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Abstract 
This paper provides an extension to an optimal control problem using the 
negative logarithm of deterioration and spoilage function as total cost. This 
function must be minimized at the end of planning period depending on the 
alternative quadratic exponential form. The co-state variable ( )0 tλ  has neg-

ative values along the optimal trajectory according to the Pontryagin Mini-
mum Principle (PMP). The different values of this co-state variable are inves-
tigated using initial values for the optimal control rates, separately. The con-
trolled system according to each value is presented. Studying the behavior of 
optimal inventory levels, the optimal production rates, and the optimal spoi-
lage function, it is our optimal solution along the optimal trajectory. The ef-
fectiveness of increasing and decreasing the co-state values on the optimal 
trajectory especially at the end of planning period is investigated. Also, the 
sensitivity analysis that reflects the effect of changes of different parameters 
(the deterioration and spoilage parameters values, and the initial values of in-
ventory levels and production rates) on the optimal solution is explained with 
many different cases. Finally, we compared, numerically, the results for using 
these different co-state values with the results obtained when this value is 
negative. 
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1. Introduction 

An optimal control problem of multi-item inventory model has a wide impor-
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tance in practice. El-Sayed [1] has studied the effect of different types of demand 
rates on the total cost function, which refers to minimize the negative value of 
logarithm of deterioration and spoilage function at the end of planning period, 
using the Pontryagin Minimum Principle (PMP) for −1 value for the co-state 
variable ( )0 tλ . Now we need to know whether the changing of co-state values 
of this variable has effects on the optimal trajectory or not. So, in this paper, we 
will extend this study using different co-state values, whether less or more than 
negative one, for the co-state variable ( )0 tλ , using initial values for the optimal 
control rates. The purpose of this paper is obtaining the optimal inventory levels, 
the optimal production rates, and the minimum value of deterioration and spoi-
lage function as the total cost at the end of planning period, and also studying 
the behavior of an optimal trajectory for each value, studying the sensitivity 
analysis of changing the parameters values of the model. As it is expected, the 
optimal inventory levels of the two items could be affected by these changes as 
we shall see later. 

So, we concentrated on the sensitivity analysis of changing the spoilage para-
meters on the optimal solution especially at the end of planning period. Finally, 
to complete this study, we must compare the obtained results for these different 
co-state values with the results which are obtained when the co-state variable 
equals −1. 

Zhao and Prentice [2] have presented the quadratic exponential form (QEF) 
for the two correlated variables 1 2,X X  as: 

( ) { } { }
1 2

1 2 1 1 2 2 12 1 2
1 1 2 2 12 1 2

,

1, exp
exp

x x

f x x x x x x
x x x x

θ θ θ
θ θ θ

= + +
+ +∑

.    (1) 

El-Sayed [1] has supposed that 1 1 1uθ ψ= , 2 2 2uθ ψ=  and 12 12 1 2u uθ ψ= , 
where the spoilage parameters 1ψ , 2ψ  and 12ψ  depend on the control va-
riables 1U  and 2U , 0sψ ′ > .  

Since 1θ , 2θ  and 12θ  are the deterioration parameters, 0sθ ′ > .  
So, we can use the normalizing term, { }

1 2

1 1 2 2 12 1 2
,

exp
x x

x x x xθ θ θ+ +∑ , in the 
function (1) to be rewritten in the exponential form, El-Sayed et al. [3], as shown 
below: 

( ) ( ){ }1 2 1 1 2 2 12 1 2 1 1 2 2 12 1 2, exp log 1f x x x x x x u u u uθ θ θ ψ ψ ψ= + + − + + + .    (2) 

The minimizing of an integral of negative logarithm of this function can be 
used as the total cost. This cost reflects the levels of deterioration and spoilage of 
items at the end of planning period. 

This paper can be organized as follows: Section 2 presents the mathematical 
model for the optimal control problem and the coresponding controlled systems. 
Section 3 presents the numerical solution for the controlled systems for different 
rates and different co-state values. Section 4 presents the sensitivity analysis of 
the model parameters and co-state variable ( )0 tλ . Finally Section 5 gives some 
conclusions. 
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2. The Model 

Let us define the following parameters, which are used in the mathematical 
optimal control model: 

( )iX t : Inventory levels at time t. 
( )iU t : Production rates at time t. 

T: Length of planning period. 

0ix : Initial inventory levels. 

iia : Deteriration coefficient due to self-contact of item ix . 

ija : Deteriration coefficient of ix  due to presence a unit of jx , 1,2i j≠ = . 
( )1 2, ,iD x x t : Demand rates of ( )1 2,x x . 

1ψ : Spoilage rate of of 1x , 1 0ψ > . 

2ψ : Spoilage rate of of 2x , 2 0ψ > . 

12ψ : Spoilage rate of ( )1 2,x x , jointly, 12 0ψ > . 

1θ : Natural deterioration rate of 1x , 1 0θ > . 

2θ : Natural deterioration rate of 2x , 2 0θ > . 

12θ : Natural deterioration rate of ( )1 2,x x , jointly, 12 0θ > . 
As we mentioned before, the integral of negative logarithm of the function (2), 

which represents the deterioration and spoilage function, is used as a cost 
function: 

( ) ( )

( )

0 1 2
0

1 1 2 2 12 1 2 1 1 2 2 12 1 2
0

ln , d

log 1 d .

T

T

x T f x x t

x x x x u u u u tθ θ θ ψ ψ ψ

= −

= − − − + + + +  

∫

∫
    (3) 

So, the problem can be formulated as: 

( ) ( )0 1 1 2 2 12 1 2 1 1 2 2 12 1 2
0

Minimize log 1 d ,
T

x T x x x x u u u u tθ θ θ ψ ψ ψ
 

= − − − + + + +   
 

∫  

(4) 

subject to:  

( )1 1 1 12 2 11 1 1 1,x x a x a x D uθ= − + + − +                  (5) 

( )2 2 2 21 2 22 2 2 2 ,x x a x a x D uθ= − + + − +                 (6) 

and  

( ) ( ) ( ) ( )1 2 1 20, 0, 0, 0,x t x t u t u t≥ ≥ ≥ ≥              (7) 

where, 

( )1 2 1 2 12 1 2 12, , , 0, , , 0, , , 0.t T D x x t θ θ θ ψ ψ ψ∈ ≥ > >  

Using the Pontryagin Minimum Principle (PMP), let us define 
( )0

0

x T
x

t
∂

=
∂

 ,  

and introduce the co-state variables 0λ , 1λ  and 2λ  corresponding to the state 
variables 0X , 1X  and 2X  respectively. From (4), (5) and (6), we can write 
the Hamiltonian function as follows:  

0 0 1 1 2 2 ,H x x xλ λ λ= + +                        (8) 
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Moreover, to obtain the co-state equations and the Lagrange multipliers 
associated with the constraints (5) and (6), we formulate the Lagrangian 
function as follows:  

1 1 2 2 3 1 4 2L H x x u uµ µ µ µ= + + + + ,                (9) 

where, ( ) ( ) ( ) ( )1 2 3 4, , ,t t t tµ µ µ µ  are known as Lagrange multipliers. These 
Lagrange multipliers satisfy the conditions:  

( ) ( ) ( ) ( )1 2 3 4 1 1 2 2 3 1 4 20, 0, 0, 0, 0, 0, 0, 0.t t t t x x u uµ µ µ µ µ µ µ µ≥ ≥ ≥ ≥ = = = = (10) 

From (9), we can easily obtain the co-state equations  

( ) , 0,1, 2,i
i

Lt i
x

λ
∂

= − =
∂

                    (11) 

then,  

( ) ( ) ( )0 1 2
0 1 2

0, , ,L L Lt t t
x x x

λ λ λ
∂ ∂ ∂

= − = = − = −
∂ ∂ ∂

           (12) 

The first equation of (12) shows that the co-state variable ( )0 tλ  remains 
constant along the optimal trajectory, and the Pontryagin principle requires that 
this constant should be a negative value, Sethi and Thompson [4].  

In this paper, we will use different values for this co-state variable ( )0 tλ .  

0 010, 2λ λ= − = −  or 0 0.1,λ = −                  (13) 

Substituting from (4), (5), (6), (8) and (13) in (9), we can write the 
Hamiltonian function, L, in the following form, first: when ( )0 10tλ = − : 

 

( )
( )
( )

1 1 2 2 12 1 2 1 1 2 2 12 1 2

1 1 1 12 2 11 1 1 1

2 2 2 21 2 22 2 2 2

1 1 2 2 3 1 4 2

10 log 1

.

L x x x x u u u u

x a x a x D u

x a x a x D u

x x u u

θ θ θ ψ ψ ψ

λ θ

λ θ

µ µ µ µ

= + + − + + +  
+ − + + − +  
+ − + + − +  
+ + + +

      (14) 

From conditions (7) and (10), we get  

 ( ) ( ) ( ) ( )1 2 3 4 0t t t tµ µ µ µ= = = = .               (15) 

Substituting from (13) and (14) into (12) we get  

1 2
1 1 1 12 2 11 1 2 21 2 1 12 2

1 1

10 2 10 ,D Da x a x a x x
x x

λ λ θ λ θ θ
   ∂ ∂

= + + + + + − −   ∂ ∂   
   (16) 

2 1
2 2 2 21 1 22 2 1 12 1 2 12 1

2 2

10 2 10 ,D Da x a x a x x
x x

λ λ θ λ θ θ
   ∂ ∂

= + + + + + − −   ∂ ∂   
   (17) 

with boundary conditions  

( ) 0, 1, 2i T iλ ≠ =                          (18) 

where T is the length of planning period which can be suggested. 
To obtain the optimal production rates (control variables) , 1, 2iU i = , we 

differentiate the Lagrange function (14) with respect to 1 2,u u  respectively and 
putting it equal to zero, we get 
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( )1 12 2
1

1 1 1 2 2 12 1 2

10
0.

1
uL

u u u u u
ψ ψ

λ
ψ ψ ψ

+∂
= − + =

∂ + + +
 

( )2 1 1
2

2 1 1 2 2 12 1 2

10
0.

1
uL

u u u u u
ψ ψ

λ
ψ ψ ψ

+∂
= − + =

∂ + + +
 

Then,  

( ) ( )
* 2 2
1 1

1 1 12 2

11 , 0
10

uU t
u

ψ
λ

λ ψ ψ
+

= − ≠
+

               (19) 

( ) ( )
* 1 1
2 2

2 2 12 1

11 , 0
10

uU t
u

ψ
λ

λ ψ ψ
+

= − ≠
+

               (20) 

Since, 1u  and 2u  are start values of the production rates. Then using the 
Equations (5), (6), (16) and (17), we get the controlled system of non-linear 
ordinary differential equations: 

( )
( )

1 1 1 12 2 11 1 1 1

2 2 2 21 2 22 2 2 2

1 2
1 1 1 12 2 11 1 2 21 2 1 12 2

1 1

2 1
2 2 2 21 1 22 2 1 12 1 2 12 1

2 2

10 2 10

10 2 10

x x a x a x D u

x x a x a x D u

D Da x a x a x x
x x

D Da x a x a x x
x x

θ

θ

λ λ θ λ θ θ

λ λ θ λ θ θ

= − + + − + 


= − + + − + 
   ∂ ∂ 

= + + + + + − −    ∂ ∂    
   ∂ ∂ = + + + + + − −   ∂ ∂    











 (21) 

We can construct this system when 0 2λ = − :  

( )
( )

1 1 1 12 2 11 1 1 1

2 2 2 21 2 22 2 2 2

1 2
1 1 1 12 2 11 1 2 21 2 1 12 2

1 1

2 1
2 2 2 21 1 22 2 1 12 1 2 12 1

2 2

2 2 2

2 2 2

x x a x a x D u

x x a x a x D u

D Da x a x a x x
x x

D Da x a x a x x
x x

θ

θ

λ λ θ λ θ θ

λ λ θ λ θ θ

= − + + − + 


= − + + − + 
   ∂ ∂ 

= + + + + + − −    ∂ ∂    
   ∂ ∂ = + + + + + − −    ∂ ∂    









 (22) 

and when 0 0.1λ = −  

( )
( )

1 1 1 12 2 11 1 1 1

2 2 2 21 2 22 2 2 2

1 2
1 1 1 12 2 11 1 2 21 2 1 12 2

1 1

2 1
2 2 2 21 1 22 2 1 12 1 2 12 1

2 2

0.1 2 0.1

0.1 2 0.1

x x a x a x D u

x x a x a x D u

D Da x a x a x x
x x

D Da x a x a x x
x x

θ

θ

λ λ θ λ θ θ

λ λ θ λ θ θ

= − + + − + 


= − + + − + 
   ∂ ∂ 

= + + + + + − −    ∂ ∂   
   ∂ ∂

= + + + + + − −   ∂ ∂   














 (23) 

The optimal control variables can be constructed when 0 2λ = − : 

( ) ( )
* 2 2
1 1

1 1 12 2

11 , 0,
2

uU t
u

ψ
λ

λ ψ ψ
+

= − ≠
+

                (24) 

( ) ( )
* 1 1
2 2

2 2 12 1

11 , 0,
2

uU t
u

ψ
λ

λ ψ ψ
+

= − ≠
+

                (25) 

and when ( )0 0.1tλ = − :  
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( ) ( )
* 2 2
1 1

1 1 12 2

11 , 0,
0.1

uU t
u

ψ
λ

λ ψ ψ
+

= − ≠
+

                (26) 

( ) ( )
* 1 1
2 2

2 2 12 1

11 , 0.
0.1

uU t
u

ψ
λ

λ ψ ψ
+

= − ≠
+

                (27) 

This system can be used to describe the time evolution of inventory levels and 
production rates. The analytical solution of this system is very difficult and then 
we can solve it numerically. 

3. Numerical Solution 

The solution of optimal control problem of this model will be carried out using 
Pontryagin Minimum Principle (PMP). The numerical solution is to be 
necessary when the analytical solution is absence for the non-linear systems (21, 
22 and 23). In this solution we solve the non-linear ordinary differential 
equations using Runge-Kutta method, using the initial and boundary values for 
( ) ( ) ( )1 2 1, ,x t x t tλ  and ( )2 tλ . For simplicity we supposed that the initial values 

10 20,u u  can be used alternative to 1 2,u u  in the Equations (19), (20), (24), (25), 
(26) and (27) to obtain the optimal production rates ( )*

1U T  and ( )*
2U T  re-

spectively. Also, we will use these initial values to obtain the optimal total cost 
( )*

0x T  as it is in the Equation (4).  
The numerical solution can be explained by different types of demand as: 
1) The demand rates are constant: 

( )1 2, , .iD x x t γ=  

2) The demand rates are linear functions of inventory levels and time: 

( )1 2, , .i i iD x x t w xγ= +  

3) The demand rates are logistic functions of inventory levels and time: 

( ) ( )1 2, , 2 .i i iD x x t x xκ= −  

4) The demand rates are periodic functions of time: 

( ) ( )1 2, , 1 cos .iD x x t b t= −  

where , ,i i iwγ κ  and ( )1,2ib i =  are positive constants.  
Table 1 presents the values of system parameters and the initial states which 

are used in the numerical examples for four cases of demand rate functions as 
follows:  

The next subsections explain the controlled system for each case of the de-
mand rates functions with different co-state value ( )0 tλ  as shown below. 

3.1. Co-State Value 0 10λ = −   

In this subsection we will use different demand rates with 0 10λ = − . 

3.1.1. Constant Rates 
We will present the model with demand function as constant rates, ( )1 2, , iD x x t γ= . 
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Substituting in the controlled system (21) by the constant demand rates, we 
have the controlled system: 

( ) ( )

( ) ( )
( )
( )

2 20
1 1 1 12 2 11 1 1

1 1 12 20

1 10
2 2 2 21 2 22 2 2

2 2 12 10

1 1 1 12 2 11 1 21 2 2 1 12 2

2 2 2 21 1 22 2 12 1 1 2 12 1

11
10

11
10

10 2 10

10 2 10

ux x a x a x
u
ux x a x a x

u

a x a x a x x

a x a x a x x

ψ
θ γ

λ ψ ψ

ψ
θ γ

λ ψ ψ

λ λ θ λ θ θ

λ λ θ λ θ θ

+ = − + + − + − + 
+ = − + + − + − +

= + + + − −

= + + + − − 









        (28) 

Solving the controlled system (28) numerically, we get some results as dis-
played in Table 2. 

3.1.2. Linear Rates 
Also, we will present the model with demand function as linear rates, 
( )1 2, , i i iD x x t w xγ= + . Substituting in the controlled system (21) by the linear 

demand rates, we have the controlled system: 

( ) ( )

( ) ( )
( )
( )

2 20
1 1 1 1 12 2 11 1 1

1 1 12 20

1 10
2 2 2 2 21 2 22 2 2

2 2 12 10

1 1 1 1 12 2 11 1 21 2 2 1 12 2

2 2 2 2 21 1 22 2 12 1 1 2 12 1

11
10

11
10

10 2 10

10 2 10

ux x w a x a x
u
ux x w a x a x

u

w a x a x a x x

w a x a x a x x

ψ
θ γ

λ ψ ψ

ψ
θ γ

λ ψ ψ

λ λ θ λ θ θ

λ λ θ λ θ θ

+ = − + + + − + − + 
+ = − + + + − + − +

= + + + + − −


= + + + + − − 







 

      (29) 

Solving the controlled system (29) numerically, we get some results as dis-
played in Table 2. 

3.1.3. Logistic Rates 
We present the model with demand function as logistic rates,  
( ) ( )1 2, , 2 i i iD x x t x xκ= − .  

 
Table 1. Values and initial states of system parameters. 

10u  20u  1θ  2θ  12θ  12a  21a  11a  22a  1γ  

20 18 0.02 0.01 0.05 0.8 0.7 0.02 0.01 0.8 

10x  20x  20x  2w  1κ  2κ  1b  2b  T 2γ  

1 1 0.3 0.2 0.9 0.8 0.9 0.8 1 0.7 

1ψ  2ψ  12ψ  ( )1 Tλ  ( )2 Tλ       

0.02 0.01 0.05 1 1      

 
Table 2. The optimal solution when 0 10λ = − . 

Demand Rates ( )1x T∗  ( )2x T∗  ( )1u T∗  ( )2u T∗  ( )0x T∗  

Constant 0.88 0.95 0.87 0.86 0.07 

Linear 0.81 0.87 0.87 0.86 0.10 

Logistic 0.97 1.10 0.87 0.86 0.00 

Periodic 1.16 1.14 0.87 0.86 0.06 
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Substituting in the controlled system (21) by the logistic demand rates, we 
have the controlled system: 

( )( ) ( )

( )
( )( )
( )( )

2 20
1 1 1 1 1 12 2 11 1

1 1 12 20

1 10
2 2 2 2 2 21 2 22 2

2 2 12 10

1 1 1 1 11 1 1 12 2 21 2 2 1 12 2

2 2 2 2 22 2 2 21 1 12 1 1 2

112
10

11(2( ) )
10

2 2 10 10

2 2 10 10

ux x x a x a x
u

ux x x a x a x
u

x a x a x a x x

x a x a x a x

ψ
κ θ

λ ψ ψ

ψ
κ θ

λ ψ ψ

λ λ κ θ λ θ θ

λ λ κ θ λ θ θ

+
= − − + + + + −

+

+
= − − + + + + −

+

= − + + + + − −

= − + + + + − −









12 1x












    (30) 

Solving the controlled system (30) numerically, we get some results as dis-
played in Table 2. 

3.1.4. Periodic Rates 
Finally, we will present the model with demand function as periodic rates, 
( ) ( )1 2, , 1 cosiD x x t b t= − . Substituting in the controlled system (21) by the pe-

riodic demand rates, we have the controlled system: 

( ) ( ) ( )

( ) ( ) ( )
( )
( )

2 20
1 1 1 12 2 11 1 1

1 1 12 20

2 10
2 2 2 21 2 22 2 2

2 1 12 10

1 1 1 12 2 11 1 21 2 2 1 12 2

2 2 2 21 1 22 2 12 1 1 2 12 1

111 cos
10

111 cos
10

10 2 10

10 2 10

ux x a x a x b t
u
ux x a x a x b t

u

a x a x a x x

a x a x a x x

ψ
θ

λ ψ ψ

ψ
θ

λ ψ ψ

λ λ θ λ θ θ

λ λ θ λ θ θ

+ = − + + − + + − + 
+ = − + + − + + − +

= + + + − −


= + + + − − 







 

    (31) 

Solving the controlled system (31) numerically, we get some results as dis-
played in Table 2. 

As we see from Table 2, the otimal value of the cost function when 0 10λ = −  
is achieved in the logistic rate (0). The optimal production rates are simillar 
(0.87, 0.86) in all cases. The inventory levels are smaller (0.81, 0.87) in the linear 
case but higher (1.16, 1.14) in the periodic case. 

3.2. Co-State 0 2λ = −  

Also, in this subsection we use the previous demand rates with 0 2λ = − . 

3.2.1. Constant Rates 
We will present the model with demand function as constant rates, 
( )1 2, , iD x x t γ= . Substituting in the controlled system (22) by the constant de-

mand rates, we have the controlled system: 

( ) ( )

( ) ( )
( )
( )

2 20
1 1 1 12 2 11 1 1

1 1 12 20

1 10
2 2 2 21 2 22 2 2

2 2 12 10

1 1 1 12 2 11 1 21 2 2 1 12 2

2 2 2 21 1 22 2 12 1 1 2 12 1

11=
2

11=
2

= 2 2 2

= 2 2 2

ux x a x a x
u
ux x a x a x

u

a x a x a x x

a x a x a x x

ψ
θ γ

λ ψ ψ

ψ
θ γ

λ ψ ψ

λ λ θ λ θ θ

λ λ θ λ θ θ

+ − + + − + − + 
+ − + + − + − +

+ + + − −

+ + + − − 









          (32) 
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Solving the controlled system (32) numerically, we get some results which are 
displayed in Table 3. 

3.2.2. Linear Rates 
Also, we will present the model with demand function as linear rates, 
( )1 2, , i i iD x x t w xγ= + . Substituting in the controlled system (22) by the linear 

demand rates, we have the controlled system: 

( ) ( )

( ) ( )
( )
( )

2 20
1 1 1 1 12 2 11 1 1

1 1 12 20

1 10
2 2 2 2 21 2 22 2 2

2 2 12 10

1 1 1 1 12 2 11 1 21 2 2 1 12 2

2 2 2 2 21 1 22 2 12 1 1 2 12 1

11
2

11
2

2 2 2

2 2 2

ux x w a x a x
u
ux x w a x a x

u

w a x a x a x x

w a x a x a x x

ψ
θ γ

λ ψ ψ

ψ
θ γ

λ ψ ψ

λ λ θ λ θ θ

λ λ θ λ θ θ

+ = − + + + − + − + 
+ = − + + + − + − +

= + + + + − −

= + + + + − − 









       (33) 

Solving the controlled system (33) numerically, we get the results displayed in 
Table 3. 

3.2.3. Logistic Rates 
We present the model with demand function as logistic rates,  
( ) ( )1 2, , 2 i i iD x x t x xκ= − . Substituting in the controlled system (22) by the lo-

gistic demand rates, we have the controlled system: 

( )( ) ( )

( )( ) ( )
( )( )
( )( )

2 20
1 1 1 1 1 12 2 11 1

1 1 12 20

1 10
2 2 2 2 2 21 2 22 2

2 2 12 10

1 1 1 1 11 1 1 12 2 21 2 2 1 12 2

2 2 2 2 22 2 2 21 1 12 1 1 2 12 1

112
2

112
2

2 2 2 2

2 2 2 2

ux x x a x a x
u
ux x x a x a x

u

x a x a x a x x

x a x a x a x x

ψ
κ θ

λ ψ ψ

ψ
κ θ

λ ψ ψ

λ λ κ θ λ θ θ

λ λ κ θ λ θ θ

+ = − − + + + + − + 
+ = − − + + + + − +

= − + + + + − −

= − + + + + − −














      (34) 

Solving the controlled system (30) numerically, we get the results are dis-
played in Table 3. 

3.2.4. Periodic Rates 
Finally, we will present the model with demand function as periodic rates, 
( ) ( )1 2, , 1 cosiD x x t b t= − . Substituting in the controlled system (22) by the pe-

riodic demand rates, we have the controlled system: 
 
Table 3. The optimal solution when 0 2λ = − . 

Demand Rates ( )1x T∗  ( )2x T∗  ( )1u T∗  ( )2u T∗  ( )0x T∗  

Constant 1.42 1.57 0.36 0.31 0.00 

Linear 1.30 1.42 0.36 0.31 0.00 

Logistic 0.65 0.68 0.36 0.31 0.00 

Periodic 1.57 1.69 0.36 0.31 0.00 
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( ) ( ) ( )

( ) ( ) ( )
( )
( )

2 20
1 1 1 12 2 11 1 1

1 1 12 20

1 10
2 2 2 21 2 22 2 2

2 2 12 10

1 1 1 12 2 11 1 21 2 2 1 12 2

2 2 2 21 1 22 2 12 1 1 2 12 1

111 cos
2

111 cos
2

2 2 2

2 2 2

ux x a x a x b t
u
ux x a x a x b t

u

a x a x a x x

a x a x a x x

ψ
θ

λ ψ ψ

ψ
θ

λ ψ ψ

λ λ θ λ θ θ

λ λ θ λ θ θ

+ = − + + − + + − + 
+ = − + + − + + − +

= + + + − −

= + + + − − 









    (35) 

Solving the controlled system (35) numerically, we get the results can be dis-
played in Table 3. 

We will use the parameters values as they are in Table 1 without changing in 
all cases.  

As we see from Table 3, the otimal value of the cost function when 0 2λ = −  
is equal (0) in all cases. Also, the optimal production rates are simillar (0.36, 
0.31) in all cases. The optimal inventory levels are smaller (0.65, 0.68) in the 
logistic case but higher (1.57, 1.69) in the periodic case. 

3.3. Co-State Value 0 0.1λ = −  

Finally, we use the previous demand rates with 0 0.1λ = − . 

3.3.1. Constant Rates 
We will present the model with demand function as constant rates, ( )1 2, , iD x x t γ= .  

Substituting in the controlled system (23) by the constant demand rates, we 
have the controlled system: 

( ) ( )

( ) ( )
( )
( )

1 20
1 1 1 12 2 11 1 1

1 2 12 20

1 10
2 2 2 21 2 22 2 2

2 2 12 10

1 1 1 12 2 11 1 21 2 2 1 12 2

2 2 2 21 1 22 2 12 1 1 2 12 1

11
0.1

11
0.1

0.1 2 0.1

0.1 2 0.1

ux x a x a x
u

ux x a x a x
u

a x a x a x x

a x a x a x x

ψ
θ γ

λ ψ ψ

ψ
θ γ

λ ψ ψ

λ λ θ λ θ θ

λ λ θ λ θ θ

+ = − + + − + − + 
+ = − + + − + − +

= + + + − −

= + + + − − 









         (36) 

Solving the controlled system (36) numerically, we get the results displayed in 
Table 4. 

3.3.2. Linear Rates 
Also, we will present the model with demand function as linear rates,  
( )1 2, , i i iD x x t w xγ= + . Substituting in the controlled system (23) by the linear 

demand rates, we have the controlled system: 

( ) ( )

( ) ( )
( )
( )

1 20
1 1 1 1 12 2 11 1 1

1 2 12 20

1 10
2 2 2 2 21 2 22 2 2

2 2 12 10

1 1 1 1 12 2 11 1 21 2 2 1 12 2

2 2 2 2 21 1 22 2 12 1 1 2 12 1

11
0.1

11
0.1

0.1 2 0.1

0.1 2 0.1

ux x w a x a x
u

ux x w a x a x
u

w a x a x a x x

w a x a x a x x

ψ
θ γ

λ ψ ψ

ψ
θ γ

λ ψ ψ

λ λ θ λ θ θ

λ λ θ λ θ θ

+ = − + + + − + − + 
+

= − + + + − + − +

= + + + + − −

= + + + + − −
















       (37) 
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Table 4. The optimal solution when 0 0.1λ = − . 

Demand Rates ( )1x T∗  ( )2x T∗  ( )1u T∗  ( )2u T∗  ( )0x T∗  

Constant 0.56 0.61 0.00 0.00 0.67 

Linear 0.33 0.40 0.00 0.00 0.60 

Logistic 0.37 0.13 0.00 0.00 0.06 

Periodic 0.21 0.24 0.00 0.00 0.16 

 
Solving the controlled system (37) numerically, we get the results displayed in 

Table 4. 

3.3.3. Logistic Rates 
We present the model with demand function as logistic rates,  
( ) ( )1 2, , 2 i i iD x x t x xκ= − .  
Substituting in the controlled system (23) by the logistic demand rates, we 

have the controlled system: 

( )( ) ( )

( )( ) ( )
( )( )
( )( )

1 20
1 1 1 1 1 12 2 11 1

1 2 12 20

1 10
2 2 2 2 2 21 2 22 2

2 2 12 10

1 1 1 1 11 1 1 12 2 21 2 2 1 12 2

2 2 2 2 22 2 2 21 1 12 1 1 2

112
0.1

112
0.1

2 2 0.1 0.1

2 2 0.1 0.

ux x x a x a x
u

ux x x a x a x
u

x a x a x a x x

x a x a x a x

ψ
κ θ

λ ψ ψ

ψ
κ θ

λ ψ ψ

λ λ κ θ λ θ θ

λ λ κ θ λ θ

+
= − − + + + + −

+

+
= − − + + + + −

+

= − + + + + − −

= − + + + + − −









12 11 xθ












     (38) 

Solving the controlled system (38) numerically, we get the results displayed in 
Table 4. 

3.3.4. Periodic Rates 
Finally, we will present the model with demand function as periodic rates, 
( ) ( )1 2, , 1 cosiD x x t b t= − . Substituting in the controlled system (23) by the pe-

riodic demand rates, we have the controlled system: 

( ) ( ) ( )

( ) ( ) ( )
( )
( )

1 20
1 1 1 12 2 11 1 1

1 2 12 20

1 10
2 2 2 21 2 22 2 2

2 2 12 10

1 1 1 12 2 11 1 21 2 2 1 12 2

2 2 2 21 1 22 2 12 1 1 2 12 1

111 cos
0.1

111 cos
0.1

0.1 2 0.1

0.1 2 0.1

ux x a x a x b t
u

ux x a x a x b t
u

a x a x a x x

a x a x a x x

ψ
θ

λ ψ ψ

ψ
θ

λ ψ ψ

λ λ θ λ θ θ

λ λ θ λ θ θ

+ = − + + − + + − + 
+

= − + + − + + − +

= + + + − −

= + + + − −
















   (39) 

Solving the controlled system (39) numerically, we get the results displayed in 
Table 4. 

We will use the parameters values as they are in Table 1. But we changed the 
next values, since the models are more sensititvity for changing these paprameters: 

Constant case 

1ψ  2ψ  12ψ  10u  20u  

0.04 0.03 0.8 22 20 
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Linear case 

1ψ  2ψ  12ψ  10u  20u  1w  2w  

0.05 0.05 0.80 22 20 0.3 0.2 

 
Logistic case 

1ψ  2ψ  12ψ  10u  20u  1k  2k  

0.03 0.03 0.40 22 20 0.6 0.5 

 
Periodic case 

1ψ  2ψ  12ψ  10u  20u  1b  2b  

0.01 0.01 0.50 22 20 0.3 0.2 

 
As we see from Table 4, the minimum cost when 0 0.1λ = −  is achieved in 

the constant case (0.67). Also, the optimal production rates are simillar (0, 0) in 
all cases. The optimal inventory levels are higher in the constant case but smaller 
in the logistic and periodic cases (0.13, 0.21). 

4. Sensitivity Analysis 

In this section will compare between the results when the co-state value 0 1λ = − , 
using the parameters values are used in Table 1. Then we can study the 
sensitivity analysis for cthese changes in all cases. 

The optimal production rates, when 0 1λ = − , is become:  

( )* 2 2
1 1

1 1 12 2

11 , 0uU t
u

ψ
λ

λ ψ ψ
+

= − ≠
+

                 (40) 

( )* 1 1
2 2

2 2 12 1

11 , 0uU t
u

ψ
λ

λ ψ ψ
+

= − ≠
+

                 (41) 

Also, we can use the initial values 10u  and 20u  alternatively to 1u  and 2u  
respectively. 

The controlled systems are become in each case as follow. 

4.1. Constant Rates 

The controlled system is become: 

( )

( )

( )
( )

2 20
1 1 1 12 2 11 1 1

1 1 12 20

1 10
2 2 2 21 2 22 2 2

2 2 12 10

1 1 1 12 2 11 1 21 2 2 1 12 2

2 2 2 21 1 22 2 12 1 1 2 12 1

11

11

2

2

ux x a x a x
u
ux x a x a x

u

a x a x a x x

a x a x a x x

ψ
θ γ

λ ψ ψ
ψ

θ γ
λ ψ ψ

λ λ θ λ θ θ

λ λ θ λ θ θ

+ = − + + − + − + 
+ = − + + − + − +

= + + + − −


= + + + − − 









           (42) 

4.2. Linear Rates 

The controlled system is become: 
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( )

( )

( )
( )

2 20
1 1 1 1 12 2 11 1 1

1 1 12 20

1 10
2 2 2 2 21 2 22 2 2

2 2 12 10

1 1 1 1 12 2 11 1 21 2 2 1 12 2

2 2 2 2 21 1 22 2 12 1 1 2 12 1

11

11

2

2

ux x w a x a x
u
ux x w a x a x

u

w a x a x a x x

w a x a x a x x

ψ
θ γ

λ ψ ψ
ψ

θ γ
λ ψ ψ

λ λ θ λ θ θ

λ λ θ λ θ θ

+ = − + + + − + − + 
+ = − + + + − + − +

= + + + + − −


= + + + + − − 









       (43) 

4.3. Logistic Rates 

The controlled system is become: 

( )( )

( )( )

( )( )
( )( )

2 20
1 1 1 1 1 12 2 11 1

1 1 12 20

1 10
2 2 2 2 2 21 2 22 2

2 2 12 10

1 1 1 1 11 1 1 12 2 21 2 2 1 12 2

2 2 2 2 22 2 2 21 1 12 1 1 2 12 1

112

112

2 2

2 2

ux x x a x a x
u
ux x x a x a x

u

x a x a x a x x

x a x a x a x x

ψ
κ θ

λ ψ ψ
ψ

κ θ
λ ψ ψ

λ λ κ θ λ θ θ

λ λ κ θ λ θ θ

+ = − − + + + + − + 
+ = − − + + + + − +

= − + + + + − −


= − + + + + − − 









      (44) 

4.4. Periodic Rates 

The controlled system is become: 

( ) ( )

( ) ( )

( )
( )

2 20
1 1 1 12 2 11 1 1

1 1 12 20

2 10
2 2 2 21 2 22 2 2

2 1 12 10

1 1 1 12 2 11 1 21 2 2 1 12 2

2 2 2 21 1 22 2 12 1 1 2 12 1

111 cos

111 cos

2

2

ux x a x a x b t
u
ux x a x a x b t
u

a x a x a x x

a x a x a x x

ψ
θ

λ ψ ψ
ψ

θ
λ ψ ψ

λ λ θ λ θ θ

λ λ θ λ θ θ

+ = − + + − + + − + 
+ = − + + − + + − +

= + + + − −


= + + + − − 









      (45) 

These systems can be solved numerically using the parameters values as used 
in Table 1. Because of the model is very sensitive when using the co-state value, 

0 1λ = −  , the following values have been changed in each case separately, and 
the other values remained without changing: 

Constant case 

10x  20x  10u  20u  

10 10 10 15 

 
Linear case 

10x  20x  10u  20u  1ψ  2ψ  12ψ  

10 10 10 15 0.05 0.04 0.20 

 
Logistic case 

10x  20x  10u  20u  12a  21a  12ψ  

1 1 10 15 0.90 0.80 0.30 
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Periodic case 

10x  20x  10u  20u  12ψ  

10 10 10 15 0.30 

 
The optimal cost ( )0x T∗  is become as in the function (4) after replacing 1u , 

2u  in the Equations (40) and (41) by 10u  and 20u  respectively. The optimal 
solution is presented when 0 1λ = −  in Table 5 as shown below. 

As we see from Table 5, the minimum cost when 0 1λ = −  is achieved in the 
logistic case (0.02). Unlike all previous cases for the values of ( )0 tλ , the optimal 
production rates are not simillar. These rates are higher (0.85, 0.76) in the linear 
case but smaller (0.48, 0.26) in the constant case . The optimal inventory levels 
are higher (1.86, 1.95) in the periodic case but smaller (0.89, 0.90) in the logistic 
case.  

So, we can conclude that the co-state value 0 1λ = −  is more sensitive for 
changing the values of parameters and actually more effectiveness on the optim-
al solution. 

5. Conclusions 

In this study, we discussed the optimal control problem using the deterioration 
and spoilage function, as the total cost must be minimized at the end of planning 
period, depending on the alternative quadratic exponential form (AQEF). We 
have used different values for the co-state variable [ ]0 10, 2, 1, 0.1λ = − − − −  
which has negative values along the optimal trajectory. Also, we studied the ef-
fectiveness of increasing and decreasing these values on the behavior of optimal 
trajectory and then the optimal solution (the inventory levels, the production 
rates and the total cost) at the end of planning period. Also, we explained the 
sensitivity analysis for the effect of changing the values of model parameters 
(especially the deterioration and spoilage parameters and the initial values for 
inventory levels and production rates) on the optimal solution when the variable 

[ ]0 0.1, 1λ = − − . Also, we compared the results that obtained when the variable 
[ ]0 10, 2, 0.1λ = − − − , with the results that obtained when 0 1λ = −  and have 

conducted that the model is more sensitive for changing the values of ( )0 tλ . 
Finally, we concluded that the production rates are similar in all cases for the  
 
Table 5. The optimal solution when 0 1λ = − . 

Demand Rates ( )1x T∗  ( )2x T∗  ( )1u T∗  ( )2u T∗  ( )0x T∗  

Constant 1.77 1.90 0.85 0.76 1.83 

Linear 1.5 1.56 0.48 0.26 1.10 

Logistic 0.89 0.90 0.76 0.61 0.02 

Periodic 1.86 1.95 0.75 0.60 1.41 
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co-state variable ( )0 tλ  except when 0 1λ = − . Also, the optimal inventory le-
vels of the two items are affected by these changes in all cases. 
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