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Abstract

In this paper we consider a mathematical model for the inverse B decay in a
uniform magnetic field. With this model we associate a Hamiltonian with cu-
toffs in an appropriate Fock space. No infrared regularization is assumed. The
Hamiltonian is self-adjoint and has a unique ground state. We study the es-
sential spectrum and determine the spectrum. The coupling constant is sup-
posed sufficiently small.
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1. Introduction

A supernova is initiated by the collapse of a stellar core which leads to the
formation of a protoneutron star which may be formed with strong magnetic
fields typically of order 10'® Gauss. It turns out that the protoneutron star leads
to the formation of a neutron star in a very short time during which almost all
the gravitational binding energy of the protoneutron star is emmitted in
neutrinos and antineutrinos of each type. Neutron stars have strong magnetic
fields of order 10" Gauss. Thus neutrinos interactions are of great importance
because of their capacity to serve as mediators for the transport and loss of
energy and the following processes, the so-called “Urca” ones or inverse S decays
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ve+N==¢_ +p (1.1)
V_e+ p=e, +n (1.2)

play an essential role in those phenomena and they are associated with the g

decay

n—p+e, +v, (1.3)

Here e (resp. e, ) is an electron (resp. a positron). p is a proton and n a
neutron. v, and v, are the neutrino and the antineutrino associated with the
electron.

See [1] [2] [3] [4] and references therein.

We only consider here high-energy neutrinos and antineutrinos which are
indeed relativistic particles whose mass is zero or in anyway negligible.

Due to the large magnetic field strengths involved, it is quite fundamental to
study the processes (1.1) and (1.2) in the presence of magnetic fields.

These realistic fields may be very complicated in their structure but we assume
these fields to be locally uniform which is a very good hypothesis because the
range of the weak interactions is very short. Our aim is to study the processes
(1.1) and (1.2) in a background of a uniform magnetic field.

Throughout this work we restrict ourselves to the study of processes (1.1), the
study of processes (1.2) and (1.3) would be quite similar. We choose the units
such that c=n=1.

The advantage of a uniform magnetic field is that, in presence of this field,
Dirac equation can be exactly solved. Using the generalized eigenfunctions of the
Dirac equation and the canonical quantization we carefully define the quantized
fields associated with the electrons, the positrons, the protons and the antiprotons
in a uniform magnetic field.

For the neutrons and the neutrinos we define the corresponding quantized
fields by using the helicity formalism for the free Dirac equation.

We then consider the Fock space for the electrons, the positrons, the protons,
the antiprotons, the neutrons and the neutrinos.

In this paper we consider a mathematical model for the process (1.1) in a
uniform magnetic field based on the Fermi’s Hamiltonian for the f decay. The
physical interaction is a highly singular operator due to delta-distributions
associated with the conservation of momenta and because of the ultraviolet
divergences. In order to get a well defined Hamiltonian in the Fock space we
have to substitute smoother kernels both for the delta-distributions and for
dealing with the ultraviolet divergences. We then get a self-adjoint Hamiltonian
with cutoffs in the Fock space when the kernels are square integrable.

We then study the essential spectrum of the Hamiltonian and prove the
existence of a unique ground state with appropriate hypothesis on the kernels.
The proof of the uniqueness of the ground state is a direct consequence of the
proof of the existence of a ground state. The spectrum of the Hamiltonian is

identical to its essential spectrum. Every result is obtained for a sufficiently small
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coupling constant. No infrared regularization is assumed. We adapt to our case
the proofs given in [5] and [6].

These results are new for the mathematical models in Quantum Field Theory
with a uniform magnetic field.

The paper is organized as follows. In the next two sections, we quantize the
Dirac fields for electrons, protons and their antiparticles in a uniform magnetic
field. In the third section, we quantize the Dirac fields for free neutrons,
neutrinos and their antiparticles in helicity formalism. The self-adjoint Hamil-
tonian of the model is defined in the fourth section. We then study the essential

spectrum and prove the existence of a unique ground state.
2. The Quantization of the Dirac Fields for the Electrons and
the Protons in a Uniform Magnetic Field

In this paper we assume that the uniform classical background magnetic field in
R® is along the x*-direction of the coordinate axis. There are several choices of
gauge vector potential giving rise to a magnetic field of magnitude B >0 along
the x’-direction. In this paper we choose the following vector potential

A(x)= (A" (X)), 1 =0,12,3, where

A’(x)=A%(x)=A*(x)=0, A'(x)=-x"B (2.1)

Here x= (Xl, X2, X3) in R3.
We recall that we neglect the anomalous magnetic moments of the particles of

spinl
5
1
The Dirac equation for a particle of Splnz with mass m>0 and charge e

in a uniform magnetic field of magnitude B >0 along the x’-direction with the
choice of the gauge (2.1) and by neglecting its anomalous magnetic moment is

given by
HD(e):a-GV—eA]+ﬂm (2.2)

acting in the Hilbert space L (Rg, c* )
The scalar product in  L* (]R3, (C“) is given by

(,9)= 32,700, a(x), ¢

M»

i=1

We refer to [7] for a discussion of the Dirac operator.

Here a=(a;,a,,a;), B arethe Dirac matrices in the standard form:

) all )

where o, are the usual Pauli matrices.
By ([7], thm 4.3) Hj(e) is essentially self-adjoint on C; (RS,(C4). The

spectrum of Hy, (e) isequal to
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spec(H,, (€)) = (—o0,—m]U[m, =] (2.3)

The spectrum of H, (e) is absolutely continuous and its multiplicity is not

uniform. There is a countable set of thresholds, denoted by S, where

S =(-s,,5,;neN) (2.4)

with s, =,/m?+2nle|B . See [8].

We consider a spectral representation of H, (e) based on a complete set of
generalized eigenfunctions of the continuous spectrum of Hj(e). Those
generalized eigenfunctions are well known. See [9]. In view of (2.1) we use the
computation of the generalized eigenfunctions given by [10] and [11]. See also [4]
and references therein.

Let (pl, p3) be the conjugate variables of (Xl, x3) . By the Fourier transform
in R? we easily get

U (B2, €)= [ oL* (.C*)dp'dp’ (25)
and
Ho (e)= [ Hy (e p', p*)dp'dp® (2.6)
where
Ho (e 0%, p°)
moy, ol(pl—esz)—iaz(;j7+ P’os | (27)
) o,(p ~ex'B)-io, >+ o, o,

Here o, isthe 2x2 unit matrix.

Hp (e; p', p3) is the reduced Dirac operator associated to (e; p', p3) .

Hp (e; p', p3) is essentially self-adjoint on C; (R, (CA) and has a pure point
spectrum which is symmetrical with respect to the origin.

Set

En(p3)2:m2+(p3)2+2n|e|8,n20 (2.8)

The positive spectrum of H, (e; p', p3) is the set of eigenvalues (En p’ )n>o
and the negative spectrum is the set of eigenvalues (—En ( 3))n>0. E, 3) and
-E, ( p3) are simple eigenvalues and the multiplicity of E ( p ) and

-E, ( p3) isequal to 2 for n>1.

Through out this work e will be the positive unit of charge taken to be equal to
the proton charge.

We now give the eigenfunctions of H (e; pl, p3) both for the electrons and
for the protons. The eigenfunctions are labelled by neN, (pl, pz) eR? and
s=x1. neN labels the nth Landau level. $==1 are the eigenvalues of o,.
The electrons and the protons in all Landau levels with n>1 can have different
spin polarizations S=2x1. However in the lowest Landau state n=0 the

electrons can only have the spin orientation given by S=-1 and the protons

DOI: 10.4236/0alib.1104142

4 Open Access Library Journal


https://doi.org/10.4236/oalib.1104142

J.-C. Guillot

can only have the spin orientation given by s=1.

2.1. Eigenfunctions of the Reduced Dirac Operator
for the Electrons

We now compute the eigenfunctions of HD(—e; p', p3) with m=m, where
m, is the mass of the electron.

Er(,e) ( p3) and —Er(le) ( p3) will denote the eigenvalues of H (—e; p, p3) for
the electrons. We have E° ( p* )2 =m? +( p3)2 +2neB,n>0.

2.1.1. Eigenfunctions of the Electrons for Positive Eigenvalues
For n>1 Er(]e) ( p3) is of multiplicity two corresponding to S=+1 and
Eée) ( p3) is multiplicity one corresponding to S=-1.

Let Ufl) (XZ, n, pl, p3) denote the eigenfunctions associated to S==1.

For s=1 and n>1 we have

(&) [ 43 2 3
uii’(len.pﬂf){En (p);me] (p—ln_l(g) >

where

§=«/e_B[x2—iJ
eB

- 1 (2.10)
3 eB |2 )
I, (5)—(m} exp(—§ /2) H, (&)
Here H (&) is the Hermite polynomial of order n and we define
1,(£)=0 (2.11)

For n=0 and s$=1 weset
Ul (x*,0,p" p*) =0

For s=-1 and n>0 we have

—W'H(f) (2.12)
3

Note that

[dxul® (x*,n, p", p3)TU§?)(x2,n, p', p*) =4y (2.13)
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where T is the adjointin C*.

2.1.2. Eigenfunctions of the Electrons for Negative Eigenvalues
For n2x1 —E,(f) ( p3) is of multiplicity two corresponding to S==x1 and
—E® ( p3) is multiplicity one corresponding to $=-1.

Let Vi(f) (XZ, n, pl, p3) denote the eigenfunctions associated with the
eigenvalue —E*) ( p3) and with s==1.

For s=1 and n>1 we have

(®) (3 2
v (x2n,pt p?) {E;é(g();;]eJ Ege@me 1, () (2.14)
04 (£)
0
and for n=0 we set
v/ )(x 0,p", p*)=0
For s=-1 and n>0 we have
(&
©) (3 2
VP (X0, pt, ps):[E;E(; ()F;S“EJ Eﬁe)(sj)+me 1, (&) (2.15)
0
1, (£)
Note that
.[dxzvs(e (x n, pt, p ) vSe (x n, pt, p ) (2.16)

where T is the adjointin C*.

The sets (US)(.,n, p, p3>)(n,p1,p3) and (Vi(f)(.,n, p, p3))(n,p1,p3) of vectors in
L2 (R, (CA) form a orthonormal basis of L2 (]R, (CA) .

This yields for ¥ (x) in |_2(R3 c')

¥(x)= Zle(ZI dpldpe P )(cie)(n p, p)Ue(x n, p', p)

21 5 n=0

+d{¥ (n, p, p* )V (X, pt, p))j

where C+1 (0 pLp ) v (0, P, ps):O
Let ‘P(X p', p ) be the Fourier transform of W(.) with respect to X'
and x%:

(2.17)

‘i’(xz; P p ) L.i. m—j p1X1+p3X3)‘P(xl,xz,x3)dxldx3
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We have
o B[O S e
die)(n, p, ps):LRVS(e)(xz,n, P, p3)T ‘i‘(xz; P, p3)dx2

The complex coefficients Cge)(n, p, p3) and ds(e)(n, pl,ps) satisfy

1 Ol e = 23 ( di? (n, p, p3)\2)dpldp3 <o (2.19)

Cge)(n, pl7 pS)‘Z +

2.2. Eigenfunctions of the Reduced Dirac Operator for the Protons

We now compute the eigenfunctions of H (e; p', p3) with m=m,.
g ( p3) and —EP ( p3) denote the eigenvalues of H, (e; p', p3) for the

n n

proton. We have E(P ( p3)2 =mj +( p3)2 +2neB,n>0.

2.2.1. Eigenfunctions of the Proton for Positive Eigenvalues
For nx1 E,(f’) ( p3) is of multiplicity two corresponding to S=%1 and
Eép) ( p3) is of multiplicity one corresponding to s=1.

Let Uif) (Xz, n, p, p3) denote the eigenfunctions associated with the eigen-
value Eﬁ"’ ( p3) and with s==1.

For s=1 and n>0 we have

L(¢)
N 0
E(p)(p3)+m 2 p g
(p) (2 1 3)_ n -
st ) S | e )| ow
v2neB ~
ERCE
where
: 5 i
g_Je_B[X +eB] (221)
I—l(é)zo
For s=-1 and n>1 we have
0
1 In—l(g)
E(p)(P3)+m 2 \2neB -
() (2 1 _ p
Uy (x ’”'p'pB)‘[ 2607 (p°) ] EO(p)+m, L(E) | @22

For n=0 and s=-1 we set

u'P(x,0,p", p*)=0
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Note that
J.dXZUip)(Xz,n, ot pS)TUS(rp)(XZ,n, ot ps):5ss’
where T is the adjointin C*.

2.2.2. Eigenfunctions of the Proton for Negative Eigenvalues
For nx>1 —Er(‘p) ( p3) is of multiplicity two corresponding to S=%1 and
—E(()p) ( p3) is of multiplicity one corresponding to s =1.

Let Vi(lp) (XZ, n, p, p3) denote the eigenfunctions associated with the eigen-
value —E,(] P) ( p3) and with s==1.

For s=1 and n>0 we have

) EP (p®)+m,

Er(]P) 3 2 2 ~
Vflp)(XZ,n, ot p3):[%J _)LBhH(g) (2.23)

For s=-1 and n>1 we have

1

() (3 2
fo)(xz’n, p1,p3)={E” (p );r)np]z

2 | | B, )| @20

andfor n=0 and S=-1 we set
VP (x%,0,p" p*)=0
Note that
[ax?v! P) (xz, n, p, p3)TVS(,") (xz,n, pt, p3) =5, (2.25)

where 1 isthe adjointin C*.

The sets (US) (., n, pl, p3)) and (Vi(lp) (., n, pl, ps)) of vectors in

st ot
L2 (R,(CA) form an orthonormal basis of L2 (R,(CA) .
This yields for W (x) in L*(R°,C")
1 . i 1Xl+ 3X3
\P(X):z_ZL_I_m[ZJ'Rdeldpae(P P )(Cgp)(n, pl,p3)U§p)(X2,n, pll p3)

TCs—+1 n>0

(2.26)
A (00 N ()

where CEE)(O, pt, p3) = dEf)(O, p, p3):0
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The complex coefficients Cgp) (n, pl, p3) and ds(p) (n, pl, p3) satisfy
1 Ol = 22 (( o (n.ptp?)| -+ ol (n. ', p3)\2jdp1dp3) <o (227)

We have
¢l (n,pt, p*)=[ U (x,n, pt, p°) B (x% p, 7)o

d! (n, p, p*) = [V (0, p, p*) (¢ p, p

S S

(2..28)

2.2.3. Eigenfunctions of the Positron for Positive Eigenvalues

The generalized eigenfunctions for the positron, denoted by Ui(f) (XZ, n, p', p3),
are obtained from Uif) (Xz, n, pl, p3) by substituting the mass of the electron
m, for m, . The associated eigenvalues are denoted by E,E_e) ( p3) with
Eﬁ’e)(p3)2 =m? +(p3)2 +2neB,n>0.

2.2.4. Eigenfunctions of the Positron for Negative Eigenvalues
The generalized eigenfunctions for the positron, associated with the eigenvalues
—E[(fe) ( ps) and denoted by Vi(;e) (xz, n, p', pg), are obtained from

Vi(lp) (XZ, n, p, p3) by substituting the mass of the electron m, for m,.

2.2.5. Eigenfunctions of the Antiproton for Positive Eigenvalues

The generalized eigenfunctions for the antiproton, denoted by ng) (Xz, n, p', p3) ,
are obtained from US) (Xz, n, pl, p3) by substituting the mass of the proton
m, for m,.The associated eigenvalues are denoted by Eg_p) ( p3) with

ELP ( p3)2 =m; +( p3)2 +2neB,n>0.

2.2.6. Eigenfunctions of the Antiproton for Negative Eigenvalues

The generalized eigenfunctions for the antiproton, associated with the eigen-
values —E,(fp) ( p3) and denoted by Vi(;p) (Xz, n, pl, pa) , are obtained from

Vi(le) (XZ, n, p', p3) by substituting the mass of the proton m, for m,.

2.3. Fock Spaces for Electrons, Positrons, Protons and
Antiprotons in a Uniform Magnetic Field

It follows from Sections 2.1 and 2.2 that (s, n, pl, p3) are quantum variables for
the electrons, the positrons, the protons and the antiprotons in a uniform
magnetic field.

Let &= (s, n, ps, pe ) be the quantum variables of a electron and of a positron

and let &, :(s,n, P, P;

p) be the quantum variables of a proton and of an

antiproton.

Weset I' ={-1,1} xNx R? for the configuration space for both the electrons,
the positrons, the protons and the antiprotons. L (Fl) is the Hilbert space
associated to each species of fermions.

We have, by (2.17), (2.18), (2.19), (2.26), (2.27) and (2.28),

() =17 (1 (R?)) @1 (L (R?)) (2.29)

Let S(e) and S(_e) denote the Fock spaces for the electrons and the posi-
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trons respectively and let S(p) and S(,p) denote the Fock spaces for the protons
and the antiprotons respectively.
We have

=

1]
=

1]
e
(—D 8

(>n§ L*(T,) (2.30)

Il
o

n

®"L?(T,) is the antisymmetric n-th tensor power of L*(I';).
Q )= (1,0,0,0,~--) is the vacuum state in 3’(“) for a=e,—e,p,—p.
We shall use the notations

[.d6 =33 ], .dp:dp]

s=In=0 (2.31)

[.45 =2 X [ .dpidp;

s=+1n>0

Set e==*.

b5<§j) (resp. b:(fj)) are the annihilation (resp.creation) operators for the
electron when j=1 and for the protonwhen j=2 if e=+

b5<§j) (resp. b:(fj)) are the annihilation (resp.creation) operators for the
positron when j=1 and for the antiproton when j=2 if e=-.

The operators b, (cfj) and b:(§j) fulfil the usual anticommutation relations
(CAR)(see [12]).

In addition, following the convention described in ([12], Section 4.1) and
([12], Section 4.2), we assume that the fermionic creation and annihilation
operators of different species of particles anticommute (see [13] arXiv for
explicit definitions). In our case this property will be verified by the creation and
annihilation operators for the electrons, the protons, the neutrons, the neutrinos
and their respective antiparticles.

Therefore the following anticommutation relations hold for j=12

{b.(&).0:(&)} =0.0(5 &),

. . (2.32)
{bf (51) ’ bf' (52 )} =
where {b,b’} =bb’+b'b and b*=b or b".
Recall that for @ e L2 (Fl) , the operators
I ( Jo(6)ds,
(2.33)

are bounded operators on 8’(6) and %(4) for j=1 and on S(p) and S(,p)
for j=2 respectively satisfying
o5 (@) =llele (2:34)
2.4. Quantized Dirac Fields for the Electrons and the Protons in
a Uniform Magnetic Field

We now consider the canonical quantization of the two classical fields (2.17) and
(2.26).
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Recall that the charge conjugation operator C is given, for every ¥(x), by

c| *2 (91 \PE(X) (2.35)
¥a(x) | | Fa(x)
() (-¥i(x)
Here * is the complex conjugation.
Let W¥(.) belocally in the domain of H (e). We have
Ho(—€)CW =ECW if Hy(e)¥ =—EW (2.36)

(2.36) shows that, by applying the charge conjugation (2.35) to a solution of
the Dirac equation with a negative energy for some particle, we get a solution of
the Dirac equation for the antiparticle with a positive energy.

Thus, by applying the charge conjugation (2.35) to (2.14), (2.15), (2.23) and
(2.24) which are solutions of the Dirac equation for the electrons and protons

with a negative energy, we obtain

(CV+1 )(x n, p, p° U1 ( -p',—p°) forn=1

(o

)=
)x n, p,
(cv<f)x n, p', p3) U1 (x n—p,—p) forn>0
)x n, p', )

(ov!

The solutions of the right hand side of (2.37) are solutions of the Dirac
equation for the positrons and antiprotons with a positive energy.
By (2.37) we set

e,

3

p

(x n,—p',-p°) forn>0
(2.37)

p°)=-Ul"(x*,n,—p',-p°) fornxz1

&)=Ul(xn, pt, pf) for& =(s.n,pl p?)n=0
W (x,&) =V (x*n,—pl-p) for&=(Ln,p},p}),n=0
W (x*,&) =V (x*n,—pl,- p?) for & =(-Ln,pl pf).n=1
(xz,cfl):o for;fl:(_l,olpi,p:)

(2.38)

By using (2.37) and (2.38) the symmetric of charge canonical quantization of
the classical field (2.17) gives the following formal operator associated with the
electron and denoted by ¥/, (x):

‘I” =_J'd§1( Dex+pe) (e)(X27§l)b+(§l)

11, 33 (2.39)
te i pex'+ pix )W(e) (XZ, gl)bi (cfl)j
For a rigourous approach of the quantization see [22].
We further note that
’ t !
{900, ()} =5(xX) (2.40)

See [11].
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By (2. 37) we now set
( fz) ul® (xz,n, pt,pe) forfzz(s,n,—plp,—pf)),nzo
( &)= Vf (x*.n,—pjy,—p3 ) for & =(~1n, p}, p3),n =0
(X gz) (X n, —pp, ) for§2:(1,n, plplp:;),nzl
(» (xz,éz):o when §2=(1,O, pt,pf))

By using (2.37) and (2.41) the symmetric of charge canonical quantization of

(2.41)

the classical field (2.26) gives the following formal operator associated to the
proton and denoted by ¥, (x):

lP( :_J‘déz[ pr+Pp) (p)(legz)bJr(éz)

(11 3,3

o )

(2.42)
+e

We further note that
’ T ’
{‘I’(p)(x),‘P(p)(x) }:5(x—x) (2.43)
See [11].
3. The Quantization of the Dirac Fields for the Neutrons and
the Neutrinos in Helicity Formalism

As stated in the introduction we neglect the magnetic moment of the neutrons.
Therefore neutrons and neutrinos are purely neutral particles without any
electromagnetic interaction. We suppose that the neutrinos and antineutrinos

are massless as in the Standard Model.
-1
The quantized Dirac fields for free massive and massless particles of SplnE

are well-known.

In this work we use the helicity formalism, for free particles. See, for example,
[7] [15] and [16].

The helicity formalism for particles is associated with a spectral representation
of the set of commuting self adjoint operators (P, H3) . P= (Pl, p?, P3) are the

1P-X
generators of space-translations and H® is the helicity operator ———— where

2 |P|

P=(E0PT ) and 2o winor 1123

i | 0 (3.1)
0 o )

3.1. The Quantization of the Dirac Field for the Neutron in
Helicity Formalism

The Dirac equation for the neutron of mass m, is given by

1
Hp=a-=V+Am (3.2)
|
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acting in the Hilbert space L (RB, c* )
It follows from the Fourier transform that

L*(R*,C*)= [,Cdp.

o , (3.3)
HD:J.RSHD(p)d p
where
m o, o-p
H S 3.4
D(p) [U‘p _mno'o) G4

Here o, is the 2x2 unit matrix, o=(0,,0,,0,) and p:(pl, p2,p3)
with 0'-p=ijlo'jpj.
Hp (p) has two eigenvalues E(")(p) and —E(")(p) where

E® (p)=y[p[ +m;

The helicity, denoted by H,(p), is given by

G|.|p °
1| [P
H = 3.5
s(p) 5 op (3.5)
P
: . 1 1
H;(p)= commutes with H,(p) and has two eigenvalues > and 5
Set (see ([7], Appendix. 1.E.] and [15]) for |p| # p3
(3.6)

B 1 p! —ip?
h, (p)— ,72|p|<|p|_ pg) [|p|_ paJ

1 w—mq
_m=————————( . (3.7)
J2Ppl(|p| - p*) LP" +ip?

and

For |p|=p3 we set
and

Wehave (o-p)h,(p)==|p|h.(p)-
Let

ai(p):%[liﬁzp)] (3.8)

The two eigenfunctions of the eigenvalue E" (p) associated with helicities
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1 and —% are denoted by u (p, j and are given by

2
ST . (p)h.(p)
Ul )(p,i—j [ N (3.9)
2) (#a.(p)h.(p)
We now turn to the eigenfunctions for the eigenvalue —E™ (p).

The two eigenfunctions associated with the eigenvalue —E" (p) and with

helicities % and —% are denoted by V" (p, j and are given by

V(n)(p'ilj:(ia(p)m(p)] (3.10)

2) {a(p)h.(p)

The four vectors U(")(p,i%j and V(")(p,i j form an orthonormal basis

N |-

of C*.
Mg 41 Mg +1)eie0 .
U p,J_rE e and V p,J_rE e is a complete set of generalized
eigenfunctions of (3.2) with positive and negative eigenvalues +E" (p).
This yields for ¥(x) in L2 (R3,(C4)
¥ (x)

=(1ij|m(J. d° pe' pX( " (p.A)a(p.4)+V" (p.A)c (p/l))) (3.11)

2n

N

with

¥ e = ZJep(fae 2 #le(e.A)f ) <o G2
ﬂ+—

3.1.1. Fock Space for the Neutrons
We recall that the neutron is not its own antiparticle.

Let & =(p,A) be the quantum variables of a neutron and an antineutron

where peR?® is the momentum and ﬂe{—%,%} is the helicity. We set

r, =R3x{—%,%} for the configuration space of the neutron and the anti-

neutron.
Let §, and §; denote the Fock spaces for the neutrons and the anti-
neutrons respectively.
We have
©
S =8 = DL (T,) (3.13)
a

n=0
®.L?(T,) is the antisymmetric n-th tensor power of L*(T,).
Q= (1,0,0,0,) is the vacuum state in E(ﬂ) for f=n,n.
In the sequel we shall use the notations
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[.d¢= Zfdeg (3.14)
1+7

b (&) (resp. b:(§3)) is the annihilation (resp.creation)operator for the
neutron if €=+ and for the antineutron if €=-.

The operators b, (&) and b:(é) fulfil the usual anticommutation relations
(CAR) and they anticommute with b’ (éj) for j=12 according to the
convention described in ([12], Section 4.1). See [13] arXiv for explicit definitions.

Therefore the following anticommutation relations hold for j=12

b.(&).0: (&)} =6.6(4-5&).
. (3.15)
{b &).bi( cf, )j=0
Recall that for e L® (F ) the operators
b, ()=, b. (&) (&) dé 616
b5, () =],.b (&) (&)ds;
are bounded operators on S(n) and S(ﬁ) satisfying
[os. (@) =llel. (3.17)
3.1.2. Quantized Dirac Field for the Neutron in Helicity Formalism
By (2.35) we get
b by
|p +ip | 2
(3.18)
n 1 pl_ip2 n 1
c v”( ,__D: Bl 1 YT G S
( P72 |p1+ip2| =3
Setting
U(“) :U(”) A
(%) (p.) (3.19)

w® (53) —v® (—p,/i)
and applying the canonical quantization we obtain the following quantized Dirac

field for the neutron:
(X ( J J.dé::g( (n)(§3)b+ (53)+e—i(p-x)vv(n)(§3)b’: (53)) (320)

3.2. The Quantization of the Dirac Field for the Neutrino

Throughout this work we suppose that the neutrinos we consider are those
associated with the electrons.
The Dirac equation for the neutrino is given by
Hp =a-%V (3.21)
acting in the Hilbert space L (R3, ct )
By (3.3) it follows from the Fourier transform that
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H,(p)d®p (3.22)

where

0 i
HDWF{Jp ifj (3.23)

Hy(p) has two eigenvalues E(V)(p) and —E(V)(p) where E(V)(p)=|p|.

The helicity given by
1 1(0 1
2”721 o
1

1
commutes with H, (p) and has two eigenvalues > and —5

The two eigenfunctions of the eigenvalue E) (p) associated with helicities

% and —% are denoted by U(V)(p,i%) The two eigenfunctions of the

1 1
eigenvalue —E(V)(p) associated with helicities 5 and 3 are denoted by

v [p, i%) . They are given by
(3.24)

The four vectors U(V)(p,i%j and V(V)(p,i%] form an orthonormal basis

. 4
in C".

Turning now to the theory of neutrinos and antineutrinos (see [17]) a neutrino

1 1
has a helicity equal to 3 and a antineutrino a helicity equal to re Neutrinos
are left-handed and antineutrinos are right-handed. U (p,—%] is the eigen-

function of a neutrino with a momentum P and an energy |p| . cv® (—p,%j

is the eigenfunction of an antineutrino with a momentum P and an energy

pl-
Thus the classical field, denoted by @(x) and associated with the neutrino

and the antineutrino, is given by

3
CD(X) = (ijz L.i.m,(J.de3 p(ei(D-X)U () (p,—%]a(p, _%j
(3.25)

+ei<p~w<”(—p%j°(p’%jjj

with
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2
+

o3 o3 )+~

3.2.1. Fock Space for the Neutrinos and the Antineutrinos

L0 A p{

Let &, = [p,—%} be the quantum variables of a neutrino where peR? is the

1
momentum and 3 is the helicity. In the case of the antineutrino we set
£ 1 3 1. .
& = p,E where peR® and 3 is the helicity.

LZ(]R3) is the Hilbert space of the states of the neutrinos and of the anti-
neutrinos.
Let §, and §;) denote the Fock spaces for the neutrinos and the anti-
neutrinos respectively.
We have
3m=&n=§§ﬂﬂw) (3.26)

oL (Ra) is the antisymmetric n-th tensor power of L (R3) .
Qi = (1,0,0,0,--+) is the vacuum state in 3(5) for s=v,v.
In the sequel we shall use the notations

J.de§4 = _[Rad3 p
[ 9E = [ .d°p

b, (&) (resp. b;(&)) is the annihilation (resp.creation) operator for the

(3.27)

neutrino and b_ (54) (resp. b’ (54)) is the annihilation (resp.creation) opera-
tor for the antineutrino.

The operators b, (), b (&), b (54) and bf(ga) fulfil the usual anti-
commutation relations (CAR) and they anticommute with b’ (5 i ) for
1=12,3 according the convention described in ([12], Section 4.1). See [13]
arXiv for explicit definitions.

Therefore the following anticommutation relations hold for j=1,2,3

{b.(&).bX(&)}=8(& &),

{b7 (54),5(54)} :5(624 —51),
- (3.28)
{bf(é)'bf(&)} =0,
{or (£4),07 (&) = b (& )07 (&)} =0
Recall that for ¢ e L2 (R3) , the operators
b,.. ()= [ b, (&)0(£)dE,
b4,7(¢7)=.[R3b7( ~4)(0( ~4)déz4 (3.29)
b;. (@)= b (&) (&)dE,
b:_(gp)z_[Rgb:( ~4)§0( ~4)d ~4
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are bounded operators on ) and §;, respectively satisfying

ez, (o) =l (3.30)

where e=+=.

3.2.2. Quantized Dirac Field for the Neutrino
Py ™) (pv,—%J and €™ (p,%j are generalized eigenfunctions of (3.21)

with positive and negative eigenvalues +E")(p) respectively.

By (2.35) we get

C(V(V)[p’ljj: _ P’ U(v)[_p,EJ (3.31)
2 |p1+|p2| 2

Wy _L)_»
W )W (z
v (p,zj w® (&)

and applying the canonical quantization we obtain the following quantized Dirac

Setting

(3.32)

field for the neutrino:

(2]

4. The Hamiltonian of the Model

N w

(Jaee®u (&b, (&)+ [dZe W™ (&)b! (&) (3.33)

The processes (1.1) and (1.2) are associated with the S decay of the neutron (see
[3] [4] [17] and [18]).
The S decay process can be described by the well known four-fermion

effective Hamiltonian for the interaction in the Schrdinger representation:
int \/’J.ds ( (1 gAyS) )(X))(\P_(e)(x)ya (1_}/5)ll’(v)(x))
jds( X) 70 (L= 75) ¥ () (¥ ) (0) 7 (L= 0a75) ¥ (%)

Here y*, «=0,1,2,3 and p, are the Dirac matrices in the standard
representation. ‘P()( ) and \P()( ) are the quantized Dirac fields for p, n, e
and v. ‘{’()( )= Y (X)Jr 7°. G =G, cosd,, where G isthe Fermi coupling
constant with G =1.16639(2)x10° GeV? and 6, is the Cabbibo angle with
cosd, =0.9751. Moreover ¢, =1.27 . See [19].

The neutrino v is the neutrino associated to the electron and usually denoted
by v, inPhysics.

From now on we restrict ourselves to the study of processes (1.1).

We recall that m, <m_ <m,.
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4.1. The Free Hamiltonian

We set
(e)
5 =8 @)
3 =55 @S(-p)
5" =35, (4.2)
S(V) :g(v).
3= 3(9) @g(P) ®S(”) @g(")
We set

o(&)=EY (p*) for& =(s.n,p"p°)

o(&)=E"(p*) forg =(s,n,p' p°)

(&) =yp[ +m; for & =(p.4) (4.3)

1
o(&)=Pp| foré, =[p,——j

Let H (resp HD), Hg]) and H ') be the Dirac Hamiltonian for the
electron (resp.the proton, the neutron and the neutrino).

The quantization of H ée ), denoted by H éeg and actingon §'®, is given by

e ZIw 661 (gl)dé (4.4)

Likewise the quantization of H, HE)”) and H{), denoted by H®,
H(()B and Héfg respectively,acting on P =™ apg respectively, is
given by

H(()%):ZJ.Q) gz (égz)défz

HB = [o(&)b] (&)b, (&)dE, (4.5)
Hs = [@(&)b] (£,)b, (£)dé,

For each Fock space S('), let D" denote the set of vectors ®eF" for
which each component ®") is smooth and has a compact support and
®'=0 for all but finitely many (7). Then Hé‘)D is well-defined on the dense
subset DV and it is essentially self-adjoint on Y. The self-adjoint extension
will be denoted by the same symbol Hé::) with domain D ( Hé;g) .

The spectrum of H b € 39 s given by

spec( ) {0} U[m,, ) (4.6)

{0} is a simple eigenvalue whose the associated eigenvector is the vacuum in
3© denoted by Q. [m, ) is the absolutely continuous spectrum of Hé,eg .
Likewise the spectra of H (()%) , H é"g and H éVD) are given by

spec(Héy"D)) ={0ju[m,, =)
spec(Hé”&):{O}U[mn,oo) (4.7)
spec( ) [0,00)

QP 0™ and QY are the associated vacua in F*, F" and "
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respectively and are the associated eigenvectors of Héfl’j), H((,?De) and Hég

respectively for the eigenvalue {0} .
The vacuum in §, denoted by Q, is then given by
a=a"ea"ea"eq" (4.8)
The free Hamiltonian for the model, denoted by H, and acting on F, is
now given by
H,=H{ ©1®101+10HY) ®191+1010 H{) ®1+1Q1®1® H{Y) (4.9)
H, is essentially self-adjointon ©=9° @2" @2 @2
Here ® is the algebraic tensor product.
spec(H,)=[0,0) and Q is the eigenvector associated with the simple

eigenvalue {0} of H,.
Let S be the set of the thresholds of Hé% :

s® :(sﬁe); ne N)
with s® = \/m? +2neB .
Likewise let S'” be the set of the thresholds of Hév‘g :
s =(s";neN)

with si” = /mZ +2neB .
Let S be the set of the thresholds of Hé,”D) :

s =(nm,;n e N,such thatn >1)
Then
6=s@us”us (4.10)

is the set of the thresholds of H,.

4.2. The Interaction

By (4.1) let us now write down the formal interaction,denoted by V, , involving
the protons, the neutrons, the electrons and the neutrinos together with

antiparticles in the Schrédinger representation for the process (1.1). We have

VRRVERYCIRVEIRYE (4.11)
Set
=p, +
a=pP.+P, (4.12)
r=p,+p,

After the integration with respect to (X', x°) V, is given by
v = [ [dgde,dede, e (W(xz,fz)ya (1-ga7)u" (53))
<(UP (687 (1700 () (@13
x5 (q'=r)s(a° - r*)bl (&)b; (£)b. (&)b, (&)
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@) = [ [dgdgdsds,e ™ (LW(é)n (1-75)u" (xz,é))
(U7 (&) (-0 (.2 (1149
x(a'=r')a(a° —r®)bl (&)b](&)b, (&)b. (&)

- ot [agddzde e ™ (UY (&), (L- )W (¢ éi))
(UOE) " 1-as W (.2, (1.15)
x8(q"+rt)8(a+r )bl (£,)bI (&) (&)0 (&)

@ - [ax*[dede,dede, e (W(xz,fz)y" (1-gurs)u"” (53))
(WO, 8)r (-0 (2) (416
«3(ot +1) (@ +r°)b. (£)b, ()b (£,)b. ()

V,(3) and V,(4) are responsible for the fact that the bare vacuum will not be

an eigenvector of the total Hamiltonian as expected in Physics.

V, is formally symmetric.

In the Fock space § the interaction V, is a highly singular operator due to
the o-distributions that occur in the (V,('))'S and because of the ultraviolet
behaviour of the functions U" and W'

In order to get well defined operators in § we have to substitute smoother
kernels F)(£,,5), GY(&,¢&,), where B=12, both for the &distributions
and the ultraviolet cutoffs.

We then obtain a new operator denoted by H, and defined as follows in the

Schrédinger representation.
H =HY+HP +HE 41 (4.17)
with
[ = Jdgadeds| [oce™ (U (¢, )r (- 000" ()
X(W(leé)n(1—75)U(”)(§4))j (4.18)
F“)((:2,(:3)6@(51,54)bi(é)bi(éz)m(«:a)m(54)
? = [dgadsde, [ ace™ (VD (&) 7, (1-7)U " (¢.5)
x(u(")(gs)y“(1—gAy5)u“’>(x2,§2)) (4.19)
(&:6)6" (& & )00 (&) (&)b, (£)b.(4)
HI? = Jdgdedzas, [oce ™ (U0 (&)r, (- )W (¢.)
X(W(gs)ya(l—gAyS)WW(xz,g;))j (4.20)
F(&,8)6 (&,&)b(&)bI(&)b(&)b) (&)
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U= Jagagazas, Jace™ (WO &) (100" (5)
x(W (.4)7,0-7)0" (&) @21
F(£.4)6% (&.6)b. (&)b. (&)b_(&)b.(&)

Definition 4.1. The total Hamiltonian is
H=H,+gH, (4.22)

where gis a non-negative coupling constant.

The assumption that g is non-negative is made for simplicity but all the results
below hold for |g|eR with |g| small enough.

We now give the hypothesis that the kernels F” (.,.),G(ﬂ) (..), #=12,and
the coupling constant g have to satisfy in order to associate with the formal
operator Ha well defined self-adjoint operator in F.

Throughout this work we assume the following hypothesis

Hypothesis 4.2. For =12 we assume

FU(&,&)e 2 (I xT,)

4.23
G (&,&,)e (M, xR%) (429

(,) . be the scalar product in C*. We have
U_<X27§) 1 gA75) (n)(§3)=< ( ‘:z) (1 gA75) (n)(§3)>c4
(XZ 51)705 1 7/5 981 77/a(1 7/5) (V)(§4)>C4
(54)70;(1 75 51 :<U 77a 1 75)W()(sz§1)>(c4
n)(‘:cs) (1 gA75 (Xz!fz) < (1 gA75) ()(le§2)>c4
(4.24)
Set
S EE e I
We then have
Proposition 4.3. For every ® e D(H,) we obtain
[H®] <o [FO ()] [6% ()] [(Ho +my) @] for j=1.2
. . (4.26)

el

6 (.,

(Ho+m,)®| for j=3,4

2
By (4.23), (4.24) and (4.25) the estimates (4.26) are examples of N_ estimates
(see [20]). The proof is similar to the one of ([21], Proposition 3.7) and details
are omitted.
Let g,>0 be such that

2
zgoco[ﬁzlupw(.,.) 6

- ) <1 (4.27)

We now have
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Theorem 4.4. For any ( such that 9Q<0,, H is a self-adjoint operator in
§ with domain D(H)=D(H,) and is bounded from below. H is essentially
self-adjoint on any core of H,. Setting

E=info(H)
we have for every ¢ <,
G(H):GeSS(H):[E’OO)
with E<O0.

Here o(H) is the spectrum of Hand o, (H) is the essential spectrum of
H

Proof. By Proposition 4.2 and (4.27) the proof of the self-adjointness of A
follows from the Kato-Rellich theorem.

We turn now to the essential spectrum. The result about the essential
spectrum in the case of models involving bosons has been obtained by ([14],
theorem 4.1) and [23]. In the case of models involving fermions the result has
been obtained by [24]. In our case involving only massive fermions and massless
neutrinos we use the proof given by [24].

Thus we have to construct a Weyl sequence for Hand E+4 with 4>0.

Let 7 be the self-adjoint multiplication operator in L? (R3) defined by

v)

Tu(p,) |p4| p,). T'is the spectral representation of Hy’ for the neutrinos

1
of helicity 3 in the configuration space L° (Rs). See (3.27).

Every A >0 belongs to the essential spectrum of 7. Then there exists a Weyl
sequence (fn )nzl for Tand A >0 such that
f,eD(T) forn>1.

[f.|=1 for n>1.
w—lim f, =0. (4.28)
lim(T-4)f, =0

n—o

Let

f (54)=f ( )
)=[b, (&) T, (£,)dE, (4.29)
)=[0(&) f (&) dé,

In the following we identify b+y4( n) with its obvious extension to §.

An easy computation shows that, for every ¥ €D ( H ),
[H.00,(1,)]¥ = [dadedz fade ™
X(W(xam<1—gA75>u<"e><fs>)F<”<fz’fs>
x<U(e)(X2,§1)’7O7’a(1—75)(J.fn(54)6(1)(651’54)U(Ve)(§4)d§4)>c4)

*

X b: (51)b+(§2)b+ (53)\{/
[Hl(l),bﬂ(fn)}l’:o (4.31)

(4.30)
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[H®.b,(f,)]¥ =—[dédéds, (Idxzefixzrz

x(U (e) Lf3 ]/a(l 9A7’5) (X2’§2>)F(1)(§2’§3) (4.32)
x<If (806" (5,600 (6)d8, 7 =70 (). )
b2 (&)b. (&)b. (& )
|:H|(2)'b:4(f )J\PZO (4.33)
[HEb ()% =] dédé,dé  foxe ™
(U @) (-0 W (. (4,4)
(4.34)

x<jfn(§4)G<2)(§l,§4) V(&) dE o7, (L-75)W (P 51)>4)

X b: (§3)bj(§2)bi (51)‘11
[H,(S) b, (f, )]P:o (35)

[H.07,(1,)] W = [dedé,de,([axe ™
x(W (x &) 7. (L=gars)U™ (53))': (506)
(4.36)
x (W ( 51) yre (L (.[f (&)G (51’54)U(V)(§4)d§4)>c4)
xb, (&)b(&)b- (&)Y
[HI%.b.a(1,) ¥ =0 (437

Let P,(.) be the spectral measure of H. For any ¢>0 the orthogonal
projection P, ([E E+ e)) is different from zero because Ebelongsto o (H).
Let @, € Ran(PH (E.E +e))) such that |®@,_[=1. We set
¥, =(b.,(f,)+bl,(f,))®, n>1 (4.38)

Let us chow that there exists a subsequence of (‘P which is a Weyl

sequence for Hand E+ 1 with 4>0.
By Hypothesis 4.1, (4.30), (4.32), (4.34), (4.36) and the N_ estimates we get

sup(”["‘ b (f, )}PM[H P04 (1,)] T“)

X0 .
(4.39)

x (H0+mp);‘PH

SUP(H[HPMfnﬂ‘l’H*H[Hf“*bh(fnﬂ‘PH)

F(Z)(,)Lzrlrz(
"

2
(H0 + mp) b g
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Note that
v

n,e

=1ln2x>1 (4.40)

We have for every W eD(H)
(H¥ ¥, )= (0.0 (F,)+B0 (f,))H®, + (b0, (TF,)=b, ,(TF,)) @,

N (4.41)
+0[Hy (b, (1) +00 (1)) ], )
See [14].
This yields
HW,, = (b, (f,)+b] 4 (f,))H® + (b} (Tf,) = (b, (TF,))®,
(4.42)

+0[ (b (1) 01 (1,)) ],
and
(H-E-A)¥,, =(b,,(f,)+b,(f,))(H-E)¥,
(b, ((T+2)f,)+b],((T-2)f,))®, (4.43)
+ 9 Hyy(bo (f,)+b0, ()],
By (3.19) this yields for g < g,
[(H-E-2)¥, |<

b, (f,)¥ A)1,)
+9[[Hb ()W, " ()]

Let {g,|k=123,} bean orthonormal basis of L*(R®) and consider
07 (0 )07 (9, )02 (0 )0 (04, )2 €5, (445)

where the indices can be assumed ordered k, <---<k, . Fock space vectors of
this type form a basis of S(v) (see [7]). By ([24], Lemma 2.1) this yields for
every €>0

(4.44)

s—limb,,(f,)¥. =0,

€

m (4.46)
w—limb,(f,)¥. =0

n—o !

By (3.26) and Hypothesis 4.1 we have

Iim(
N—0

|im(j“jf (£)G® (&.£,)0% (&)dé,

oo
d;l] =

It follows from (4.28), (4.38), (4.44), (4.46) and (4.47) that for every €>0

[ ()6 (4,600 (&) de [

(4.47)

n—w

Iimsup"(H -E-2)Y, (4.48)
This yields
limlimsup|(H ~E-2)¥, [=0 (4.49)

In view of (4.49) there exists a subsequence (‘I’nj . ) such that
)
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lim =0 (4.50)

joo

(H-E-2)¥

nj,Ej

Furthermore it follows from (4.46) that w—lim,_ ¥, =0.

The sequence (\Pn,-,ej )_ﬂ is a Weyl sequence for Hand E+A4 with 4A>0.

In order to show that E<0 we adapt the proof given in [5] and [6]. We
omit the details.

This concludes the proof of theorem 4.4.

5. Existence of a Unique Ground State for the Hamiltonian H

Set

G(ﬂ) ( )

12 12

K(F,G):;“F(ﬂ)(.,.)

C=2C, (5.1)
B=2m_C,

By (4.26) and (5.1) we get for every y e D(H)
[Hw [ < K(F.G)(C|Hoy|+B]w) (5.2)

In order to prove the existence of a ground state for the Hamiltonian A we
shall make the following additional assumptions on the kernels G )(51,54),
p=12.

1
Fromnowon p, e R?® is the momentum of the neutrino with helicity 3

Hypothesis 5.1. There exists a constant K(G)>0 such that for f=1,2
and o >0

6" (&)

1) J-rlxR3 |2 d§1d§4 <™

2) (Irlx{‘pA‘SJ}

We have
Theorem 5.2. Assume that the kernels F(ﬁ)(.,.) and G(ﬂ)(.,.), £=12,
satisty Hypothesis 4.1 and Hypothesis 5.1. Then there exists g, €(0,9,]| such

[

G<ﬂ)(§l,§4)2d§1d§4jzs (G)o

that H has a unique ground state for g <, .
In order to prove theorem 5.2 we first prove the existence of a spectral gap for

some neutrino infrared cutoff Hamiltonians.

5.1. The Neutrino Infrared Cutoff Hamiltonians and the
Existence of a Spectral Gap

Proof. Let us first define the neutrino infrared cutoff Hamiltonians.
For that purpose, let y,(.)eC” (R, [O,l]) with y,=1 on (-«,1] and
2% =0 on [2,0].For 6>0 and p, eR®, we set
X (p4) =X (|p4|/0'),
z° (p4) =1-y, (p4)

(5.3)
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The operator H,  is the interaction given by (4.17) associated with the

kernels F(&,,&)77 (p,)GY (&.&,) instead of F(¢,,&)GY)(&,¢8,).
We then set

Ha:HO+gHI,G (5'4)

We now introduce
Lo =R3ﬂ{|p4|<0'}, ry :R3ﬂ{|p4|20-}

= (U () 5 =5 (0 () o
S4o ® S, is the Fock space for the massless neutrino such that
§ =3, 0% .
We set
37=3"e3" o3 3 and 3, =3, (5.6)
We have
=37 ®3, (5.7)
We further set
Hy = [|pa[bl (&)b. (&)dé, (5.8)
In the following we identify H, with its obvious extensionto .
We let
Ha” = [, palbl (8D, (£)de, o
HGo = J o IPalbl (82D, (£,)d, '

We identify H,” and Hé » with their obvious extension to §° and
respectively.

On F° ®3F, ,wehave
Hy =Hy° ®1 +1°®H,

(5.10)
where 1° (resp. 1o) is the identity operator on F° (resp. § ).
Setting
Hy =Ho|» and H =H_|, (5.11)
we then get
HS =HEL +HE + HI + HE on 37
0 0,D 0,D 0,D 0 (512)
H?=Hg7 +gH,, ong°
and
H,=H°®1,+1°®H,, ong3° ®F, (5.13)

On the other hand, for 6 € R such that 0<J <m;, we define the sequence
(O-” )nzo by

o, =2m, +1,
o, =m, —g, (5.14)

0., =yo, fornx1
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where

(5.15)

=1-
4 2m, —o

For n>0, we now introduce the neutrino infrared cutoff Hamiltonians on
F"=F°" by stting

HY=H%™, HJ=H (5.16)
We set, for n>0,
E"=info(H") (5.17)
We introduce the neutrino infrared cutoff Hamiltonians on § by setting
H,=H,, Hy,=H,, (5.18)
We set, for n>0,
E,=info(H,) (5.19)
Note that
E"=E, (5.20)

One easily shows that, for g<g,,
gK ( F, G) B

E" = <— 7 5.21
&l 1-g,K(F.G)C (5:21)
See [5] [13] for a proof.
We now let
K(F,G)=z[z“F<ﬁ>(.,.) . jK(G) (5.22)
£=1,2 (ryxT2)
where K(G) is the constant given in Hypothesis 5.2(2).
We further set,
< C
C=———mF —— 5.23
1=g,K(F.G)C 529
B= B . (5.24)
(1-g,K(F.G)C)
and
- aem+1)y ) . -
D(F,G):max{ZmS—_ﬁ,Z K(F.G)(2mC+B) (5.25)
Let gl(é) be such that
_ .2
0< gib) <min {1, go,%} (5.26)
and let
1
g; = (5.27)

2K (F.G)(2C +B)
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Setting
of" =inf {g,, 9"}
C(F.G)= 3—( )
v
and applying the same method as the one used for proving proposition 4.1 in [5]
we finally get the existence of a spectral gap for H". We omit the details of the
proof.

The proof of the following proposition is achieved.

Proposition 5.3. Suppose that the kernels F) (...)> G (..), B=L2,
satisty Hypothesis 4.1 and Hypothesis 5.1(2). Then, for { < gg‘s) , E" is a
simple eigenvalue of H" for n>1, and H" does not have spectrum in the
interval (E",E"+(1-9C(F,G)a,)).

5.2. Proof of the Existence of a Ground State

Proof. In order to prove the existence of a ground state for / we adapt the proof
of theorem 3.3 in [13]. By Proposition 5.3 H" has a unique ground state,
denoted by ¢",in §" such that

Hn¢n — En¢n, ¢n ED(HH),

¢"[=1,n>1 (5.29)

Therefore H, has a unique normalized ground state in §F, given by

¢, =¢" ®Q,, where Q. isthevacuum statein §,,
Hn&n = En&n' &n eID(Hn)' &n

Let H,, denote the interaction H, . It follows from the pull-through

=1lnx>1 (5.30)

formula that

(HO +gHI,n)b+ (54)&n

_ED (E)h-0(2)b. (5 (VA E) V2 (E)E
where
V(&) = [dsdzg Joce ™ (U ()7, (17U (x.4)
(U (&) (- 0w u " (¢.5,))| 632)
xFY(£,&)6" (£,£)77 (pa)b (&)b. (&)b. (&)
V(&) =] d§ld§2d§3( [axe (W(@)n (1= 7 )W (xz,él))
X(W((,g)ya (1—gA;/5)W(p)(x2,§2)) (5.33)

xF®(&,8)6% (&,4) 7™ (pa)bl (&)b(£)b (&)
Hence, by (5.30), (5.31), (5.32) and (5.33), we get
(Hn - En + CO(§4 ))b+ (§4)¢~n = _g (Vn(l) (54 ) +\7n(2) (64 ))&n (534)
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We further note that, for =12,

x[(Ho+m, )% gl (5.35)

(&),

<,

0l

The estimates (5.35) are examples of N_ estimates (see [20]). The proof is

g ("54) Lz(l"

Lz(l'lxl"z)

where

N[

7" (1= 9] (7. (2= 75))

similar to the one of ([21], Proposition 3.7) and details are omitted.

Let us estimate "HO(/;n . By (5.2) we get

g|H, .4 < K (F.G)(C|Ho| + B) (5.36)
and
[Hodn| <[Eq |+ 9| H1 o6 (5.37)
By (5.21), we obtain
K(F,G)B 1 .
"H°¢" 1 g K (F, G)C[lJrl—goK(F,G)C]_M (5.38)

By (5.38) ||H0¢3n is bounded uniformly with respect to nand g <g, and by
(5.34), (5.35) and (5.38) we get

i

uniformly with respect to n.
By Hypothesis 5.1(1) and (5.39) there exists a constant C(F,G)>O such
that

FO0), (6

L

b, ()4,

D(,&) LZJ(M +mp)% (5.39)

<C(F,G)g’ (5.40)

),

4 =1, there exists a subsequence (nk )k ., > converging to © such

Since

that (¢an )kzl converges weakly to a state ¢ e . By adapting the proof of
theorem 4.1 in [21] it follows from (5.40) that there exists ¢, such that
0<g,< gg‘;) and #=0 forany g<g,.Thus ¢ isaground state of A.

5.3. Uniqueness of a Ground State of the Hamiltonian H

Proof. The proof follows by adapting the one given in [6]. See also [25].

In view of theorem 4.3 E is an eigenvalue of H with a finite multiplicity. Either
E is a simple eigenvalue and the theorem is proved or its multiplicity is equal to
peN with p>1. Let us consider the second case. We wish to show by
contradiction that E is a simple eigenvalue for g sufficiently small.

Let (¢.,4,) be two vectors of the eigenspace of E. Each ¢; with j=12 is
a ground state of H. ¢ and ¢, can be chosen such that <¢1, ?, >3 =0 with
o]t 1=12.

By (5.30) let ¢, be aunique normalized ground state of H, .
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We have

0=[(g )| =1im[(g,.4,)" =lim(E, (H,) ;)

(5.41)
:1—Iim<(]13— E{En}(Hn))¢21¢2> 5

n—o

where E{.} (.) is the spectral measure for the associated self-adjoint operator.

We have
1B (H)) =(1"-Epe, (H"))® Py +1'®(1,- Py ) (5.42)
We have to estimate
(170 (1,- Ry, )02 (5.43)
and
<¢2,((1”— Ee, (H”))@ P, )¢2> (5.44)

We first estimate (5.43).
By applying the same proof as the one used to get estimates (5.38), (5.39) and
(5.40) with ¢, instead of ¢, we easily get

[Ib. (&)4,[ d&, <C(F.G)g? (5.45)
This yields
<¢2,(]1n®(11n— P, )>¢2>SC(F,G)92 (5.46)
We now estimate (5.44)
Set
I'-E, (H")=Eq, (H") (5.47)
By proposition 5.3 we get
(H"-E,)Ec,(H") 2(1-9C(F.G))o,E, (H") (5.48)
and
(8B (1) @R, )
1 n
o el
) (5.49)
" (1-9C(F.G))o, (2 (H,-E)(1"0R, )6,)
1
T (r e, MBI
Note that
E<(4.Hd,)=(¢ H'¢,)=E"=E, (5.50)

In view of (5.49) and of (5.50) we get
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(¢2,(H, -E.)¢)
(1-9C(F,G))o,
(¢ (E-E)d) _ (o(Hi—H)4) (551)
" (1-9C(F.G))a, (1—gC(F,G))o-n '
(@ (H,—H)g,)
(1 gC(F,G))o,
Hence
n\ -t <¢21(Hn_H)¢z>
), E H ®F, ¢, )< - 5.52
<¢ e (M) "¢><(1—Q£A)C(F,G))Un .
Here ggé) has been introduced in proposition 5.3
Estimate of "( H,-H )(/5" . We have
H-H,=g(H -H,,) (5.53)

H —H, isassociated with the kernels F” (£:8) 2o, (PG (&.&,).
By adapting the proof of (5.2) to the estimate of (H —H,) we finally get

[(H=H)a| = gf(H, ~Hi.) ] < oK, (F.G)(C[Hugs| + B)  (5.59)

where
(F.G) Z“F N (PG ()] (5.55)
Under Hypothesis 5.2(2) we get
2 ~
< 2(;“#” . J K(G)o, (5.56)
This, together with (5.55), yields
[, (H—H,),)| < &Ko, (5.57)
where K =2(35[F¥ ()], JR(G)(C[Hats] +B).
Combing (5.41), (5.42), (5.46), (5.52) and (5.57) we finally get
<¢2'(]ls_ E{En}(Hn))¢2>S gK' (5.58)

Here K'= +.
1-g{)C(F,G)

K’ is a positive constant independent of gand it follows from (5.41) that, for
g sufficiently small, (¢,4,)#0. This is a contradiction and p=1. This

concludes the proof of theorem 5.2.
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