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Abstract 
The propagation of natural waves in a cylindrical shell (elastic or viscoelastic) 
that is in contact with a viscous liquid is considered. The problem reduces to 
solving spectral problems with a complex incoming parameter. The system of 
ordinary differential equations is solved numerically, using the method of or-
thogonal rotation of Godunov with a combination of the Muller method. The 
dissipative processes in the mechanical system are investigated. A mechanical 
effect is obtained that describes the intensive flow of mechanical energy. 
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1. Introduction 
Quantitative data and some qualitative analysis of the dispersion properties of 
normal waves in a cylinder with a liquid were carried out in [1] [2] [3] [4]. In [5] 
[6] [7] [8], data were obtained for cylinders filled with a liquid of solid and soft 
materials. It is studied in a rather wide range of frequencies and wave numbers. 
The effect of the wall thickness of the cylinder on the dispersion properties of 
normal waves in the range of variation of the relative internal radiation is from 
0.3 to 0.99 [9] [10]. This article focuses on the dynamic behavior of a cylindrical 
shell (elastic or viscoelastic), which contains a viscous liquid. The problem of 
wave propagation in a filled or submerged liquid with a cylindrical shell is of 
great practical importance. The phenomenon of undulating fluid motion in elas-
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tic cylindrical shells has attracted the attention of many researchers [11]-[16]. In 
these papers, wave processes in an elastic cylindrical shell containing an ideal 
fluid are considered. Also, the refined classical shell equations, the average fluid 
flow (or gas) density, the influence of radial and longitudinal inertia forces are 
used. In [17] [18] [19], the laws of wave processes in an elastic shell with a visc-
ous fluid are analyzed in the model of linear equations of hydrodynamics of a 
viscous compressible fluid. Unlike other systems, a cylindrical shell (elastic or 
viscoelastic) and liquid (ideal or viscous) are considered as an inhomogeneous 
dissipative mechanical system [20] [21] [22]. 

2. Statement of the Problem 

An infinite length of deformable (viscoelastic) cylindrical shell of radius R with 
constant thickness 0h , density 0ρ , Poisson’s ratio 0ν , filled with a viscous 
fluid with density at equilibrium. Fluctuations of a shell under a load, the density 
of which is denoted p1, p2, pn respectively, can be described by following [11] [12] 
[14], equations: 

( ) ( )
( ) ( )2 2 2
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d ,

t

LL L R t L
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τ τ τ ρ
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Here ( ), ,r zu u uθ=u u —displacement vector points of the middle surface of 
the shell and membranes for Kirchhoff-Love it has a dimension equal to three 
( ); ;r zu u u v u wθ= = = , and to membranes such as the dimension of Timoshenko 
u is five. Here, in addition to the axial, circumferential and normal movements 
added more angles of rotation normal to the middle surface in the axial and cir-
cumferential directions [22]; { }Tu v w —the displacement vector with axial, 
radial and circumferential components, respectively (“+” sign in front of pn and 
the sign “−” before the last component of the inertial member says that is consi-
dered positive motion towards the center of curvature); ( )LR t τ− —the core of 
relaxation; 0L —instantaneous modulus of elasticity.

 
The amplitudes of the oscillations are considered small, which allows you to 

record the basic relations in the framework of the linear theory. The system of 
linear equations of motion of a viscous barotropic liquid can be written as [22]: 
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Here, in the Equations (2) ( ), ,r zθϑ ϑ ϑ=ϑ ϑ —the velocity vector of fluid par-
ticles; ρ∗  and Р—disturbance density and fluid pressure; 0ρ

∗  and а0—density 
and sound velocity in the fluid at rest; ,ν µ∗ ∗ —kinematic and dynamic viscosity;  

for the second viscosity coefficient λ∗  accepted ratio 2
3

λ µ•= − ; , ,rz rr rр р р θ — 

components of the stress tensor in the fluid. Equation (1), respectively, kinemat-
ic and dynamic boundary conditions, which, because of the thin-walled shell, we 
will meet on the middle surface (r = R). Equations (1) and (2) is a closed system 
of relations hydro visco elastic cylindrical shell for containing a viscous com-
pressible fluid. This is for shell obeying Kirchhoff-Love hypotheses. Be investi-
gated joint shell and liquid fluctuations, harmonic of the axial coordinate z and 
decay exponentially over time, or time-harmonic and damped with respect to z. 

3. Method of Solution 
We accept the integral terms in (1) small, then the function 

( ) ( )1, , e Ri tt t ω−=u r u r , 

where ( ), tψ r —slowly varying function of time, Rω —real constant. Next, us-
ing the procedure of freezing [23], then the integral-differential Equation (1) 
takes the form 
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where, for shell Kirchhoff-Love 
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and sine Fourier transforms relaxation kernel material. As an example, the vis-
coelastic material take three parametric kernel relaxation ( ) 1e t

LR t A tβ α− −= , 
ρ—material density shell; E—Young’s modulus; ν—Poisson’s ratio,

 
2 212a h R=  Let’s move on to the dimensionless axial coordinate x Rξ =  and 

multiply by R2 system (3). The matrix of the resulting system will take the form 
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(4) 

Expanding Equation (2) and (3) in coordinate form, it is easy to see that the 
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relations (2) - (3) break up into independent boundary value problems: 
- Torsional vibrations: 
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- Longitudinal transverse vibrations: 
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Let the wave process is periodic in z and fades over time, then is given a real 
wave number k, and the complex frequency is the desired characteristic value. 
Solution of (2) - (6) for the major unknowns satisfying constraints imposed above 
the dependence on time and coordinates z, should be sought in the form [24] 
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where , , , , , , , ,r z m m m r zU V Wϕ θσ τ τ ϑ ϑ ϑ —Amplitude integrated vector-function; 
к—wavy number; С—phase velocity; ω—complex frequency; m—circumferential 
wave number (the number of district-wave), takes values 1, 2,3,m =  . When m 
= 0, happening Ax symmetrical vibrations. This approach allows you to seek a 
solution for every fixed value of the wave number of the district m independent-
ly. 

In this way С, k, ω it is well-known real and complex spectral parameters of 
the type of problem. 

To elucidate their physical meaning consider two cases: 
1) Rк к= ; R iС С iC= + , Then the solution of (5) has the form of a sine wave 

х, whose amplitude decays over time; 
2) R Iк к iк= + ; RС С= , Then at each point х fluctuations established, but х 

attenuate. In the case of axially symmetric on the axis r = 0 conditions must be 
satisfied conditions 0r rzр рθ = = , 0rϑ = . If the outer surface г = R assumed 
stationary, then 0r zu u uϕ= = = . The superposition of the solutions (8) forms 
an exponentially decaying over time the standing wave that describes the natural 
oscillations of a liquid and a cylindrical shell of finite length with boundary con-
ditions. With infinite length sheath similarly specified type of movement (8) will 
be called private or free fluctuations. In the case of steady-state over time and 
fading coordinate the process, in contrast, is a well-known real rate of ω, as de-
sired be a complex wave number k. In contrast to their own, these fluctuations 
will be called the established. Actual values of the ω in the first case, and k, 
second frequency have the physical meaning of the process in time and the 
coordinate, respectively. Imaginary part—the rate of decay of wave processes in 
time and Z, respectively [25]. The value of 1/Imk sometimes defined as the in-
terval damped wave propagation. In the extreme case, the elastic range spread 
endless. The degree of attenuation of wave process in the time period is charac-
terized by the logarithmic decrement 

2π Im Recδ ω ω=                        (8) 

Decrement is similar to the spatial 

2π Im Rey k kδ = . 

You can also introduce the concept of phase velocity of its own and steady 
motions 

Re ,
Rec yc c

R k
ω ω

= =  

The values Сс and Су have physical sense speeds of zero state at its own and 
steady oscillations, respectively, and, in contrast to the elastic (real) case, do not 
coincide with each other at the same frequencies. Two types of oscillations (and 
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set their own), you can put two different formulations of the problem. And in 
the non-stationary case, namely the Cauchy problem for an infinite shell and 
boundary value problem for the semi-infinite interval changes Z. In either case, 
the solution is using the integral transformation of the decisions of the respective 
steady-state problems. For example, in the case of the Cauchy problem, the main 
vector of unknowns cY . It can be in a superposition of waves 

( ) ( ) ( )( ), , , exp dc c
n n

n
Y r z t Y r k t kz k t kϖ

∞

−∞

 = = − ∑ ∫ ,          (9) 

where vectors c
nY  are their own form of the problem of natural oscillations, 

normalized so that the spatial Fourier spectrum of the initial disturbance 
( ) ( ), , ,0cf r z Y r z=  forms a linear combination 

( ) ( ) ( ) ( ), , e d , , ,ikz c
n

n
f r z F r k k f r k Y r k

∞
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= =∑∫ .          (10) 

Similarly, the main vector of unknowns yY  boundary value problem is cal-
culated according to the expression 
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where y
kY  forms steady-state oscillation, the linear combination of which 

should form a Fourier spectrum given boundary perturbation 
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Obviously, the solutions (8) and (9) have a meaning only when there are (10) 
and (11). So, there are four possible variants of steady motions, which are dis-
cussed below, and established their own systems fluctuations shell—fluid inside 
and outside the sheath liquid [25]. Substituting the solution (7) in the system of 
differential Equations (2) - (6) we obtain a system of ordinary differential equa-
tions with complex coefficients, which is solved by Godunov’s orthogonal sweep 
method with a combination of method of Muller [26] in the complex arithmetic. 

4. Torsional Vibrations 

After performing in (5) the change of variables (7) permitting relations describ-
ing stationary torsional vibrations of the shell liquid, formulated in the form of 
the spectral boundary value problem for a system of two ordinary differential 
equations 
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First investigate fluctuations of fluid in the walls. Equations (12) can be con-
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verted to a single equation for the displacement v 
2
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θ θ
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ϑ ϑ ω µ
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The solution of Equation (13) is limited at r = 0 has the form 

2
1 1 0v A J r k i

v
ω
∗

 
= − + =  

 
.                      (14) 

where J1-Bessel function of the first order, and A is an arbitrary constant. Given 
the immobility of the shell, we obtain the dispersion equation 

2
1 1 0J R k i

v
ω
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 
− + =  

 
                        (15) 

from whence 

( )2 2
n тi v kω ∗= − + Γ                          (16) 

in the case of natural oscillations and 

2
n nk i

v
ω
∗= −Γ +                           (17) 

in the case of steady-state oscillations. Here, through the Гn marked the roots of 
Bessel functions assigned to R. As it can be seen from (15), (16) own motion 
aperiodicity always on time, with the anchor points are fixed (the phase velocity 
С0 = 0), while the steady motion are oscillatory in nature, as the nodal point 
move at the speed of Су, a monotonically increasing from zero to indefinitely 
with an increase in viscosity or ν ∗ . These characteristic features of the motion 
of a viscous medium will appear in the following more complex example. 

Let us now consider the relation (12) in the case of the internal arrangement 
of the liquid. This problem can be solved in the same way using special features 
and have a dispersion equation 
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2
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               (18) 

which was first obtained in A. Guz [22]. Here we have introduced new designa-
tions 

2
1

0 1 0

; ; ;h Gp h z R k i a
R v

ρ ω
ρ ρ

∗

∗= = = − + =

  

shear wave velocity shell: J0-Bessel function of zero order. 
The direct solution of the Equation (18) comes up against certain difficulties 

caused by the need to calculate the Bessel functions of complex argument. 
Therefore we examine (18) by means of asymptotic representations of these 
functions at small and large arguments z. The smallness of z occurs in the 
low-frequency vibrations. According to the known expansion J0 and J1 power series 

( )
2 2

0 11 ; 1 ;
4 2 8
z z zJ J z

 
= − = = − + 

 
              (19) 

 

DOI: 10.4236/oalib.1104563 7 Open Access Library Journal 
 

https://doi.org/10.4236/oalib.1104563


I. I. Safarov et al. 
 

Hold the expansions (19) only the first term, we obtain 

2
2 0k

a
ω

− + =  

dispersion equation of torsional vibrations or dry shell filled with an ideal liquid, 
keeping in (19) on the first two terms, we have the equation 

2
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the root of which, for example, in the case of steady-state oscillations is given by 
1 2

2
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The physical interpretation of (18) is provided below. Consider now the situa-
tion when z is large enough, which corresponds to a high-frequency vibrations 
and low viscosity. In this case the asymptotic formulas for the Bessel functions 
have the form 
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On the basis of (20) and (21) it is easy to show that for sufficiently large posi-
tive imaginary part z: ( ) ( )0 1J z J z i≅ − . Substituting (1) and further assuming  

smallness ν ∗  in comparison with the 2k
ω , to obtain an approximate dispersion  

equation, which is also contained in the [17] 
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where, in the pursuit of the viscosity v∗  to zero (and also tends ω to infinity),  

we have a trivial result 0
k
ω
→ , which was obtained at low ω from Equation  

(20). Equation (22) when an unacceptably high viscosities. In this case, the phase 
velocity C unlimited increases with ω. This example shows inconsistencies of 
various asymptotic estimates in the mid-frequency vibrations. Thus, the analysis 
of wave processes asymptotic methods in the first approximation is not possible 
to establish the limits of applicability of formulas and calculations to estimate the 
error. In this paper for solving spectral problems using a direct numerical inte-
gration of permitting relations of the type (12) by the method of orthogonal 
shooting in complex arithmetic. This approach avoids the above difficulties as-
sociated with the calculation of Bessel functions of complex argument. Another 
advantage is due to the specificity of the orthogonal sweep method, which is due 
to the procedure orthonormality can solve highly rigid system with a boundary 
layer. As a result of a numerical study has found that the problem of natural os-
cillations (12) admits no more than one complex value ω, corresponding vibra-
tions of the shell together with the adjacent liquid layers to it. The rest found the 
Eigen values appeared purely imaginary. They correspond to a periodic motion 
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of a fluid with almost stationary shell. Proper form corresponding complex val-
ues also are complex, that is, the phase of joint oscillations of the shell and liquid 
is not the same along the radius. In the case of steady-state oscillations all the 
calculated Eigen values k and their own forms are complex. 

5. Numerical Results 

Consider the case of natural oscillations, when the shell is filled with liquid. In 
Figures 1-9 and Figure 1, Figure 2, Figure 4, Figure 5 show, respectively, de-
pending on the dispersion curves Reω, Imω, δ the wave number, k—the first 
mode, in which the damping coefficients of the smallest, and the Eigen values 
are complex Bat. In accordance with the numbering of graphs asked four differ-
ent values of the coefficient η 1) 0.0009: 2) 0.0018 3) 0.15 4) 0.018 (а = 0.6199; 

0.0529ρ = ; 0.0101h = ; 1R = ; 0 0.25ν = .) for the remaining parameters ac-
cording to (1) In Figure 3, Figure 6, Figures 7-9 to show their own forms Rev 
for values k equal to 1 and 8, respectively. It is easy to notice the difference in the 
behavior characteristic of the dispersion curves 1.2 and 3.4. In the last two cases, 
there is a wave number since a variable with only takes purely imaginary values 
corresponding to a periodic motion of the system. For curves 1.2 with less vis-
cosity real part of the Eigen values Reω nonzero at all wave numbers and the 
damping rate has a finite limit at infinity. The greater the viscosity, the earlier 
start a periodic traffic (curves 3, 4) and the higher limit of the damping rate  
 

 
Figure 1. Dependence of the real part of the complex frequencies (Reω) to 
wave numbers (k) for different values of η. 1-0.0009; 2-0.0018; 3-0.18, 4-0.19, 
5-according to the formula (20); By the formula (22). 
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Figure 2. Dependence of the logarithmic decrement (δc) on the wave numbers (k) for 
different values of η. 1-0.0009; 2-0.0018; 3-0.18, 4-0.19, 5-0.20; 6-0.22. 

 

 
Figure 3. Dependence of ϑ on the wave number r, for dif-
ferent values of the viscosity of a liquid. 1-0.0009; 2-0.0018; 
3-0.18; 4-0.19. 

 
(curves 1, 2). It follows that where is a minimum critical viscosity ηk, above which 
a zone of high wave numbers of the first mode, there are a periodic wave num-
ber. As a result of numerical experiment, it was found that the critical values of 
the coefficient of viscosity ηk, is in the range [ ]0.0120,0.0125 . Analyzing the 
dependence of energy dissipation on the wave number, two opposite tendencies 
should be noted. As the wave number increases, at a fixed amplitude, tangential  
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Figure 4. Dependence of the imaginary part of the complex frequencies (Im) 
to wave numbers (k) for different values of η:1-0.0009; 2-0.0018; 3-0.18; 
4-0.19; by the formula (22). 

 

 
Figure 5. Dependence of the spatial decrement on the wave number k for 
different values of η: 1-0.0009; 2-0.0018; 3-0.18; 4-0.19. 

 
stresses linearly increase according to (6): c another, as shown in Figure 3, loca-
lization of the fluid motion amplitudes near the shell simultaneously results, 
which leads to a decrease in the mass of fluid involved in the motion, as well as 
tangential stresses. The difference in the behavior of curves 1, 2 and 3, 4 is due to 
which of the two tendencies prevails. At small wave numbers, a linear depen-
dence of the Eigen function v on the radius is observed, that is, the entire mass of 
the liquid is involved in the motion. Ask increases, the central part of the liquid 
begins to “not keep up” with the vibrations of the shell, which leads to the loca-
lization of the amplitudes. The rate of localization depends on the viscosity of 
the liquid. If the localization occurs slowly, then starting from some k (owing to 
the growth of stresses), the self-motions become aperiodic (curves 3, 4). If, on 
the other hand, the average amplitude of the fluid oscillation decreases rapidly  
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Figure 6. Dependence of ϑ on the wave number r. 
When 8, 0.0018ω η= = . 

 

 
Figure 7. Dependence of ϑ on the wave number. 
When 8, 0.018ω η= = . 

 

 
Figure 8. Dependence of ϑ on the wave number r. 
When 16, 0.0018ω η= = . 
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Figure 9. Dependence of ϑ on the wave number r. 
When 16, 0.018ω η= = . 

 
enough, the motions will always remain oscillatory (curves 1, 2). In this case, 
large voltage wave numbers prevail over voltages, and increase with increasing 
localization. In view of the latter circumstance, the damping coefficient always 
increases with increasing k. The linear dependence of the shape on the radius at 
small k also indicates the fulfillment of the flat-section hypothesis on which the 
elementary theory of viscoelastic rods is based. Using the Ritz method one can 
find the parameters of the Fought core model and determine the limits of appli-
cability of this model in the framework of the hydrodynamic theory, but for a 
narrower class of straight rods of circular cross section. Variation equation of the 
principle of possible displacements, equivalent to the relations 

1 1

2

0 2

d d

d d d 0

v

r r z z
v

u u u
h u R z

z z z

u
u r r z

z

ϕ ϕ ϕ
ϕ

ϕ
ϕ ϕ ϕ ϕ ϕ

δ ρ δ ϕ

σ δε σ δε ρ δ ϕ

∂ ∂ ∂ 
+ ∂ ∂ ∂ 

 ∂
− + + =  ∂ 

∫

∫
          (23) 

has the form. Choosing a linear function as the basis 

( ) ( ), , , ,u r z t z t rϕ ϕ=                        (24) 

and after substituting (24) into (23) and the standard procedure, we obtain 
where the parameters β and a0 are expressed in terms of the polar moments of 
inertia of the shell I1 and liquid I0 as follows 

1
2

0 0
0

11

; 1
I Ia a

IGI
η

β
ρ

 
= = + 

 

 

Equation (23) describes the torsional vibrations of a viscoelastic Feucht rod 
according to the relations 
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2 2

2 2 2
0

11 ,
t z a t

ϕ ϕ
β
∂ ∂ ∂ + = ∂ ∂ ∂ 

                    (25) 

The solution of (25) is represented in the form 

( ) ( )( )0, expz t i kz tϕ ϕ ω= − . 

where the following relations satisfy 

( )2 2 2
0 1 0.а к iωβ ω− − =                      (26) 

Taking into account the relation I1/I0 = 4h, it is easy to see that Equation (26) 
coincides with Equation (22), which was obtained for the asymptotic solution of 
problem (16) for small oscillation frequencies. In Figure 1, Figure 4, the dotted 
lines show the dispersion curves of natural oscillations found from Equation 
(22). As follows from the figures, a satisfactory coincidence of dotted and conti-
nuous lines is observed in the region of small wave numbers whose upper bound 
exceeds unity in this case and increases with increasing viscosity of the liquid. In 
the short-wavelength range, there is a discrepancy due to the localization of the 
oscillation amplitudes near the shell. Small wave numbers correspond to the 
natural vibrations of long finite tubes. We now turn to an analysis of the 
steady-state oscillations of a shell filled with a liquid. Figures 1-9 shows the dis-
persion curves and waveforms for two values of the viscosity coefficient (below 
and above the critical value) 1) 0.0018, 2) 0.018 and the same values of the re-
maining parameters as in (22). In the first case of relatively low viscosity, the re-
sults of the calculation are in good agreement with the asymptotic solutions of 
the Goose Equation (18) at high frequencies. 

6. Longitudinal-Transverse Vibrations 

This section analyzes the stationary longitudinal-transverse vibrations of a shell 
filled with fluid, which according to (6) can be described by a system of four or-
dinary differential equations 

2
0

2
0

d
d

d 1
d

d d2
d d

d d2
d d

r r
z

z
r ў

r r r
z z

z r z
z z r

ik p
r r

ik
r

i ik
r r r

k ik ik
r r r

ϑ ϑ
ϑ

ϑ
ϑ τ

ηω
σ ϑ ϑ

ρ ω ϑ ηω τ

τ ϑ τ
ρ ω ϑ ηω ϑ σ

= − − −

= +

 = − + − = 
 
 = − + − − − 
 

          (27) 

With the boundary conditions 

4 2
0 1

2 2 0
0 1 2

0

0 : 0, 0;

: 0;

0; .
1

r z

r

z

r
C ur R D u iv kw h u
R R

EhuC iv k u h w C
R

ϑ τ

σ ρ ω

τ ρ ω
ν

= = =

 = ∇ + + + − = 
 

 −∇ − + = =  − 

          (28) 
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The value of р in the first equation of system (27) is defined through the main 
unknowns according to the expression 

( )2
0 0

2

2

r
r i iku

rp
C i k

ϑσ ηω

ρ ω η

 − + + 
 =

− +
                    (29) 

The spectral problems (27), (28), as in the case of longitudinal-transverse vi-
brations were solved by orthogonal shooting. To find the roots of the characte-
ristic equation method were used Mueller. 

7. Numerical Results 

The results of numerical study of natural oscillations. Figure 10 shows the dis-
persion curves Reω the wave number k for the case of an incompressible (С0 = ∞ 
− dot-dash line) and compressible (С0 = 0.1 − solid line) of the liquid. Shell pa-
rameters and coefficients of viscosity taken following: h0 = 0.05; р = 1.8; v0 = 0.25; 
h = 6.011 × 10−4; к = −2η/3. Here and henceforth given dimensionless quantities  

for which the units of length and mass density are 

1
20

0

1, ,R R
E
ρ

ρ
 
 
 

. For an  

incompressible fluid, there are two modes, corresponding mainly longitudinal 
(curve 1) and preferably a cross (curve 2) fluctuations in the shell, with complex 
Eigen values. All other traffic have their own imaginary Eigen values, that is a 
periodic in time. The dashed lines in Figure 11 are designated the dispersion 
curves corresponding to the vibrations of a shell with an ideal incompressible 
fluid. The solution of the latter problem is given below. It should be noted that, 
unlike the dry shell joint oscillations transverse vibrations of said sheath fluid 
density p1, it takes place on a smaller compared to the frequency of longitudinal 
vibrations in the entire range of the wave number. When administered viscosity 
oscillation frequency of the first mode decreases, apparently due to the involve-
ment of additional masses in movement of fluid in the boundary layer and in the 
second mode appears critical wave number restricting oscillatory motions bot-
tom region. In [25], who investigated the steady oscillations, noted the desire for 
zero phase velocity of the lowest mode with decreasing frequency. Proper mo-
tion of the shell and the viscous compressible fluid has an infinite number of 
modes. The paper S. Vasin et al. [26] using asymptotic methods of solving, the 
latter effect could not be found. Figure 11 shows the dispersion curves for the 
first four events with a minimum of vibration frequencies (curves 3, 4, 5, 6) in 
ascending order of magnitude Reω. Comparing curves 1.2 and 3.4 together, we 
can see that the second worse than the first few vibration modes of the 
shell-compressible fluid to the selected parameters are satisfactorily described by 
a model of an incompressible fluid in the region of wave numbers k < 1. This 
gives grounds for the study of the said system in the first approximation neglect 
the compressibility of the fluid. System elastic shell is a viscous liquid dissipa-
tions-inhomogeneous viscoelastic body at a radial coordinate. Moreover, in con-
trast to the earlier torsional vibrations here for an incompressible fluid, there are  
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Figure 10. Addiction Reω with the wave number k in the case of an 
incompressible fluid. 

 

 
Figure 11. Addiction Im a the wave number in the case of a com-
pressible fluid. 
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two, and compressible-unlimited number of vibration modes. It is interesting to 
find out how this system can be shown a synergistic effect. Figure 11 shows the 
dispersion curves (2) for the following parameters of the shell and liquid: 

4
3 00.05; 80; 0.25 ; 7.071 10 ;h v t Cρ η −= = = = × = ∞  

Dash-dotted lines correspond to fluctuations in the dry shell. The dashed lines 
show the frequency dependence for the case of an ideal fluid v = 0. In contrast 
with the previously discussed embodiment, the density p = 8, in this case partial 
frequency (v = 0) of the longitudinal and transverse vibrations of the shell with a 
perfect fluid intersect. It is natural to expect that the v near the intersection of 
partial frequencies will be a strong connectedness of both modes, leading to in-
creased energy, resulting in a synergistic effect. Indeed, the presence of events 
demonstrates the effect of the conversion of Vina-longitudinal mode in trans-
verse and longitudinal cross-section in a change of the wave number in the vi-
cinity of the intersection of partial frequencies. Violation of the monotony of 
growth and synergies. Compared to the previous description of this effect there 
are two features. Firstly, the effect is far from the place of approximation curves 
of two modes, secondly, damping factor curves do not intersect. In [27] investi-
gated the coherence of joint oscillations of ideal compressible gas and the shell 
with the help of diagrams wines. As he examined the frequency of partial oscilla-
tions of gas in rigid walls and an empty shell. Returning to Figure 12, Figure 13 
we note a similar manifestation of the effect of wines in places of convergence 
curves 4.5 and 5.6. In these areas in Figure 14 there is a synergistic effect for the 
curves. It is interesting to trace the influence of fluid viscosity on connectivity 
modes. 3.4 Curves in Figure 15 correspond to the value of the viscosity coeffi-
cient η = 0.11 at constant other parameters. In this case, fashion predominantly 
transverse vibrations are defined on a finite interval of the wave of change, and 
the effect of guilt is not observed, indicating a loose coupling modes. Another 
large increase in viscosity (η = 0.13, curve 5) leads to the fact that fashion is eve-
rywhere transverse vibrations becomes a periodic and у longitudinal oscillations 
appear critical wave numbers, limiting the scope of the vibration motions of the 
top. The physical nature of the observed effect is revealed when analyzing the 
vibrations of a shell filled with a perfect fluid. The equations of harmonic oscilla-
tions of an ideal liquid is easy to deduce from (27), formally putting viscosity 
coefficients equal to zero. 

2 2
0 02

0 0

d d, ,
d d

r r
z r zik i

r r rC
ϑ ϑ σ σ

ϑ ρ ω ϑ σ ρ ω ϑ
ρ

= − − − = − =        (30) 

General solution of (26) satisfying the finiteness condition unknown at zero, 
has the form 

( ) ( )

( )
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0 0 0

2
2 2

1 02
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R C

ω
ϑ σ ρ

ω
ϑ

= =

= = −
                (31) 
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Figure 12. The dependence of ReW on the wave number r. 

 

 
Figure 13. The dependence of ReW on the wave number r. 

 
where А arbitrary constant: J0, Jl,-Bessel functions of zero and first order, respec-
tively. The boundary conditions at the r = R similarly written conditions (28) 

4 2
0 1

2 2
0 1

0;

0;

r
C uD u iv kw h u
R R

uC iv k u h w
R

σ ρ ω

ρ ω

 ∇ + + + − = 
 

 −∇ + = 
 

            (32) 

where w—axial movement of the shell, which is not now coincides with the axial 
movement of the liquid. After substitution of the solutions (22) of (23) there is a 
system of homogeneous linear algebraic equations in the unknown А and U1. 
The roots of the determinant of this system are the desired Eigen values, and its 
decision to define the relation between А and U1. 

For an incompressible fluid, there are two real own Bessel functions I0 and I1 

( ) ( )
( )

11
22

2 2 4 1
1 1

1 1 11 1 1

; 1 1 nI kRE ЕR h R к
h I kR кR
ρ

ω ω
ρρ ρ

   
= = + +          

    (33) 
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Figure 14. The dependence Reω on the wave number k (for the case of an 
incompressible fluid). 

 

 
Figure 15. The dependence of Imω on the wave number k. 

 
Unlike dry shell here second frequency locking is absent and the phase speed 

at low k equal to the 
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1
2

0 12R
EhC

Rρ
 

=  
 

                           (34) 

which coincides with the speed of the wave Ressala (see. the review at the begin-
ning of this chapter). In the case of a compressible fluid 0ν =  and limiting the 
phase velocity of the transverse mode oscillation in the shell 0k →  is the ve-
locity of waves Cortège Zhukov sky. 

( )
0

1
2 2 2
0

R
k

R

C CC
C C

=
+

                        (35) 

Numerical study showed that the critical value Ck does not depend on the 
viscosity of the liquid, but with increasing η weakening the dependence of oscil-
lations of Poisson’s ratio, so that the ratio ( ) ( )max min 1im imϖ ϖ →  and own 
form U it becomes flat. As follows from the above results, generally within the 
engineering problem statement, we cannot adequately describe the longitudinal 
vibrations of the cylindrical shell filled with a viscous fluid via rod theory. 

8. Conclusions 

1) Numerical investigation has shown that the critical value Vk does not de-
pend on the viscosity of the liquid, but as the value of η increases, the depen-
dence of the Poisson’s coefficient is weakened, so that the ratio 
( ) ( )max min 1im imω ω →  and the proper form U becomes flat. However, in 
some particular cases, namely: for a large viscosity or at a critical value of the 
Poisson ratio, it is possible to propose a method for estimating the natural fre-
quency based on a bar model of the type (26). 

2) Analyzing the dependence of energy dissipation on the number of waves, it 
should be noted that there are two opposite tendencies, since the number of 
waves and tangential stresses рzφ increases for a fixed amplitude v. And also, as 
shown by numerical results, localization of fluid motion amplitudes near the 
shell occurs simultaneously, which results in a decrease in the mass of fluid in-
volved in the motion, as well as tangential stresses рrφ. 

3) For low viscosity, the frequency Rek of both modes is close to one in the 
low-frequency region, and at high frequencies the phase velocity Cy corresponds 
to the tendency to speed in the dry shell. Damping coefficients grow approx-
imately linearly, and in the second mode, this coefficient is always greater than 
that of the first. In the case of a higher viscosity over the entire range of varia-
tion, the frequency ω of the real part of the wave numbers Rek2,1 ≥ Rek2,2, and the 
phase velocity Cy with increasing ω tends to infinity. 
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