Y . 
Note that any open set in 2τ  is called pc-open set and ( )( )2, ,C X Y τ  is 

called pc-topological space. The compliment of pc-open set is called pc-closed 
set.  

Definition 2.2. A function ( ) ( ): , ,F C X Y C X Y→  is called pc-irresolute if 
the inverse image of each pc-open set is a pc-open set in ( ),C X Y . 

Definition 2.3. A map ( ) ( ): , ,F C X Y C X Y→  is pcr-homeomorphism if it 
is bijective and thus invertible and both F and 1F −  are pc-irresolute. 

The systems ( ) ( ): , ,F C X X C X X→  and ( ) ( ): , ,G C Y Y C Y Y→  are to-
pologically pcr-conjugate if there is a pcr-homeomorphism ( ) ( ): , ,H C X X C Y Y→  
such that H F G H=  . 

Let ( )( )2, ,C X Y τ  be a pc-topological space. The intersection of all pc-closed 
sets of ( )( )2, ,C X Y τ  containing A is called the pc-closure of A and is denoted 
by ( )pcCl A . 

Definition 2.4. Let ( )( )2, ,C X Y τ  be a point wise convergence-topological 
space, and ( ) ( ): , ,F C X Y C X Y→  be a map. The map F is said to have pc-dense 
orbit if there exists ( ),f C X Y∈  such that ( )( ) ( ),pc FCl O f C X Y= .  

Definition 2.5. Let ( )( )2, ,C X Y τ  be a pc-topological space, and  
( ) ( ): , ,F C X Y C X Y→  be a pc-irresolute map, then F is said to be a 

point-wise-converge-transitive (shortly pc-transitive) map if for every pair of 
pc-open sets U and V in ( )( )2, ,C X Y τ  there is a positive integer n such that 

( )nF U V φ∩ ≠ . 
Definition 2.6. Let ( )( )2, ,C X Y τ  be a point wise convergence-topological 

space, and ( ) ( ): , ,F C X Y C X Y→  be a pc-irresolute then the set ( ),A C X Y⊆  
is called pc-type transitive set if for every pair of non-empty pc-open sets U and 
V in ( ),C X Y  with A U φ∩ ≠  and A V φ∩ ≠  there is a positive integer n 
such that ( )nF U V φ∩ ≠ . 
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Definition 2.7. 1) Let ( )( )1, ,C X Y τ  be a point-wise convergence-topological 
space, and ( ) ( ): , ,F C X Y C X Y→  be a pc-irresolute then the set ( ),A C X Y⊆  
is called is called topologically pc-mixing set if, given any nonempty pc-open 
subsets ( ), ,U V C X Y⊆  with A U φ∩ ≠  and A V φ∩ ≠  then 0N∃ >  such 
that ( )nF U V φ∩ ≠  for all n N> . 

2) The set ( ),A C X Y⊆  is called a weakly pc-mixing set of ( )( ), ,C X Y F  if 
for any choice of nonempty pc-open subsets 1 2,V V  of A and nonempty pc-open 
subsets 1 2,U U  of ( ),C X Y  with 1A U φ∩ ≠  and 2A U φ∩ ≠  there exists 

Nn∈  such that ( )1 1
nF V U φ∩ ≠  and ( )1 2

nF V U φ∩ ≠ . 
3) The set ( ),A C X Y⊆  is strongly pc-mixing if for any pair of pc-open sets 

U and V with U A φ∩ ≠  and V A φ∩ ≠ , there exist some n∈N  such that 
( )kF U V φ∩ ≠  for any k n≥ . 

4) Any element ( ),f C X Y∈  such that its orbit ( )FO f  is pc-dense in X. is 
called hypercyclic element. 

5) A system ( )( ), ,C X Y F  is said to be topologically pc-mixing if, given 
pc-open sets U and V in ( ),C X Y , there exists an integer N, such that, for all
n N> , one has ( )nF U V φ∩ ≠ . 

6) A system ( )( ), ,C X Y F  is called topologically pc-mixing if for any 
non-empty pc-open set U, there exists Nn∈  such that ( )n

n N
F U

≥


 is pc-dense 
in ( ),C X Y . 

3. Definitions and Theorems of Compact-Open Topology 

The following definition supplies another version of a topology on the set 
( ),C X Y . 
Definition 3.1. Consider all possible sets of maps of the form [1]  

[ ] ( ) ( ){ }, , :K U f C X Y f K U= ∈ ⊂  

where K is a compact set in X and U an open set in Y. The topology 3τ  gener-
ated by these sets [ ],K U  as a subbase is called the compact-open topology on 
( ),C X Y . 
Note that any open set in 3τ  is called co-open set and ( )( )3, ,C X Y τ  is 

called co-topological space. The compliment of co-open set is called co-closed 
set. 

Definition 3.2. Let ( )( )3, ,C X Y τ  be a co-topological space. The map 
( ) ( ): , ,F C X Y C X Y→  is called co-irresolute if for every subset 3A τ∈ , 

( )1
3F A τ− ∈ . or, equivalently, F is co-irresolute if and only if for every co-closed 

set A, ( )1F A−  is co-closed set. 
Definition 3.3. A map ( ) ( ): , ,F C X Y C X Y→  is cor-homeomorphism if it 

is bijective and thus invertible and both F and 1F −  are co-irresolute. 
The systems ( ) ( ): , ,F C X X C X X→  and ( ) ( ): , ,G C Y Y C Y Y→  are to-

pologically cor-conjugate if there is a cor-homeomorphism ( ) ( ): , ,H C X X C Y Y→  
such that H F G H=  . 

Let ( )( )3, ,C X Y τ  be a co-topological space. The intersection of all co-closed 
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sets of ( )( )3, ,C X Y τ  containing A is called the co-closure of A and is denoted 
by ( )coCl A . 

Definition 3.4. Let ( )( )3, ,C X Y τ  be a compact-open topological space, and 
( ) ( ): , ,F C X Y C X Y→  be a map. The map F is said to have co-dense orbit if 

there exists ( ),f C X Y∈  such that ( )( ) ( ),co FCl O f C X Y= . 
Definition 3.5. Let ( )( )3, ,C X Y τ  be a co-topological space, and  

( ) ( ): , ,F C X Y C X Y→  be a co-irresolute map, then F is said to be a com-
pact-open-transitive ( shortly co-transitive) map if for every pair of co-open sets 
U and V in ( )( )3, ,C X Y τ  there is a positive integer n such that ( )nF U V∩  is 
not empty. 

Definition 3.6. Let ( )( )3, ,C X Y τ  be a co-topological space, and  
( ) ( ): , ,F C X Y C X Y→  be a co-irresolute then the set ( ),A C X Y⊆  is called 

co-type transitive set if for every pair of non-empty co-open sets U and V in 
( ),C X Y  with A U φ∩ ≠  and A V φ∩ ≠  there is a positive integer n such 

that ( )nF U V φ∩ ≠ . 
Definition 3.7. 1) Let ( )( )3, ,C X Y τ  be a co-topological space, and  

( ) ( ): , ,F C X Y C X Y→  be a co-irresolute then the set ( ),A C X Y⊆  is called 
is called topologically co-mixing set if, given any nonempty co-open subsets 

( ), ,U V C X Y⊆  with A U φ∩ ≠  and A V φ∩ ≠  then 0N∃ >  such that 
( )nF U V φ∩ ≠  for all n N> . 

2) The set ( ),A C X Y⊆  is called a weakly co-mixing set of ( )( ), ,C X Y F  if 
for any choice of nonempty co-open subsets 1 2,V V  of A and nonempty co-open 
subsets 1 2,U U  of ( ),C X Y  with 1A U φ∩ ≠  and 2A U φ∩ ≠  there exists 

Nn∈  such that ( )1 1
nF V U φ∩ ≠  and ( )1 2

nF V U φ∩ ≠ . 
3) The set ( ),A C X Y⊆  is strongly co-mixing if for any pair of co-open sets 

U and V with U A φ∩ ≠  and V A φ∩ ≠ , there exist some n∈N  such that 
( )kF U V φ∩ ≠  for any k n≥ .  

4) A system ( )( ), ,C X Y F  is said to be topologically co-mixing if, given 
co-open sets U and V in ( ),C X Y , there exists an integer N, such that, for all
n N> , one has ( )nF U V φ∩ ≠ . For related works about weakly mixing see [2], 
[3] and [4]. 

4. Conclusions 

We have the following results: 
1) Every compact-open-transitive set implies point wise convergence set but 

not conversely. 
2) Every compact-open-mixing system implies point wise convergence system 

but not conversely. 
3) Every strongly compact-open-mixing set implies strongly point wise con-

vergence mixing set. 
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