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Abstract 
In this paper we consider a mathematical model for the inverse β decay in a 
uniform magnetic field. With this model we associate a Hamiltonian with cu-
toffs in an appropriate Fock space. No infrared regularization is assumed. The 
Hamiltonian is self-adjoint and has a unique ground state. We study the es-
sential spectrum and determine the spectrum. The coupling constant is sup-
posed sufficiently small. 
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1. Introduction 

A supernova is initiated by the collapse of a stellar core which leads to the 
formation of a protoneutron star which may be formed with strong magnetic 
fields typically of order 1016 Gauss. It turns out that the protoneutron star leads 
to the formation of a neutron star in a very short time during which almost all 
the gravitational binding energy of the protoneutron star is emmitted in 
neutrinos and antineutrinos of each type. Neutron stars have strong magnetic 
fields of order 1012 Gauss. Thus neutrinos interactions are of great importance 
because of their capacity to serve as mediators for the transport and loss of 
energy and the following processes, the so-called “Urca” ones or inverse β decays 
in Physics,  
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e n e pν −+ +�                      (1.1) 

e p e nν ++ +�                      (1.2) 

play an essential role in those phenomena and they are associated with the β 
decay  

en p e ν+→ + +                      (1.3) 

Here e−  (resp. e+ ) is an electron (resp. a positron). p is a proton and n a 
neutron. eν  and eν  are the neutrino and the antineutrino associated with the 
electron. 

See [1] [2] [3] [4] and references therein. 
We only consider here high-energy neutrinos and antineutrinos which are 

indeed relativistic particles whose mass is zero or in anyway negligible. 
Due to the large magnetic field strengths involved, it is quite fundamental to 

study the processes (1.1) and (1.2) in the presence of magnetic fields. 
These realistic fields may be very complicated in their structure but we assume 

these fields to be locally uniform which is a very good hypothesis because the 
range of the weak interactions is very short. Our aim is to study the processes 
(1.1) and (1.2) in a background of a uniform magnetic field. 

Throughout this work we restrict ourselves to the study of processes (1.1), the 
study of processes (1.2) and (1.3) would be quite similar. We choose the units 
such that 1c = =� . 

The advantage of a uniform magnetic field is that, in presence of this field, 
Dirac equation can be exactly solved. Using the generalized eigenfunctions of the 
Dirac equation and the canonical quantization we carefully define the quantized 
fields associated with the electrons, the positrons, the protons and the antiprotons 
in a uniform magnetic field. 

For the neutrons and the neutrinos we define the corresponding quantized 
fields by using the helicity formalism for the free Dirac equation. 

We then consider the Fock space for the electrons, the positrons, the protons, 
the antiprotons, the neutrons and the neutrinos. 

In this paper we consider a mathematical model for the process (1.1) in a 
uniform magnetic field based on the Fermi’s Hamiltonian for the β decay. The 
physical interaction is a highly singular operator due to delta-distributions 
associated with the conservation of momenta and because of the ultraviolet 
divergences. In order to get a well defined Hamiltonian in the Fock space we 
have to substitute smoother kernels both for the delta-distributions and for 
dealing with the ultraviolet divergences. We then get a self-adjoint Hamiltonian 
with cutoffs in the Fock space when the kernels are square integrable. 

We then study the essential spectrum of the Hamiltonian and prove the 
existence of a unique ground state with appropriate hypothesis on the kernels. 
The proof of the uniqueness of the ground state is a direct consequence of the 
proof of the existence of a ground state. The spectrum of the Hamiltonian is 
identical to its essential spectrum. Every result is obtained for a sufficiently small 
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coupling constant. No infrared regularization is assumed. We adapt to our case 
the proofs given in [5] and [6]. 

These results are new for the mathematical models in Quantum Field Theory 
with a uniform magnetic field. 

The paper is organized as follows. In the next two sections, we quantize the 
Dirac fields for electrons, protons and their antiparticles in a uniform magnetic 
field. In the third section, we quantize the Dirac fields for free neutrons, 
neutrinos and their antiparticles in helicity formalism. The self-adjoint Hamil- 
tonian of the model is defined in the fourth section. We then study the essential 
spectrum and prove the existence of a unique ground state. 

2. The Quantization of the Dirac Fields for the Electrons and  
the Protons in a Uniform Magnetic Field 

In this paper we assume that the uniform classical background magnetic field in 
3  is along the x3-direction of the coordinate axis. There are several choices of 

gauge vector potential giving rise to a magnetic field of magnitude 0B >  along 
the x3-direction. In this paper we choose the following vector potential  
( ) ( )( )Aµ=A x x , 0,1,2,3µ = , where  

( ) ( ) ( ) ( )0 2 3 1 20,A A A A x B= = = = −x x x x              (2.1) 

Here ( )1 2 3, ,x x x=x  in 3 . 
We recall that we neglect the anomalous magnetic moments of the particles of 

1spin
2

. 

The Dirac equation for a particle of 
1spin
2

 with mass 0m >  and charge e  

in a uniform magnetic field of magnitude 0B >  along the x3-direction with the 
choice of the gauge (2.1) and by neglecting its anomalous magnetic moment is 
given by  

( ) 1
DH e e m

i
β = ⋅ ∇ − + 

 
Aα                   (2.2) 

acting in the Hilbert space ( )2 3 4,L   . 
The scalar product in ( )2 3 4,L    is given by  

( ) ( ) ( )3

4
3

1
, dj j

j
f g f g

=

= ∑∫ x x x


 

We refer to [7] for a discussion of the Dirac operator. 
Here ( )1 2 3, ,α α α=α , β  are the Dirac matrices in the standard form:  

00
, , 1, 2,3

00
i

i
i

I
i

I
σ

β α
σ
  

= = =  −   
 

where iσ  are the usual Pauli matrices. 
By ([7], thm 4.3) ( )DH e  is essentially self-adjoint on ( )3 4

0 ,C∞   . The 
spectrum of ( )DH e  is equal to  
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( )( ) ( ] [ ]spec , ,DH e m m= −∞ − ∞∪                 (2.3) 

The spectrum of ( )DH e  is absolutely continuous and its multiplicity is not 
uniform. There is a countable set of thresholds, denoted by S, where  

( ), ;n nS s s n= − ∈                        (2.4) 

with 2 2ns m n e B= + . See [8]. 
We consider a spectral representation of ( )DH e  based on a complete set of 

generalized eigenfunctions of the continuous spectrum of ( )DH e . Those 
generalized eigenfunctions are well known. See [9]. In view of (2.1) we use the 
computation of the generalized eigenfunctions given by [10] and [11]. See also [4] 
and references therein. 

Let ( )1 3,p p  be the conjugate variables of ( )1 3,x x . By the Fourier transform 
in 2  we easily get  

( ) ( )2
2 3 4 2 4 1 3, , d dL L p p

⊕

∫� 
                    (2.5) 

and 

( ) ( )2
1 3 1 3; , d dD DH e H e p p p p

⊕

∫� 
                (2.6) 

where 

( )
( )

( )

1 3

1 2 3
0 1 2 32

1 2 3
1 2 3 02

; ,

d
d

d
d

DH e p p

m p ex B i p
x

p ex B i p m
x

σ σ σ σ

σ σ σ σ

 − − + 
=  
 − − + − 
 

  (2.7) 

Here 0σ  is the 2 2×  unit matrix. 

( )1 3; ,DH e p p  is the reduced Dirac operator associated to ( )1 3; ,e p p . 

( )1 3; ,DH e p p  is essentially self-adjoint on ( )4
0 ,C∞    and has a pure point 

spectrum which is symmetrical with respect to the origin. 
Set  

( ) ( )2 23 2 3 2 , 0nE p m p n e B n= + + ≥               (2.8) 

The positive spectrum of ( )1 3; ,DH e p p  is the set of eigenvalues ( )( )3

0n n
E p

≥
 

and the negative spectrum is the set of eigenvalues ( )( )3

0n n
E p

≥
− . ( )3

0E p  and 

( )3
0E p−  are simple eigenvalues and the multiplicity of ( )3

nE p  and  

( )3
nE p−  is equal to 2 for 1n ≥ . 

Through out this work e will be the positive unit of charge taken to be equal to 
the proton charge. 

We now give the eigenfunctions of ( )1 3; ,DH e p p  both for the electrons and 
for the protons. The eigenfunctions are labelled by n∈ , ( ) 2

1 2,p p ∈  and 
1s = ± . n∈  labels the nth Landau level. 1s = ±  are the eigenvalues of 3σ . 

The electrons and the protons in all Landau levels with 1n ≥  can have different 
spin polarizations 1s = ± . However in the lowest Landau state 0n =  the 
electrons can only have the spin orientation given by 1s = −  and the protons 
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can only have the spin orientation given by 1s = . 

2.1. Eigenfunctions of the Reduced Dirac Operator  
for the Electrons 

We now compute the eigenfunctions of ( )1 3; ,DH e p p−  with em m=  where 

em  is the mass of the electron. 
( ) ( )3e
nE p  and ( ) ( )3e

nE p−  will denote the eigenvalues of ( )1 3; ,DH e p p−  for 
the electrons. We have ( ) ( ) ( )2 23 2 3 2 , 0e

n eE p m p neB n= + + ≥ . 

2.1.1. Eigenfunctions of the Electrons for Positive Eigenvalues 
For 1n ≥  ( ) ( )3e

nE p  is of multiplicity two corresponding to 1s = ±  and 
( ) ( )3
0

eE p  is multiplicity one corresponding to 1s = − . 
Let ( ) ( )2 1 3

1 , , ,eU x n p p±  denote the eigenfunctions associated to 1s = ± . 
For 1s =  and 1n ≥  we have  

( ) ( )
( ) ( )

( ) ( )

( )

( ) ( ) ( )

( ) ( ) ( )

1

1
33 2

2 1 3 131 3

3

0

, , ,
2

2

n

e
n ee nee n en

ne
n e

I

pE p m IU x n p p E p mE p
neB I

E p m

ξ

ξ

ξ

−

−
+

 
 
 
  +   = +  

   
 
−  + 

    (2.9) 

where 

( ) ( ) ( )

1
2

1
2

2exp 2
!2 πn nn

peB x
eB

eBI H
n

ξ

ξ ξ ξ

 
= − 

 

 
= −  
 

            (2.10) 

Here ( )nH ξ  is the Hermite polynomial of order n and we define  

( )1 0I ξ− =                          (2.11) 

For 0n =  and 1s =  we set  
( ) ( )2 1 3
1 ,0, , 0eU x p p+ =  

For 1s = −  and 0n ≥  we have  

( ) ( )
( ) ( )

( ) ( )

( )

( ) ( ) ( )

( ) ( ) ( )

1
3 2

2 1 3 131 3

3

3

0

2
, , ,

2

n

e
n ee

nee
n en

ne
n e

I

neBE p m IU x n p p E p mE p
p I

E p m

ξ

ξ

ξ

−−

 
 
 
  +  − = +  

   
 
−  + 

   (2.12) 

Note that  

( ) ( ) ( ) ( )†2 2 1 3 2 1 3d , , , , , ,e e
s s ssx U x n p p U x n p p δ′ ′=∫          (2.13) 
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where †  is the adjoint in 4 . 

2.1.2. Eigenfunctions of the Electrons for Negative Eigenvalues 
For 1n ≥  ( ) ( )3e

nE p−  is of multiplicity two corresponding to 1s = ±  and 
( ) ( )3
0

eE p−  is multiplicity one corresponding to 1s = − . 
Let ( ) ( )2 1 3

1 , , ,eV x n p p±  denote the eigenfunctions associated with the 
eigenvalue ( ) ( )3ap

nE p−  and with 1s = ± . 
For 1s =  and 1n ≥  we have 

( ) ( )
( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( )

3

13
1

3 2
2 1 3

1 3 3

1

2, , ,
2

0

ne
n e

e
n ee

ne e
n n e

n

p I
E p m

E p m neBV x n p p I
E p E p m

I

ξ

ξ

ξ

−

+

−

 
− 

+ 
  +   =    +   
 
  
 

    (2.14) 

and for 0n =  we set  
( ) ( )2 1 3
1 ,0, , 0eV x p p+ =  

For 1s = −  and 0n ≥  we have 

( ) ( )
( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( )

13
1

3 2 3
2 1 3

1 3 3

2

, , ,
2

0

ne
n e

e
n ee

ne e
n n e

n

neB I
E p m

E p m pV x n p p I
E p E p m

I

ξ

ξ

ξ

−

−

 
 

+ 
  +   =    +   
 
  
 

     (2.15) 

Note that  
( ) ( ) ( ) ( )†2 2 1 3 2 1 3d , , , , , ,e e

s s ssx V x n p p V x n p p δ′ ′=∫            (2.16) 

where †  is the adjoint in 4 . 
The sets ( ) ( )( )( )1 3

1 3
1 , ,

., , ,e

n p p
U n p p±  and ( ) ( )( )( )1 3

1 3
1 , ,

., , ,e

n p p
V n p p±  of vectors in 

( )2 4,L    form a orthonormal basis of ( )2 4,L   . 

This yields for ( )Ψ x  in ( )2 3 4,L    

( ) ( ) ( ) ( ) ( ) ( )(
( ) ( ) ( ) ( ))

1 1 3 3

2
1 3 1 3 2 1 3

1 0

1 3 2 1 3

1 L.i.m d d e , , , , ,
2π

, , , , ,

i p x p x e e
s s

s n

e e
s s

p p c n p p U x n p p

d n p p V x n p p

+

=± ≥

Ψ = 



+ 



∑ ∑∫x


(2.17) 

where ( ) ( ) ( ) ( )1 3 1 3
1 10, , 0, , 0e ec p p d p p+ += = . 

Let ( )2 1 3ˆ ; ,x p pΨ  be the Fourier transform of ( ).Ψ  with respect to 1x  
and 3x :  

( ) ( ) ( )
1 1 3 3

2
2 1 3 1 2 3 1 31ˆ ; , L.i.m , , d d

2π
i p x p x

x p p e x x x x x
− +

Ψ = Ψ∫  
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We have  

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

†1 3 2 1 3 2 1 3 2

†1 3 2 1 3 2 1 3 2

ˆ, , , , , ; , d

ˆ, , , , , ; , d

e e
s s

e e
s s

c n p p U x n p p x p p x

d n p p V x n p p x p p x

= Ψ

= Ψ

∫

∫




       (2.18) 

The complex coefficients ( ) ( )1 3, ,e
sc n p p  and ( ) ( )1 3, ,e

sd n p p  satisfy  

( ) ( )
( ) ( ) ( ) ( )2 3 4

2 22 1 3 1 3 1 3
,

1 0
. , , , , d de e

s sL
s n

c n p p d n p p p p
=± ≥

 Ψ = + < ∞ 
 ∑∑∫ 

 (2.19) 

2.2. Eigenfunctions of the Reduced Dirac Operator for the Protons 

We now compute the eigenfunctions of ( )1 3; ,DH e p p  with pm m= . 
( ) ( )3p
nE p  and ( ) ( )3p

nE p−  denote the eigenvalues of ( )1 3; ,DH e p p  for the 
proton. We have ( ) ( ) ( )2 23 2 3 2 , 0p

n pE p m p neB n= + + ≥ . 

2.2.1. Eigenfunctions of the Proton for Positive Eigenvalues 
For 1n ≥  ( ) ( )3p

nE p  is of multiplicity two corresponding to 1s = ±  and 
( ) ( )3
0

pE p  is of multiplicity one corresponding to 1s = . 
Let ( ) ( )2 1 3

1 , , ,pU x n p p±  denote the eigenfunctions associated with the eigen- 
value ( ) ( )3p

nE p  and with 1s = ± . 
For 1s =  and 0n ≥  we have  

( ) ( )
( ) ( )

( ) ( )

( )

( ) ( ) ( )

( ) ( ) ( )

1
3 32

2 1 3
1 33

13

0

, , ,
2

2

n

p
n pp

npp
n pn

np
n p

I

E p m p IU x n p p
E p mE p

neB I
E p m

ξ

ξ

ξ

+

−

 
 
 
  +   =  +    
 
 
 + 

�

�

�

   (2.20) 

where 

( )

1
2

1 0

peB x
eB

I

ξ

ξ−

 
= + 

 

=

�

�
                     (2.21) 

For 1s = −  and 1n ≥  we have 

( ) ( )
( ) ( )

( ) ( )

( )

( ) ( ) ( )

( ) ( ) ( )

11
3 2

2 1 3
1 33

3

13

0

2
, , ,

2

n

p
n pp

npp
n pn

np
n p

I

E p m neB IU x n p p
E p mE p

p I
E p m

ξ

ξ

ξ

−

−

−

 
 
 
  +   =    +  
 
 −
 + 

�

�

�

  (2.22) 

For 0n =  and 1s = −  we set  
( ) ( )2 1 3
1 ,0, , 0pU x p p− =  
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Note that  

( ) ( ) ( ) ( )†2 2 1 3 2 1 3d , , , , , ,p p
s s ssx U x n p p U x n p p δ′ ′=∫  

where †  is the adjoint in 4 . 

2.2.2. Eigenfunctions of the Proton for Negative Eigenvalues 
For 1n ≥  ( ) ( )3p

nE p−  is of multiplicity two corresponding to 1s = ±  and  
( ) ( )3
0

pE p−  is of multiplicity one corresponding to 1s = . 
Let ( ) ( )2 1 3

1 , , ,pV x n p p±  denote the eigenfunctions associated with the eigen- 
value ( ) ( )3p

nE p−  and with 1s = ± . 
For 1s =  and 0n ≥  we have 

( ) ( )
( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( )

3

13

1
3 2

2 1 3
11 33

2
, , ,

2

0

np
n p

p
n pp

npp
n pn

n

p I
E p m

E p m neB IV x n p p
E p mE p

I

ξ

ξ

ξ

−

−+

 
− 

+ 
  +  − =  +    
 
 
 
 

�

�

�

  (2.23) 

For 1s = −  and 1n ≥  we have 

( ) ( )
( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( )

3

1
3 32

2 1 3
11 33

1

2

, , ,
2

0

np
n p

p
n pp

npp
n pn

n

neB I
E p m

E p m p IV x n p p
E p mE p

I

ξ

ξ

ξ

−−

−

 
− 

+ 
  +   =  +    
 
 
 
 

�

�

�

   (2.24) 

and for 0n =  and 1s = −  we set  
( ) ( )2 1 3
1 ,0, , 0pV x p p− =  

Note that  

( ) ( ) ( ) ( )†2 2 1 3 2 1 3d , , , , , ,p p
s s ssx V x n p p V x n p p δ′ ′=∫         (2.25) 

where †  is the adjoint in 4 . 
The sets ( ) ( )( )( )1 3

1 3
1 , ,

., , ,p

n p p
U n p p±  and ( ) ( )( )( )1 3

1 3
1 , ,

., , ,p

n p p
V n p p±  of vectors in 

( )2 4,L    form an orthonormal basis of ( )2 4,L   . 

This yields for ( )Ψ x  in ( )2 3 4,L    

( ) ( ) ( ) ( ) ( ) ( )(
( ) ( ) ( ) ( ))

1 1 3 3

2
1 3 1 3 2 1 3

1 0

1 3 2 1 3

1 L.i.m d d e , , , , ,
2π

, , , , ,

i p x p x p p
s s

s n

p p
s s

p p c n p p U x n p p

d n p p V x n p p

+

=± ≥

Ψ = 



+ 



∑ ∑∫x


(2.26) 

where ( ) ( ) ( ) ( )1 3 1 3
1 10, , 0, , 0p pc p p d p p− −= =  
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The complex coefficients ( ) ( )1 3, ,p
sc n p p  and ( ) ( )1 3, ,p

sd n p p  satisfy  

( ) ( )
( ) ( ) ( ) ( )2 3 4

2 22 1 3 1 3 1 3
,

1 0
. , , , , d dp p

s sL
s n

c n p p d n p p p p
=± ≥

  Ψ = + < ∞    
∑∑∫ 

 (2.27) 

We have  
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

†1 3 2 1 3 2 1 3 2

†1 3 2 1 3 2 1 3 2

ˆ, , , , , ; , d

ˆ, , , , , ; , d

p p
s s

p p
s s

c n p p U x n p p x p p x

d n p p V x n p p x p p x

= Ψ

= Ψ

∫

∫




         (2..28) 

2.2.3. Eigenfunctions of the Positron for Positive Eigenvalues 
The generalized eigenfunctions for the positron, denoted by ( ) ( )2 1 3

1 , , ,eU x n p p−
± , 

are obtained from ( ) ( )2 1 3
1 , , ,pU x n p p±  by substituting the mass of the electron 

em  for pm . The associated eigenvalues are denoted by ( ) ( )3e
nE p−  with  

( ) ( ) ( )2 23 2 3 2 , 0e
n eE p m p neB n− = + + ≥ . 

2.2.4. Eigenfunctions of the Positron for Negative Eigenvalues 
The generalized eigenfunctions for the positron, associated with the eigenvalues 

( ) ( )3e
nE p−−  and denoted by ( ) ( )2 1 3

1 , , ,eV x n p p−
± , are obtained from  

( ) ( )2 1 3
1 , , ,pV x n p p±  by substituting the mass of the electron em  for pm . 

2.2.5. Eigenfunctions of the Antiproton for Positive Eigenvalues 
The generalized eigenfunctions for the antiproton, denoted by ( ) ( )2 1 3

1 , , ,pU x n p p−
± , 

are obtained from ( ) ( )2 1 3
1 , , ,eU x n p p±  by substituting the mass of the proton 

pm  for em . The associated eigenvalues are denoted by ( ) ( )3p
nE p−  with  

( ) ( ) ( )2 23 2 3 2 , 0p
n pE p m p neB n− = + + ≥ . 

2.2.6. Eigenfunctions of the Antiproton for Negative Eigenvalues 
The generalized eigenfunctions for the antiproton, associated with the eigen- 
values ( ) ( )3p

nE p−−  and denoted by ( ) ( )2 1 3
1 , , ,pV x n p p−
± , are obtained from  

( ) ( )2 1 3
1 , , ,eV x n p p±  by substituting the mass of the proton pm  for em . 

2.3. Fock Spaces for Electrons, Positrons, Protons and  
Antiprotons in a Uniform Magnetic Field 

It follows from Sections 2.1 and 2.2 that ( )1 3, , ,s n p p  are quantum variables for 
the electrons, the positrons, the protons and the antiprotons in a uniform 
magnetic field. 

Let ( )1 3
1 , , ,e es n p pξ =  be the quantum variables of a electron and of a positron 

and let ( )1 3
2 , , ,p ps n p pξ =  be the quantum variables of a proton and of an 

antiproton. 
We set { } 2

1 1,1Γ = − × ×   for the configuration space for both the electrons, 
the positrons, the protons and the antiprotons. ( )2

1L Γ  is the Hilbert space 
associated to each species of fermions. 

We have, by (2.17), (2.18), (2.19), (2.26), (2.27) and (2.28), 

( ) ( )( ) ( )( )2 2 2 2 2 2 2
1L l L l LΓ = ⊕                 (2.29) 

Let ( )eF  and ( )e−F  denote the Fock spaces for the electrons and the posi- 
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trons respectively and let ( )pF  and ( )p−F  denote the Fock spaces for the protons 
and the antiprotons respectively. 

We have 

( ) ( ) ( ) ( ) ( )2
1

0

n

e e p p
n a

L
∞

− −
=

= = = = Γ⊕⊗F F F F           (2.30) 

( )2
1

n
a L Γ⊗  is the antisymmetric n-th tensor power of ( )2

1L Γ . 

( ) ( )1,0,0,0,αΩ = �  is the vacuum state in ( )αF  for , , ,e e p pα = − − . 
We shall use the notations  

2
1

2
1

1 3
1

1 0

1 3
2

1 0

d d d

d d d

e e
s n

p p
s n

p p

p p

ξ

ξ

Γ
=± ≥

Γ
=± ≥

=

=

∑∑∫ ∫

∑∑∫ ∫





                 (2.31) 

Set = ± . 

( )jb ξ  (resp. ( )*
jb ξ ) are the annihilation (resp.creation) operators for the 

electron when 1j =  and for the proton when 2j =  if = + . 

( )jb ξ  (resp. ( )*
jb ξ ) are the annihilation (resp.creation) operators for the 

positron when 1j =  and for the antiproton when 2j =  if = − . 
The operators ( )jb ξ  and ( )*

jb ξ  fulfil the usual anticommutation relations 
(CAR)(see [12]). 

In addition, following the convention described in ([12], Section 4.1) and 
([12], Section 4.2), we assume that the fermionic creation and annihilation 
operators of different species of particles anticommute (see [13] arXiv for 
explicit definitions). In our case this property will be verified by the creation and 
annihilation operators for the electrons, the protons, the neutrons, the neutrinos 
and their respective antiparticles. 

Therefore the following anticommutation relations hold for 1,2j =   

( ) ( ){ } ( )
( ) ( ){ }

*

# #
1 2

, ,

, 0

j j j jb b

b b

ξ ξ δ δ ξ ξ

ξ ξ

′ ′

′

′ ′= −

=

  

 

              (2.32) 

where { },b b bb b b′ ′ ′= +  and #b b=  or *b . 
Recall that for ( )2

1Lϕ∈ Γ , the operators  

( ) ( ) ( )
( ) ( ) ( )

1

1

,

* *
,

d .

d

j j j j

j j j j

b b

b b

ϕ ξ ϕ ξ ξ

ϕ ξ ϕ ξ ξ

Γ

Γ

=

=

∫
∫

 

 

               (2.33) 

are bounded operators on ( )eF  and ( )e−F  for 1j =  and on ( )pF  and ( )p−F  
for 2j =  respectively satisfying  

( ) 2
#
,j Lb ϕ ϕ=                      (2.34) 

2.4. Quantized Dirac Fields for the Electrons and the Protons in  
a Uniform Magnetic Field 

We now consider the canonical quantization of the two classical fields (2.17) and 
(2.26). 
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Recall that the charge conjugation operator C  is given, for every ( )Ψ x , by  

( )
( )
( )
( )

( )
( )
( )
( )

*
1 4

*
2 3

*
3 2

*
4 1

C

  Ψ  −Ψ
  Ψ Ψ   =   Ψ Ψ
     Ψ −Ψ   

x x
x x
x x
x x

                 (2.35) 

Here ∗ is the complex conjugation. 
Let ( ).Ψ  be locally in the domain of ( )DH e . We have  

( ) if ( )D DH e C EC H e E− Ψ = Ψ Ψ = − Ψ            (2.36) 

(2.36) shows that, by applying the charge conjugation (2.35) to a solution of 
the Dirac equation with a negative energy for some particle, we get a solution of 
the Dirac equation for the antiparticle with a positive energy. 

Thus, by applying the charge conjugation (2.35) to (2.14), (2.15), (2.23) and 
(2.24) which are solutions of the Dirac equation for the electrons and protons 
with a negative energy, we obtain  

( )( )( ) ( ) ( )
( )( )( ) ( ) ( )
( )( )( ) ( ) ( )
( )( )( ) ( ) ( )

2 1 3 2 1 3
1 1

2 1 3 2 1 3
1 1

2 1 3 2 1 3
1 1

2 1 3 2 1 3
1 1

, , , , , , for 1

, , , , , , for 0

, , , , , , for 0

, , , , , , for 1

e e

e e

p p

p p

CV x n p p U x n p p n

CV x n p p U x n p p n

CV x n p p U x n p p n

CV x n p p U x n p p n

−
+ −

−
− +

−
+ −

−
− +

= − − ≥

= − − − ≥

= − − ≥

= − − − ≥

    (2.37) 

The solutions of the right hand side of (2.37) are solutions of the Dirac 
equation for the positrons and antiprotons with a positive energy. 

By (2.37) we set  
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

2 2 1 3 1 3
1 1

2 2 1 3 1 3
1 1 1

2 2 1 3 1 3
1 1 1

2 1 3
1 1

, , , , for , , , , 0

, , , , for 1, , , , 0

, , , , for 1, , , , 1

, 0 for 1,0, ,

e e
s e e e e

e e
e e e e

e e
e e e e

e
e e

U x U x n p p s n p p n

W x V x n p p n p p n

W x V x n p p n p p n

W x p p

ξ ξ

ξ ξ

ξ ξ

ξ ξ

−

+

= = ≥

= − − = ≥

= − − = − ≥

= = −

  (2.38) 

By using (2.37) and (2.38) the symmetric of charge canonical quantization of 
the classical field (2.17) gives the following formal operator associated with the 
electron and denoted by ( ) ( )e xΨ : 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 3 3

1 1 3 3

2
1 1 1

2 *
1 1

1 d e ,
2π

e ,

e e

e e

i p x p x e
e

i p x p x e

U x b

W x b

ξ ξ ξ

ξ ξ

+

+

− +

−

Ψ = 


+ 


∫x
        (2.39) 

For a rigourous approach of the quantization see [22]. 
We further note that  

( ) ( ) ( ) ( ){ } ( )†, ,e e δ′ ′Ψ Ψ =x x x x                (2.40) 

See [11]. 
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By (2.37) we now set  
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

2 2 1 3 1 3
2 2

2 2 1 3 1 3
2 1 2

2 2 1 3 1 3
2 1 2

2 1 3
2 2

, , , , for , , , , 0

, , , , for 1, , , , 0

, , , , for 1, , , , 1

, 0 when 1,0, ,

p p
s p p p p

p p
p p p p

p p
p p p p

p
p p

U x U x n p p s n p p n

W x V x n p p n p p n

W x V x n p p n p p n

W x p p

ξ ξ

ξ ξ

ξ ξ

ξ ξ

+

−

= = − − ≥

= − − = − ≥

= − − = ≥

= =

  (2.41) 

By using (2.37) and (2.41) the symmetric of charge canonical quantization of 
the classical field (2.26) gives the following formal operator associated to the 
proton and denoted by ( ) ( )p xΨ : 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 3 3

1 1 3 3

2
2 2 2

2 *
2 2

1 d e ,
2π

e ,

p p

p p

i p x p x p
p

i p x p x p

U x b

W x b

ξ ξ ξ

ξ ξ

+

+

− +

−

Ψ = 


+ 


∫x
       (2.42) 

We further note that  

( ) ( ) ( ) ( ){ } ( )†,p p δ′ ′Ψ Ψ = −x x x x                (2.43) 

See [11]. 

3. The Quantization of the Dirac Fields for the Neutrons and  
the Neutrinos in Helicity Formalism 

As stated in the introduction we neglect the magnetic moment of the neutrons. 
Therefore neutrons and neutrinos are purely neutral particles without any 
electromagnetic interaction. We suppose that the neutrinos and antineutrinos 
are massless as in the Standard Model. 

The quantized Dirac fields for free massive and massless particles of 
1spin
2

  

are well-known. 
In this work we use the helicity formalism, for free particles. See, for example, 

[7] [15] and [16]. 
The helicity formalism for particles is associated with a spectral representation 

of the set of commuting self adjoint operators ( )3,HP . ( )1 2 3P ,P ,P=P  are the  

generators of space-translations and 3H  is the helicity operator 1
2

⋅P Σ
P

 where 

( )23
1 Pi

i=
 =  
 
∑P  and ( )1 2 3, ,= Σ Σ ΣΣ  with for 1,2,3j =   

0
0

jj

j

σ
σ

 
Σ =  

 
                      (3.1) 

3.1. The Quantization of the Dirac Field for the Neutron in  
Helicity Formalism 

The Dirac equation for the neutron of mass nm  is given by  
1

D nH m
i

β= ⋅ ∇ +α                      (3.2) 
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acting in the Hilbert space ( )2 3 4,L   . 
It follows from the Fourier transform that  

( )
( )

3

3

2 3 4 4 3

3

, d .

dD D

L p

H H p

⊕

⊕

∫

∫

�

�





  

p
                    (3.3) 

where 

( ) 0

0

n
D

n

m
H

m
σ σ

σ σ
⋅ 

=  ⋅ − 

p
p

p
                   (3.4) 

Here 0σ  is the 2 2×  unit matrix, ( )1 2 3, ,σ σ σ σ=  and ( )1 2 3, ,p p p=p  
with 3

1
j

jj pσ σ
=

⋅ = ∑p . 

( )DH p  has two eigenvalues ( ) ( )nE p  and ( ) ( )nE− p  where  

( ) ( ) 2 2n
nE m= +p p  

The helicity, denoted by ( )3H p , is given by  

( )3

0
1
2 0

H

σ

σ

⋅ 
 
 =  ⋅
  
 

p
p

p
p

p

                   (3.5) 

( )3H =p  commutes with ( )DH p  and has two eigenvalues 
1
2

 and 
1
2

− . 

Set (see ([7], Appendix. 1.F.] and [15]) for 3p≠p   

( )
( )

1 2

33

1

2

p ip
h

pp
+

 −
=   −−  

p
pp p

              (3.6) 

and  

( )
( )

3

1 23

1

2

p
h

p ipp
−

 −
=  

+ −

p
p

p p
              (3.7) 

For 3p=p  we set  

( )
1
0

h+
 

=  
 

p  

and  

( )
0
1

h−
 

=  
 

p  

We have ( ) ( ) ( )h hσ ± ±⋅ = ±p p p p . 
Let  

( ) ( ) ( )

1
21 1

2
n

n

ma
E±

 
= ±  

 
p

p
                  (3.8) 

The two eigenfunctions of the eigenvalue ( ) ( )nE p  associated with helicities 
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1
2

 and 
1
2

−  are denoted by ( ) 1,
2

nU  ± 
 
p  and are given by  

( ) ( ) ( )
( ) ( )

1,
2

n a h
U

a h
+ ±

− ±

  ± =    ±   

p p
p

p p
                (3.9) 

We now turn to the eigenfunctions for the eigenvalue ( ) ( )nE− p . 
The two eigenfunctions associated with the eigenvalue ( ) ( )nE− p  and with 

helicities 
1
2

 and 
1
2

−  are denoted by ( ) 1,
2

nV  ± 
 
p  and are given by  

( ) ( ) ( )
( ) ( )

1,
2

n a h
V

a h
− ±

+ ±

  ± =   
   

∓ p p
p

p p
               (3.10) 

The four vectors ( ) 1,
2

nU  ± 
 
p  and ( ) 1,

2
nV  ± 
 
p  form an orthonormal basis 

of 4 . 
( ) ( )1, e

2
n iU ⋅ ± 
 

p xp  and ( ) ( )1, e
2

n iV ⋅ ± 
 

p xp  is a complete set of generalized 

eigenfunctions of (3.2) with positive and negative eigenvalues ( ) ( )nE± p . 

This yields for ( )Ψ x  in ( )2 3 4,L    

( )

( ) ( ) ( ) ( ) ( ) ( ) ( )( )( )3

3
2 3

1
2

1 L.i.m. d e , , , ,
2π

i n np U a V c
λ

λ λ λ λ⋅

=±

Ψ

 = + 
 

∑ ∫ p x

x

p p p p


 (3.11) 

with 

( ) ( ) ( ) ( )( )2 3 4 3

2 2 23
, 1

2

. d , ,
L

p a c
λ

λ λ
=±

Ψ = + < ∞∑ ∫  
p p       (3.12) 

3.1.1. Fock Space for the Neutrons 
We recall that the neutron is not its own antiparticle. 

Let ( )3 ,ξ λ= p  be the quantum variables of a neutron and an antineutron  

where 3∈p  is the momentum and 1 1,
2 2

λ  ∈ − 
 

 is the helicity. We set 

3
2

1 1,
2 2

 Γ = × − 
 

  for the configuration space of the neutron and the anti- 

neutron. 
Let ( )nF  and ( )nF  denote the Fock spaces for the neutrons and the anti- 

neutrons respectively. 
We have 

( ) ( ) ( )2
2

0

n

n n
n a

L
∞

=
= = Γ⊕⊗F F                  (3.13) 

( )2
2

n
a L Γ⊗  is the antisymmetric n-th tensor power of )( 2

2 ΓL . 

( ) ( )1,0,0,0,βΩ = �  is the vacuum state in ( )βF  for ,n nβ = . 
In the sequel we shall use the notations  
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3
2

3
3

1=
2

d d p
λ

ξ
Γ

±

= ∑∫ ∫                     (3.14) 

( )3b ξ  (resp. ( )*
3b ξ ) is the annihilation (resp.creation)operator for the 

neutron if = +  and for the antineutron if = − . 
The operators ( )3b ξ  and ( )*

3b ξ  fulfil the usual anticommutation relations 
(CAR) and they anticommute with ( )#

jb ξ  for 1,2j =  according to the 
convention described in ([12], Section 4.1). See [13] arXiv for explicit definitions. 

Therefore the following anticommutation relations hold for 1,2j =   

( ) ( ){ } ( )

( ) ( ){ }
*

3 3 3 3

# #
3

, ,

, 0j

b b

b b

ξ ξ δ δ ξ ξ

ξ ξ

′ ′

′

′ ′= −

=

  

 

              (3.15) 

Recall that for ( )2
2Lϕ∈ Γ , the operators  

( ) ( ) ( )

( ) ( ) ( )
2

2

3, 3 3 3

* *
3, 3 3 3

d .

d

b b

b b

ϕ ξ ϕ ξ ξ

ϕ ξ ϕ ξ ξ
Γ

Γ

=

=

∫
∫

 

 

                (3.16) 

are bounded operators on ( )nF  and ( )nF  satisfying  

( ) 2
#
3, Lb ϕ ϕ=                      (3.17) 

3.1.2. Quantized Dirac Field for the Neutron in Helicity Formalism 
By (2.35) we get  

( ) ( )

( ) ( )

1 2

1 2

1 2

1 2

1 1, ,
2 2

1 1, ,
2 2

n n

n n

p ipC V U
p ip

p ipC V U
p ip

   +    = − −     +      
   −    − = − − −     +      

p p

p p

         (3.18) 

Setting  
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

3

3

,

,

n n

n n

U U

W V

ξ λ

ξ λ

=

= −

p

p
                   (3.19) 

and applying the canonical quantization we obtain the following quantized Dirac 
field for the neutron:  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )
3
2 *

3 3 3 3 3
1 d e e
2π

i n i n
n U b W bξ ξ ξ ξ ξ⋅ − ⋅

+ −
 Ψ = + 
  ∫

p x p xx   (3.20) 

3.2. The Quantization of the Dirac Field for the Neutrino 

Throughout this work we suppose that the neutrinos we consider are those 
associated with the electrons. 

The Dirac equation for the neutrino is given by  

1
DH

i
= ⋅ ∇α                        (3.21) 

acting in the Hilbert space ( )2 3 4,L   . 
By (3.3) it follows from the Fourier transform that 
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( )3
3dD DH H p

⊕

∫� 
p                     (3.22) 

where 

( )
0

=
0DH

σ
σ

⋅ 
 ⋅ 

p
p

p
                   (3.23) 

( )DH p  has two eigenvalues ( ) ( )E ν p  and ( ) ( )E ν− p  where ( ) ( )E ν =p p . 
The helicity given by  

5

01 1
02 2
I

I
γ

 
=  

 
 

commutes with ( )DH p  and has two eigenvalues 
1
2

 and 
1
2

− . 

The two eigenfunctions of the eigenvalue ( ) ( )E ν p  associated with helicities 

1
2

 and 
1
2

−  are denoted by ( ) 1,
2

U ν  ± 
 
p . The two eigenfunctions of the 

eigenvalue ( ) ( )E ν− p  associated with helicities 
1
2

 and 
1
2

−  are denoted by 

( ) 1,
2

V ν  ± 
 
p . They are given by  

( ) ( )
( )

( ) ( )
( )

1 1,
2 2

1 1,
2 2

h
U

h

h
V

h

ν

ν

±

±

±

±

  ± =    ±   
  ± =   

   

∓

p
p

p

p
p

p

               (3.24) 

The four vectors ( ) 1,
2

U ν  ± 
 
p  and ( ) 1,

2
V ν  ± 

 
p  form an orthonormal basis 

in 4 . 
Turning now to the theory of neutrinos and antineutrinos (see [17]) a neutrino 

has a helicity equal to 
1
2

−  and a antineutrino a helicity equal to 
1
2

. Neutrinos 

are left-handed and antineutrinos are right-handed. ( ) 1,
2

U ν  − 
 
p  is the eigen- 

function of a neutrino with a momentum p  and an energy p . ( ) 1,
2

CV ν  − 
 

p   

is the eigenfunction of an antineutrino with a momentum p  and an energy 
p . 

Thus the classical field, denoted by ( )Φ x  and associated with the neutrino 
and the antineutrino, is given by 

( ) ( ) ( )

( ) ( )

3

3
2 31 1 1L.i.m. d e , ,

2π 2 2

1 1e , ,
2 2

i

i

p U a

V c

ν

ν

⋅

− ⋅

      Φ = − −      
     

   + −    
   

∫
p x

p x

x p p

p p

     (3.25) 

with 
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( ) ( )2 3 4 3

2 2
2 3

,

1 1. d , ,
2 2L

p a c
     Φ = − + < ∞        

∫  
p p  

3.2.1. Fock Space for the Neutrinos and the Antineutrinos 

Let 4
1,
2

ξ  = − 
 
p  be the quantum variables of a neutrino where 3∈p  is the 

momentum and 
1
2

−  is the helicity. In the case of the antineutrino we set 

4
1,
2

ξ  =  
 

� p  where 3∈p  and 
1
2

 is the helicity. 

( )2 3L   is the Hilbert space of the states of the neutrinos and of the anti- 
neutrinos. 

Let ( )νF  and ( )νF  denote the Fock spaces for the neutrinos and the anti- 
neutrinos respectively. 

We have 

( ) ( ) ( )2 3

0

n

n a
Lν ν

∞

=
= =⊕⊗ F F                  (3.26) 

( )2 3n
a L⊗   is the antisymmetric n-th tensor power of ( )2 3L  . 

( ) ( )1,0,0,0,δΩ = �  is the vacuum state in ( )δF  for ,δ ν ν= . 
In the sequel we shall use the notations  

3 3

3 3

3
4

3
4

d d

d = d

p

p

ξ

ξ

=∫ ∫
∫ ∫�
 

 

                      (3.27) 

( )4b ξ+  (resp. ( )*
4b ξ+ ) is the annihilation (resp.creation) operator for the 

neutrino and ( )4b ξ−
�  (resp. ( )*

4b ξ−
� ) is the annihilation (resp.creation) opera- 

tor for the antineutrino. 
The operators ( )4b ξ+ , ( )*

4b ξ+ , ( )4b ξ−
�  and ( )*

4b ξ−
�  fulfil the usual anti- 

commutation relations (CAR) and they anticommute with ( )#
jb ξ  for  

1,2,3j =  according the convention described in ([12], Section 4.1). See [13] 
arXiv for explicit definitions. 

Therefore the following anticommutation relations hold for 1,2,3j =   

( ) ( ){ } ( )

( ) ( ){ } ( )
( ) ( ){ }
( ) ( ){ } ( ) ( ){ }

*
4 4 4 4

*
4 4 4 4

# #
4 4

# # # #
4 4

, ,

, ,

, 0,

, , 0j j

b b

b b

b b

b b b b

ξ ξ δ ξ ξ

ξ ξ δ ξ ξ

ξ ξ

ξ ξ ξ ξ

+ +

− −

+ −

+ −

′ ′= −

′ ′= −

′ =

= =

� � � �

�

�
 

             (3.28) 

Recall that for ( )2 3Lϕ∈  , the operators  

( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

3

3

3

3

4, 4 4 4

4, 4 4 4

* *
4, 4 4 4

* *
4, 4 4 4

d

d

d

d

b b

b b

b b

b b

ϕ ξ ϕ ξ ξ

ϕ ξ ϕ ξ ξ

ϕ ξ ϕ ξ ξ

ϕ ξ ϕ ξ ξ

+ +

− −

+ +

− +

=

=

=

=

∫

∫
∫
∫

� � �

� � �









                  (3.29) 
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are bounded operators on ( )νF  and ( )νF  respectively satisfying  

( ) 2
#
4, Lb ϕ ϕ=                       (3.30) 

where = ± . 

3.2.2. Quantized Dirac Field for the Neutrino 
( ) ( ) 1e ,

2
i U ν

ν
⋅  − 

 
p x p  and ( ) ( ) 1e ,

2
i V ν⋅  

 
 

p x p  are generalized eigenfunctions of (3.21) 

with positive and negative eigenvalues ( ) ( )E ν± p  respectively. 

By (2.35) we get  

( ) ( )
1 2

1 2

1 1, ,
2 2

p ipC V U
p ip

ν ν
   +    = − −     +      

p p            (3.31) 

Setting  

( ) ( ) ( )

( ) ( ) ( )

4

4

1,
2
1,
2

U U

V W

ν ν

ν ν

ξ

ξ

 − = 
 
 − = 
 

�

p

p
                  (3.32) 

and applying the canonical quantization we obtain the following quantized Dirac 
field for the neutrino:  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )
3
2 *

4 4 4 4 4 4
1 d e d
2π

i iU b e W bν ν
ν ξ ξ ξ ξ ξ ξ⋅ − ⋅

+ −
 Ψ = + 
  ∫ ∫ � � �p x p xx  (3.33) 

4. The Hamiltonian of the Model 

The processes (1.1) and (1.2) are associated with the β decay of the neutron (see 
[3] [4] [17] and [18]). 

The β decay process can be described by the well known four-fermion 
effective Hamiltonian for the interaction in the Schrdinger representation: 

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )( )

3
5 5

3
5 5

d 1 1
2

d 1 1
2

int Ap n e

Ae n p

GH x x g x x x

G x x x x g x

α
α ν

α
αν

γ γ γ γ

γ γ γ γ

= Ψ − Ψ Ψ − Ψ

+ Ψ − Ψ Ψ − Ψ

∫

∫

�

�
(4.1) 

Here αγ , 0,1,2,3α =  and 5γ  are the Dirac matrices in the standard 
representation. ( ) ( ). xΨ  and ( ) ( ). xΨ  are the quantized Dirac fields for p, n, e 
and ν . ( ) ( ) ( ) ( )† 0

. .x x γΨ = Ψ . cosF cG G θ=� , where FG  is the Fermi coupling 
constant with ( ) 5 21.16639 2 10 GeVFG − −×�  and cθ  is the Cabbibo angle with 
cos 0.9751cθ � . Moreover 1.27Ag � . See [19]. 

The neutrino ν  is the neutrino associated to the electron and usually denoted 
by eν  in Physics. 

From now on we restrict ourselves to the study of processes (1.1). 
We recall that e p pm m m< < . 
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4.1. The Free Hamiltonian 

We set  
( )

( ) ( )
( )

( ) ( )
( )

( )
( )

( )
( ) ( ) ( ) ( )

.

.

.

e
e e

p
p p

n
n

e p n

ν
ν

ν

−

−

= ⊗

= ⊗

=

=

= ⊗ ⊗ ⊗

F F F

F F F

F F

F F

F F F F F

                (4.2) 

We set  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( )

( )

3 1 3
1 1

3 1 3
2 2

2 2
3 3

4 4

for , , ,

for , , ,

for ,
1for ,
2

e
n

p
n

n

E p s n p p

E p s n p p

p m p

p

ω ξ ξ

ω ξ ξ

ω ξ ξ λ

ω ξ ξ

= =

= =

= + =

 = = − 
 

p

            (4.3) 

Let ( )e
DH  (resp. ( )p

DH , ( )n
DH  and ( )

DH ν ) be the Dirac Hamiltonian for the 
electron (resp.the proton, the neutron and the neutrino). 

The quantization of ( )e
DH , denoted by ( )

0,
e
DH  and acting on ( )e

F , is given by  
( ) ( ) ( ) ( )*
0, 1 1 1 1de

DH b bω ξ ξ ξ ξ
=±

= ∑∫  


               (4.4) 

Likewise the quantization of ( )p
DH , ( )n

DH  and ( )
DH ν , denoted by ( )

0,
p
DH , 

( )
0,

n
DH  and ( )

0,DH ν  respectively,acting on ( )p
F , ( )n

F  and ( )νF  respectively, is 
given by  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

*
0, 2 2 2 2

*
0, 3 3 3 3

*
0, 4 4 4 4

d

d

d

p
D

n
D

D

H b b

H b b

H b bν

ω ξ ξ ξ ξ

ω ξ ξ ξ ξ

ω ξ ξ ξ ξ

=±

+ +

+ +

=

=

=

∑∫

∫
∫

 


              (4.5) 

For each Fock space ( ).F , let ( ).D  denote the set of vectors ( ).Φ∈F  for 
which each component ( )rΦ  is smooth and has a compact support and 

( ) 0rΦ =  for all but finitely many (r). Then ( ).
0,DH  is well-defined on the dense 

subset ( ).D  and it is essentially self-adjoint on ( ).D . The self-adjoint extension 
will be denoted by the same symbol ( ).

0,DH  with domain ( )( ).
0,DD H . 

The spectrum of ( ) ( )
0,

e e
DH ∈F  is given by  

( )( ) { } [ )0,spec 0 ,e
D eH m= ∞∪                   (4.6) 

{ }0  is a simple eigenvalue whose the associated eigenvector is the vacuum in 
( )e
F  denoted by ( )eΩ . [ ),em ∞  is the absolutely continuous spectrum of ( )

0,
e
DH . 

Likewise the spectra of ( )
0,

p
DH , ( )

0,
n
DH  and ( )

0,DH ν  are given by  
( )( ) { } )
( )( ) { } [ )
( )( ) [ )

0,

0,

0,

spec 0 ,

spec 0 ,

spec 0,

p
D p

n
D n

D

H m

H m

H ν

= ∞

= ∞

= ∞

∪

∪                   (4.7) 

( )pΩ , ( )nΩ  and ( )νΩ  are the associated vacua in ( )p
F , ( )n

F  and ( )νF  
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respectively and are the associated eigenvectors of ( )
0,

p
DH , ( )

0,
ne
DH  and ( )

0,DH ν  
respectively for the eigenvalue { }0 . 

The vacuum in F , denoted by Ω , is then given by  
( ) ( ) ( ) ( )e p n νΩ = Ω ⊗Ω ⊗Ω ⊗Ω                    (4.8) 

The free Hamiltonian for the model, denoted by 0H  and acting on F , is 
now given by  

 ( ) ( ) ( ) ( )
0 0, 0, 0, 0,

e p n
D D D DH H H H H ν= ⊗ ⊗ ⊗ + ⊗ ⊗ ⊗ + ⊗ ⊗ ⊗ + ⊗ ⊗ ⊗  (4.9) 

0H  is essentially self-adjoint on ( ) ( ) ( ) ( )ˆ ˆ ˆe p n ν= ⊗ ⊗ ⊗D D D D D . 
Here ⊗̂  is the algebraic tensor product. 

( ) [ )0spec 0,H = ∞  and Ω  is the eigenvector associated with the simple 
eigenvalue { }0  of 0H . 

Let ( )eS  be the set of the thresholds of ( )
0,

e
DH :  

( ) ( )( );e e
nS s n= ∈  

with ( ) 2 2e
n es m neB= + . 

Likewise let ( )pS  be the set of the thresholds of ( )
0,

p
DH :  

( ) ( )( );p p
nS s n= ∈  

with ( ) 2 2p
n ps m neB= + . 

Let ( )nS  be the set of the thresholds of ( )
0,

n
DH :  

( ) ( ); ,such that 1n
nS nm n n= ∈ ≥  

Then  
( ) ( ) ( )e p nS S S= ∪ ∪S                       (4.10) 

is the set of the thresholds of 0H . 

4.2. The Interaction 

By (4.1) let us now write down the formal interaction,denoted by IV , involving 
the protons, the neutrons, the electrons and the neutrinos together with 
antiparticles in the Schrödinger representation for the process (1.1). We have  

( ) ( ) ( ) ( )1 2 3 4
I I I I IV V V V V= + + +                   (4.11) 

Set 

e p

n ν

= +

= +

q p p

r p p
                        (4.12) 

After the integration with respect to ( )1 3,x x  IV  is given by 

( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )

2 21 2 2
1 2 3 4 2 5 3

2
1 5 4

1 1 3 3 * *
1 2 3 4

d d d d d e , 1

, 1

p nix r
I A

e

V x U x g U

U x U

q r q r b b b b

α

ν
α

ξ ξ ξ ξ ξ γ γ ξ

ξ γ γ ξ

δ δ ξ ξ ξ ξ+ + + +

= −

× −

× − −

∫ ∫

  (4.13) 
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( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )

2 22 2 2
1 2 3 4 4 5 1

2
3 5 2

1 1 3 3 * *
4 3 2 1

d d d d d e 1 ,

1 ,

eix r
I

n p
A

V x U U x

U g U x

q r q r b b b b

ν
α

α

ξ ξ ξ ξ ξ γ γ ξ

ξ γ γ ξ

δ δ ξ ξ ξ ξ

−

+ + + +

= −

× −

× − −

∫ ∫

   (4.14) 

( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )

2 23 2 2
1 2 3 4 4 5 1

2
3 5 2

1 1 3 3 * * * *
4 3 2 1

d d d d d e 1 ,

1 ,

eix r
I

n p
A

V x U W x

U g W x

q r q r b b b b

ν
α

α

ξ ξ ξ ξ ξ γ γ ξ

ξ γ γ ξ

δ δ ξ ξ ξ ξ

−

+ + − −

= −

× −

× + +

∫ ∫

   (4.15) 

( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )

2 24 2 2
1 2 3 4 2 5 3

2
1 5 2

1 1 3 3
4 3 2 1

d d d d d e , 1

, 1

p nix r
I A

e

V x W x g U

W x U

q r q r b b b b

α

ν
α

ξ ξ ξ ξ ξ γ γ ξ

ξ γ γ ξ

δ δ ξ ξ ξ ξ+ + − −

= −

× −

× + +

∫ ∫

  (4.16) 

( )3
IV  and ( )4

IV  are responsible for the fact that the bare vacuum will not be 
an eigenvector of the total Hamiltonian as expected in Physics. 

IV  is formally symmetric. 
In the Fock space F  the interaction IV  is a highly singular operator due to 

the δ-distributions that occur in the ( )( ).
IV 's  and because of the ultraviolet 

behaviour of the functions ( ).U  and ( ).W . 
In order to get well defined operators in F  we have to substitute smoother 

kernels ( ) ( )2 3,F β ξ ξ , ( ) ( )1 4,G β ξ ξ , where 1,2β = , both for the δ-distributions 
and the ultraviolet cutoffs. 

We then obtain a new operator denoted by IH  and defined as follows in the 
Schrödinger representation. 

( ) ( ) ( ) ( )1 2 3 4
I I I I IH H H H H= + + +                 (4.17) 

with 

( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2 21 2 2
1 2 3 4 2 5 3

2
1 5 4

1 1 * *
2 3 1 4 1 2 3 4

d d d d d e , 1

, 1

, ,

p nix r
I A

e

H x U x g U

U x U

F G b b b b

α

ν
α

ξ ξ ξ ξ ξ γ γ ξ

ξ γ γ ξ

ξ ξ ξ ξ ξ ξ ξ ξ+ + + +

= −


× − 


×

∫ ∫

  (4.18) 

( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2 22 2 2
1 2 3 4 4 5 1

2
3 5 2

1 1 * *
2 3 1 4 4 3 2 1

d d d d ( d e 1 ,

1 ,

, ,

eix r
I

n p
A

H x U U x

U g U x

F G b b b b

ν
α

α

ξ ξ ξ ξ ξ γ γ ξ

ξ γ γ ξ

ξ ξ ξ ξ ξ ξ ξ ξ

−

+ + + +

= −

× −

×

∫ ∫

   (4.19) 

( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2 23 2 2
1 2 3 4 4 5 1

2
3 5 2

2 2 * * * *
2 3 1 4 4 3 2 1

d d d d d e 1 ,

1 ,

, ,

eix r
I

n p
A

H x U W x

U g W x

F G b b b b

ν
α

α

ξ ξ ξ ξ ξ γ γ ξ

ξ γ γ ξ

ξ ξ ξ ξ ξ ξ ξ ξ

−

+ + − −

= −


× − 


×

∫ ∫

   (4.20) 
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( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2 24 2 2
1 2 3 4 2 5 3

2
1 5 4

2 2
2 3 1 4 4 3 2 1

d d d d d e , 1

, 1

, ,

p nix r
I A

e

H x W x g U

W x U

F G b b b b

α

ν
α

ξ ξ ξ ξ ξ γ γ ξ

ξ γ γ ξ

ξ ξ ξ ξ ξ ξ ξ ξ+ + − −

= −


× − 


×

∫ ∫

  (4.21) 

Definition 4.1. The total Hamiltonian is  

0 IH H gH= +                          (4.22) 

where g is a non-negative coupling constant.  
The assumption that g is non-negative is made for simplicity but all the results 

below hold for g ∈  with g  small enough. 
We now give the hypothesis that the kernels ( ) ( ) ( ).,. , .,.F G ββ , 1,2β = , and 

the coupling constant g have to satisfy in order to associate with the formal 
operator H a well defined self-adjoint operator in F . 

Throughout this work we assume the following hypothesis  
Hypothesis 4.2. For 1,2β =  we assume  

( ) ( ) ( )
( ) ( ) ( )

2
2 3 1 2

2 3
1 4 1

,

,

F L

G L

β

β

ξ ξ

ξ ξ

∈ Γ ×Γ

∈ Γ ×
                   (4.23) 

Let 4.,. 
 be the scalar product in 4 . We have  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

4

4

4

4

2 2 0
2 5 3 2 5 3

2 2 0
1 5 4 1 5 4

2 0 2
4 5 1 4 5 1

2 0 2
3 5 2 3 5 2

, 1 , , 1

, 1 , , 1

1 , , 1 ,

1 , , 1 ,

p n p n
A A

e e

e e

n p n p
A A

U x g U U x g U

U x U U x U

U W x U W x

U g W x U g W x

α α

ν ν
α α

ν ν
α α

α α

ξ γ γ ξ ξ γ γ γ ξ

ξ γ γ ξ ξ γ γ γ ξ

ξ γ γ ξ ξ γ γ γ ξ

ξ γ γ ξ ξ γ γ γ ξ

− = −

− = −

− = −

− = −







  
(4.24) 

Set  

( )( ) ( )( )0 5 5
1 1 1 1 1
2 A

e n

C g
m m

α
αγ γ γ γ

 
= + − − 

 
      (4.25) 

We then have  
Proposition 4.3. For every ( )0D HΦ∈  we obtain  

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

2 2

2 2

1 1
0 0

2 2
0 0

.,. .,. for 1,2

.,. .,. for 3,4

j
I nL L

j
I nL L

H C F G H m j

H C F G H m j

Φ ≤ + Φ =

Φ ≤ + Φ =
      (4.26) 

By (4.23), (4.24) and (4.25) the estimates (4.26) are examples of Nτ  estimates 
(see [20]). The proof is similar to the one of ([21], Proposition 3.7) and details 
are omitted. 

Let 0 0g >  be such that  

( ) ( ) ( ) ( )2 2

2

0 0
1

2 .,. .,. 1
L L

g C F Gβ β

β=

 
< 

 
∑             (4.27) 

We now have 
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Theorem 4.4. For any g  such that 0g g≤ , H is a self-adjoint operator in 
F  with domain ( ) ( )0D H D H=  and is bounded from below. H is essentially 
self-adjoint on any core of 0H . Setting  

( )infE Hσ=  

we have for every 0g g≤   
( ) ( ) [ )ess ,H H Eσ σ= = ∞  

with 0E ≤ . 
Here ( )Hσ  is the spectrum of H and ( )ess Hσ  is the essential spectrum of 

H. 
Proof. By Proposition 4.2 and (4.27) the proof of the self-adjointness of H 

follows from the Kato-Rellich theorem. 
We turn now to the essential spectrum. The result about the essential 

spectrum in the case of models involving bosons has been obtained by ([14], 
theorem 4.1) and [23]. In the case of models involving fermions the result has 
been obtained by [24]. In our case involving only massive fermions and massless 
neutrinos we use the proof given by [24]. 

Thus we have to construct a Weyl sequence for H and E λ+  with 0λ > . 
Let T be the self-adjoint multiplication operator in ( )2 3L   defined by 
( ) ( )4 4 4Tu u=p p p . T is the spectral representation of ( )

DH ν  for the neutrinos  

of helicity 
1
2

−  in the configuration space ( )2 3L  . See (3.27). 

Every 0λ >  belongs to the essential spectrum of T. Then there exists a Weyl 
sequence ( ) 1≥nnf  for T and 0λ >  such that  

( )

( )

for 1.

1 for 1.
lim 0.

lim 0

n

n

nn

nn

f D T n

f n
w f

T fλ
→∞

→∞

∈ ≥

= ≥

− =

− =

                    (4.28) 

Let  
( ) ( )
( ) ( ) ( )
( ) ( ) ( )

4 4

,4 4 4 4

* *
,4 4 4 4

d

d

n n

n n

n n

f f

b f b f

b f b f

ξ

ξ ξ ξ

ξ ξ ξ

+ +

+ +

=

=

=

∫
∫

p

                 (4.29) 

In the following we identify ( )#
,4 nb f+  with its obvious extension to F . 

An easy computation shows that, for every ( )D HΨ∈ , 

( ) ( ) (
( ) ( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) )
( ) ( ) ( )

2 2

4

1 * 2
,4 1 2 3

12
2 5 3 2 3

12 0
1 5 4 1 4 4 4

* *
1 2 3

, d d d d e

, 1 ,

, , 1 , de

ix r
I n

p ne
A

e
n

H b f x

U x g U F

U x f G U

b b b

α

να

ξ ξ ξ

ξ γ γ ξ ξ ξ

ξ γ γ γ ξ ξ ξ ξ ξ

ξ ξ ξ

−
+

+ + +

 Ψ = 

× −

× −

× Ψ

∫ ∫

∫


  (4.30) 

( ) ( )1
,4, 0I nH b f+

 Ψ =                      (4.31) 
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( ) ( ) (
( ) ( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) )
( ) ( ) ( )

2 2

4

2 2
,4 1 2 3

12
3 5 2 2 3

1 0 2
4 1 4 4 4 5 1

*
3 2 1

, d d d d e

1 , ,

, d , 1 ,

ix r
I n

ne p
A

e
n

H b f x

U g U x F

f G U U x

b b b

α

ν α

ξ ξ ξ

ξ γ γ ξ ξ ξ

ξ ξ ξ ξ ξ γ γ γ ξ

ξ ξ ξ

−
+

+ + +

 Ψ = − 

× −

× −

× Ψ

∫ ∫

∫ 

  (4.32) 

( ) ( )2 *
,4, 0I nH b f+

 Ψ =                     (4.33) 

( ) ( ) (
( ) ( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

2 2

4

3 2
,4 1 2 3

22
3 5 2 2 3

2 2
4 1 4 4 4 0 5 1

* * *
3 2 1

, d d d d e

1 , ,

, d , 1 ,

ix r
I n

ne p
A

e
n

H b f x

U g W x F

f G U W x

b b b

α

ν
α

ξ ξ ξ

ξ γ γ ξ ξ ξ

ξ ξ ξ ξ ξ γ γ γ ξ

ξ ξ ξ

−
+

+ − −

 Ψ = − 

× −

× − 


× Ψ

∫ ∫

∫


  (4.34) 

( ) ( )3 *
,4, 0I nH b f+

 Ψ =                      (35) 

( ) ( ) (
( ) ( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )

2 2

4

4 * 2
,4 1 2 3

22
2 5 3 2 3

22 0
1 5 4 1 4 4 4

3 2 1

, d d d d e

, 1 ,

, , 1 , d

ix r
I n

p ne
A

e
n

H b f x

W x g U F

W x f G U

b b b

α

να

ξ ξ ξ

ξ γ γ ξ ξ ξ

ξ γ γ γ ξ ξ ξ ξ ξ

ξ ξ ξ

−
+

+ − −

 Ψ = 

× −

× − 


× Ψ

∫ ∫

∫


  (4.36) 

( ) ( )4
,4, 0I nH b f+

 Ψ =                    (4.37) 

Let ( ).HP  be the spectral measure of H. For any 0>  the orthogonal 
projection [ )( ),HP E E +   is different from zero because E belongs to ( )Hσ . 

Let [ )( )( )Ran ,HP E EεΦ ∈ +   such that 1Φ = . We set 

( ) ( )( )*
, ,4 ,4 , 1n n nb f b f n+ +Ψ = + Φ ≥               (4.38) 

Let us chow that there exists a subsequence of ( ), 1, 0n n≥ >
Ψ  

 which is a Weyl 
sequence for H and E λ+  with 0λ > . 

By Hypothesis 4.1, (4.30), (4.32), (4.34), (4.36) and the Nτ  estimates we get 
( ) ( ) ( ) ( )( )

( ) ( )
( )

( ) ( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( )( )

( ) ( )
( )

( ) ( ) ( ) ( ) ( )

( )

2 4
1 2

2 41 2

1 2*
,4 ,4

1
2 21 1

0 4 1 4 4 4 1

1
2

0

3 4 *
,4 ,4

1
2 22 2

0 4 1 4 4 4 1

1
2

0

sup , , ,

.,. , d d

sup , , ,

.,. , d d

I n I n

nL

p

I n I n

nL

p

H b f H b f

C F f G U

H m

H b f H b f

C F f G U

H m

ν

ν

ξ ξ ξ ξ ξ ξ

ξ ξ ξ ξ ξ ξ

+ +

Γ ×Γ

+ +

Γ ×Γ

   Ψ Ψ   

 ≤  
 

× + Ψ

   Ψ Ψ   

 
≤  

 

× + Ψ

∫ ∫

∫ ∫





 (4.39) 
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Note that  

, 1, 1n nΨ = ≥                        (4.40) 

We have for every ( )D HΨ∈  

( ) ( ) ( )( ) ( ) ( )( )(
( ) ( )( ) )

* *
, ,4 ,4 ,4 ,4

*
,4 ,4

, ,

,

n n n n n

I n n

H b f b f H b Tf b Tf

g H b f b f

+ + + +

+ +

Ψ Ψ = Ψ + Φ + − Φ

 + + Ψ 

  



 (4.41) 

See [14]. 
This yields 

( ) ( )( ) ( ) ( )( )((
( ) ( )( ) )
* *

, ,4 ,4 ,4 ,4

*
,4 ,4,

n n n n n

I n n

H b f b f H b Tf b Tf

g H b f b f

+ + + +

+ +

Ψ = + Φ + − Φ

 + + Ψ 

  



    (4.42) 

and 

( ) ( ) ( )( )( )
( )( ) ( )( )( )

( ) ( )( )

*
, ,4 ,4

*
,4 ,4

*
,4 ,4,

n n n

n n

I n n

H E b f b f H E

b T f b T f

g H b f b f

λ

λ λ

+ +

+ +

+ +

− − Ψ = + − Ψ

+ + + − Ψ

 + + Ψ 

 





     (4.43) 

By (3.19) this yields for 0g g≤   

( ) ( ) ( )( )
( ) ( )

, ,4

*
,4 ,4

2 2 2

, ,

n n n

I n I n

H E b f T f

g H b f g H b f

λ λ λ+

+ +

− − Ψ ≤ + + Ψ + −

  + Ψ + Ψ   

 

 


  (4.44) 

Let { }| 1, 2,3,kg k = �  be an orthonormal basis of ( )2 3L   and consider  

( ) ( ) ( ) ( ) ( )1 2 3

* * * *
,4 ,4 ,4 ,4 mk k k kb g b g b g b g ν ν+ + + + Ω ∈� F           (4.45) 

where the indices can be assumed ordered 1 mk k< <� . Fock space vectors of 
this type form a basis of ( )νF  (see [7]). By ([24], Lemma 2.1) this yields for 
every 0>  

( )

( )
,4

*
,4

lim 0,

lim 0

nn

nn

s b f

w b f

+→∞

+→∞

− Ψ =

− Ψ =





                  (4.46) 

By (3.26) and Hypothesis 4.1 we have 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

4

4

1
2 21

4 1 4 4 4 1

1
2 22 ( )

4 1 4 4 4 1

lim , d d 0

lim , d d 0

nn

nn

f G U

f G U

ν

ν

ξ ξ ξ ξ ξ ξ

ξ ξ ξ ξ ξ ξ

→∞

→∞

  = 
 

 
= 

 

∫ ∫

∫ ∫





       (4.47) 

It follows from (4.28), (4.38), (4.44), (4.46) and (4.47) that for every 0>  

( ) ,limsup 2n
n

H E λ
→∞

− − Ψ ≤                 (4.48) 

This yields  

( ) ,0
lim limsup 0n

n
H E λ

→ →∞
− − Ψ =

              (4.49) 

In view of (4.49) there exists a subsequence ( ),
1j jn

j≥
Ψ   such that 
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( ) ,lim 0
j jnj

H E λ
→∞

− − Ψ =                    (4.50) 

Furthermore it follows from (4.46) that ,lim 0
j jj nw →∞− Ψ = . 

The sequence ( ),
1j jn

j≥
Ψ   is a Weyl sequence for H and E λ+  with 0λ > . 

In order to show that 0E ≤  we adapt the proof given in [5] and [6]. We 
omit the details. 

This concludes the proof of theorem 4.4. 

5. Existence of a Unique Ground State for the Hamiltonian H 

Set  

( ) ( ) ( ) ( ) ( )2 2

2

1

0

0

, .,. .,.

2
2

L L

n

K F G F G

C C
B m C

β β

β=
=

=

=

∑
              (5.1) 

By (4.26) and (5.1) we get for every ( )D Hψ ∈   

( )( )0,IH K F G C H Bψ ψ ψ≤ +             (5.2) 

In order to prove the existence of a ground state for the Hamiltonian H we 
shall make the following additional assumptions on the kernels ( ) ( )1 4,G β ξ ξ , 

1,2β = . 

From now on 3
4 ∈p  is the momentum of the neutrino with helicity 

1
2

− . 

Hypothesis 5.1. There exists a constant ( ) 0K G >�  such that for 1,2β =  
and 0σ >   

1) 
( ) ( )

3
1

2

1 4
1 42

4

,
d d

G β ξ ξ
ξ ξ

Γ ×
< ∞∫ p

 

2) 
{ }

( ) ( ) ( )
1 4

1
2 2

1 4 1 4, d dG K Gβ

σ
ξ ξ ξ ξ σ

Γ × ≤

  ≤ 
 ∫ p

�  

We have 
Theorem 5.2. Assume that the kernels ( ) ( ).,.F β  and ( ) ( ).,.G β , 1,2β = , 

satisfy Hypothesis 4.1 and Hypothesis 5.1. Then there exists ( ]1 00,g g∈  such 
that H has a unique ground state for 1g g≤ .  

In order to prove theorem 5.2 we first prove the existence of a spectral gap for 
some neutrino infrared cutoff Hamiltonians. 

5.1. The Neutrino Infrared Cutoff Hamiltonians and the  
Existence of a Spectral Gap 

Proof. Let us first define the neutrino infrared cutoff Hamiltonians. 
For that purpose, let ( ) [ ]( )0 . , 0,1Cχ ∞∈   with 0 1χ =  on ( ],1−∞  and 

0 0χ =  on [ ]2,∞ . For 0σ >  and 3
4 ∈p , we set  

( ) ( )
( ) ( )

4 0 4

4 4

,

1
σ

σ
σ

χ χ σ

χ χ

=

= −�

p p

p p
                   (5.3) 
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The operator ,IH σ  is the interaction given by (4.17) associated with the 
kernels ( ) ( ) ( ) ( ) ( )2 3 4 1 4, ,F Gβ βσξ ξ χ ξ ξp�  instead of ( ) ( ) ( ) ( )2 3 1 4, ,F Gβ βξ ξ ξ ξ . 

We then set  

0 ,IH H gHσ σ= +                       (5.4) 

We now introduce  

{ } { }
( )( ) ( )( )

3 3
4, 4 4 4

2 2
4, 4, 4 4

,

,a aL L

σ
σ

σ σ
σ σ

σ σΓ = < Γ = ≥

= Γ = Γ

∩ ∩ 

F F F F

p p
         (5.5) 

4, 4
σ

σ ⊗F F  is the Fock space for the massless neutrino such that  
( )

4, 4
ν σ

σ ⊗�F F F . 
We set  

( ) ( ) ( )
4 4,ande p nσ σ

σ σ= ⊗ ⊗ ⊗ =F F F F F F F            (5.6) 

We have 
σ

σ⊗�F F F                        (5.7) 

We further set  

( ) ( )4 *
0 4 4 4 4dH b bξ ξ ξ+ += ∫ p                  (5.8) 

In the following we identify 4
0H  with its obvious extension to F . 

We let  

( ) ( )

( ) ( )
4

4

4, *
0 4 4 4 4

4 *
0, 4 4 4 4

d ,

d

H b b

H b b

σ
σ

σ σ

ξ ξ ξ

ξ ξ ξ

+ +≥

+ +<

=

=

∫

∫
p

p

p

p
              (5.9) 

We identify 4,
0H σ  and 4

0,H σ  with their obvious extension to σF  and σF  
respectively. 

On σ
σ⊗F F , we have  

 4 4, 4
0 0 0,H H Hσ σ

σ σ= ⊗ + ⊗                 (5.10) 

where  σ  (resp.  σ ) is the identity operator on σF  (resp. σF ). 
Setting  

0 0 andH H H Hσ σ
σ σ

σ= =
F F

              (5.11) 

we then get  
( ) ( ) ( ) 4,

0 0, 0, 0, 0

0 ,

on

on

e p n
D D D

I

H H H H H

H H gH

σ σ σ

σ σ σ
σ

= + + +

= +

F

F
          (5.12) 

and 

 4
0, onH H Hσ σ σ

σ σ σ σ= ⊗ + ⊗ ⊗F F          (5.13) 

On the other hand, for δ ∈  such that 30 mδ< < , we define the sequence 
( ) 0n n
σ

≥
 by  

0

1

1

2 1,

,
2

for 1

e

e

n n

m

m

n

σ
δ

σ

σ γσ+

= +

= −

= ≥

                   (5.14) 
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where  

1
2 em

δγ
δ

= −
−

                      (5.15) 

For 0n ≥ , we now introduce the neutrino infrared cutoff Hamiltonians on 
nn σ=F F  by stting  

0 0,n nn nH H H Hσ σ= =                    (5.16) 

We set, for 0n ≥ ,  

( )infn nE Hσ=                      (5.17) 

We introduce the neutrino infrared cutoff Hamiltonians on F  by setting  

0, 0,,
n nn nH H H Hσ σ= =                  (5.18) 

We set, for 0n ≥ ,  

( )infn nE Hσ=                      (5.19) 

Note that  
n

nE E=                         (5.20) 

One easily shows that, for 0g g≤ ,  

( )
( )0

,
1 ,

n
n

gK F G B
E E

g K F G C
= ≤

−
                (5.21) 

See [5] [13] for a proof. 
We now let 

( ) ( ) ( )
( )

( )2
1 21,2

, 2 .,.
L

K F G F K Gβ

β Γ ×Γ=

 
=  

 
∑� �           (5.22) 

where ( )K G�  is the constant given in Hypothesis 5.2(2). 
We further set, 

( )01 ,
CC

g K F G C
=

−
�                    (5.23) 

( )( )2
01 ,

BB
g K F G C

=
−

�                  (5.24) 

and 

( ) ( ) ( )( )3
3

3

4 2 1
, max ,2 , 2

2
m

D F G K F G m C B
m

γ
δ

 + = + 
−  

�� � �       (5.25) 

Let ( )
1g δ  be such that  

( )

( )
2

1 00 min 1, ,
3 ,

g g
D F G

δ γ γ − < <  
  �               (5.26) 

and let  

( )( )3
1

2 , 2
g

K F G C B
=

+
                 (5.27) 
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Setting 
( ) ( ){ }
( ) ( )

2 3 1inf ,

,
, 3

g g g

D F G
C F G

δ δ

γ

=

=
�                   (5.28) 

and applying the same method as the one used for proving proposition 4.1 in [5] 
we finally get the existence of a spectral gap for nH . We omit the details of the 
proof. 

The proof of the following proposition is achieved. 
Proposition 5.3. Suppose that the kernels ( ) ( ).,.F β , ( ) ( ).,.G β , 1,2β = , 

satisfy Hypothesis 4.1 and Hypothesis 5.1(2). Then, for ( )
2g g δ≤ , nE  is a 

simple eigenvalue of nH  for 1n ≥ , and nH  does not have spectrum in the 
interval ( )( )( ), 1 ,n n

nE E gC F G σ+ − .  

5.2. Proof of the Existence of a Ground State 

Proof. In order to prove the existence of a ground state for H we adapt the proof 
of theorem 3.3 in [13]. By Proposition 5.3 nH  has a unique ground state, 
denoted by nφ , in nF  such that  

( ), , 1, 1n n n n n n nH E H nφ φ φ φ= ∈ = ≥             (5.29) 

Therefore nH  has a unique normalized ground state in F , given by 
n

n nφ φ= ⊗Ω� , where nΩ  is the vacuum state in nF ,  

( ), , 1, 1n
n n n n n nH E H nφ φ φ φ= ∈ = ≥� � � �              (5.30) 

Let ,I nH  denote the interaction , nIH σ . It follows from the pull-through 
formula that  

( ) ( )
( ) ( ) ( ) ( ) ( )( )

0 , 4

1 2
4 4 4 4 4

I n n

n n n n n n

H gH b

E b b gV gV

ξ φ

ξ φ ω ξ ξ φ ξ ξ φ

+

+ +

+

= − − +

�

� � �� �
     (5.31) 

where 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2 21 2 2
4 1 2 3 4 5 1

2
3 5 2

1 1 *
2 3 1 4 4 3 2 1

d d d d e 1 ,

1 ,

, ,

e

n

eix r
n

ne p
A

V x U U x

U g U x

F G b b b

ν
α

α

σ

ξ ξ ξ ξ ξ γ γ ξ

ξ γ γ ξ

ξ ξ ξ ξ χ ξ ξ ξ

−

+ + +

= −


× − 


×

∫ ∫

p

�

�

  (5.32) 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2 22 2 2
4 1 2 3 4 5 1

2
3 5 2

2 2 * * *
2 3 1 4 4 3 2 1

d d d d e 1 ,

1 ,

, ,

e

n

eix r
n

ne p
A

V x U W x

U g W x

F G b b b

ν
α

α

σ

ξ ξ ξ ξ ξ γ γ ξ

ξ γ γ ξ

ξ ξ ξ ξ χ ξ ξ ξ

−

+ − −

= −


× −

×

∫ ∫

p

�

�

  (5.33) 

Hence, by (5.30), (5.31), (5.32) and (5.33), we get 

( )( ) ( ) ( ) ( ) ( ) ( )( )1 2
4 4 4 4n n n n n nH E b g V Vω ξ ξ φ ξ ξ φ+− + = − +� �� �       (5.34) 
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We further note that, for 1,2β = , 

( ) ( ) ( ) ( )
( )

( ) ( )
( )

( )2 2
1 2 1

1
24 0 4 0, ,n n n nL L

V C F G H mβ β βξ φ ξ φ
Γ ×Γ Γ

≤ × +. . .� � ��   (5.35) 

where  

( )( ) ( )( )
1
2

0 5 5
1= 1 1A

n

C g
m

α
αγ γ γ γ

 
− − 

 
�  

The estimates (5.35) are examples of Nτ  estimates (see [20]). The proof is 
similar to the one of ([21], Proposition 3.7) and details are omitted. 

Let us estimate 0 nH φ� . By (5.2) we get 

( )( ), 0,I n n ng H gK F G C H Bφ φ≤ +� �                (5.36) 

and 

0 ,n n I n nH E g Hφ φ≤ +� �                    (5.37) 

By (5.21), we obtain 

( )
( ) ( )

0
0

0 0

, 11
1 , 1 ,n

g K F G B
H M

g K F G C g K F G C
φ

 
≤ + =  − − 

�        (5.38) 

By (5.38) 0 nH φ�  is bounded uniformly with respect to n and 0g g≤  and by 
(5.34), (5.35) and (5.38) we get 

( ) ( ) ( ) ( ) ( ) ( )2 2

12
0 2

4 4
14

.,. .,n pL L

gCb F G M mβ β

β
ξ φ ξ+

=

 
≤ + 

 
∑

�
�

p
    (5.39) 

uniformly with respect to n. 
By Hypothesis 5.1(1) and (5.39) there exists a constant ( ), 0C F G >�  such 

that 

( ) ( )
2 2

4 4d ,nb C F G gξ φ ξ+ ≤∫ � �                 (5.40) 

Since 1nφ =� , there exists a subsequence ( ) 1k k
n

≥
, converging to ∞  such  

that ( )
1kn k

φ
≥

�  converges weakly to a state φ ∈� F . By adapting the proof of 
theorem 4.1 in [21] it follows from (5.40) that there exists 2g  such that  

( )
2 20 g g δ< ≤  and 0φ ≠�  for any 2g g≤ . Thus φ�  is a ground state of H. 

5.3. Uniqueness of a Ground State of the Hamiltonian H 

Proof. The proof follows by adapting the one given in [6]. See also [25]. 
In view of theorem 4.3 E is an eigenvalue of H with a finite multiplicity. Either 

E is a simple eigenvalue and the theorem is proved or its multiplicity is equal to 
p∈  with 1p > . Let us consider the second case. We wish to show by 

contradiction that E is a simple eigenvalue for g sufficiently small. 
Let ( )1 2,φ φ  be two vectors of the eigenspace of E. Each jφ  with 1,2j =  is 

a ground state of H. 1φ  and 2φ  can be chosen such that 1 2, 0φ φ =
F

 with 
1jφ = , 1,2j = . 

By (5.30) let nφ  be a unique normalized ground state of nH . 
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We have 

 
{ } ( )

{ } ( )( )

22
2 1 2 2 2

2 2

0 , lim , lim ,

1 lim ,

n

n

n nEn n

nEn

E H

E H

φ φ φ φ φ φ

φ φ

→∞ →∞

→∞

= = =

= − −F
       (5.41) 

where { } ( )E . .  is the spectral measure for the associated self-adjoint operator. 
We have  

 
{ } ( ) { } ( )( ) ( )n nn n

n n n
n nE EE H E H P PΩ Ω− = − ⊗ + ⊗ −F

      (5.42) 

We have to estimate  

 ( )( )2 2,
n

n
n Pφ φΩ⊗ −                    (5.43) 

and 

 
{ } ( )( )( )2 2,

nn

n n
EE H Pφ φΩ− ⊗               (5.44) 

We first estimate (5.43). 
By applying the same proof as the one used to get estimates (5.38), (5.39) and 

(5.40) with 2φ  instead of nφ�  we easily get  

( ) ( )2 2
4 2 4d ,b C F G gξ φ ξ+ ≤∫ �                (5.45) 

This yields 

 ( )( ) ( ) 2
2 2, ,

n

n
n P C F G gφ φΩ⊗ − ≤ �             (5.46) 

We now estimate (5.44) 
Set  

 
{ } ( ) { } ( )

n n

n n n
E EE H E H

⊥
− =                  (5.47) 

By proposition 5.3 we get 

( ) { } ( ) ( )( ) { } ( )1 ,
n n

n n n
n nE EH E E H gC F G E Hσ

⊥ ⊥
− ≥ −       (5.48) 

and 

 
{ } ( )

( )( ) ( )

( )( ) ( )( )

( )( ) ( )

2 2

2 2

2 2

2 2

,

1 ,
1 ,

1 ,
1 ,

1 ,
1 ,

nn

n

n

n
E

n
n

n

n
n n

n

n n
n

E H P

H E P
gC F G

H E P
gC F G

H E
gC F G

φ φ

φ φ
σ

φ φ
σ

φ φ
σ

⊥

Ω

Ω

Ω

⊗

≤ − ⊗
−

= − ⊗
−

≤ −
−

       (5.49) 

Note that  

, , n n
n n n n nE H H E Eφ φ φ φ≤ = = =� �            (5.50) 

In view of (5.49) and of (5.50) we get 
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( )
( )( )
( )
( )( )

( )
( )( )

( )
( )( )

2 2

2 2 2 2

2 2

,
1 ,

, ,
1 , 1 ,

,
1 ,

n n

n

n n

n n

n

n

H E
gC F G

E E H H
gC F G gC F G

H H
gC F G

φ φ

σ

φ φ φ φ

σ σ

φ φ

σ

−

−

− −
= +

− −

−
≤

−

           (5.51) 

Hence 

{ } ( ) ( )
( ) ( )( )

2 2
2 2

2

,
,

1 ,nn

nn
E

n

H H
E H P

g C F Gδ

φ φ
φ φ

σ

⊥

Ω

−
⊗ ≤

−
         (5.52) 

Here ( )
2g δ  has been introduced in proposition 5.3 

Estimate of ( )nH H φ− � . We have  

( ),n I I nH H g H H− = −                   (5.53) 

nH H−  is associated with the kernels ( ) ( ) ( ) ( ) ( )2 3 4 1 4, ,
n

F Gβ β
σξ ξ χ ξ ξp . 

By adapting the proof of (5.2) to the estimate of ( )nH H−  we finally get 

( ) ( ) ( )( )2 , 2 0 2,n I I n nH H g H H gK F G C H Bφ φ φ− = − ≤ +   (5.54) 

where  

( ) ( ) ( ) ( ) ( ) ( )2 2

2

4
1

, .,. .,.
nn L L

K F G F Gβ β
σ

β
χ

=

= ∑ p        (5.55) 

Under Hypothesis 5.2(2) we get  

( ) ( ) ( ) ( )2

2

1
, 2 .,.n nL

K F G F K Gβ

β
σ

=

 
≤  

 
∑ �            (5.56) 

This, together with (5.55), yields  

( )2 2, n nH H gKφ φ σ− ≤                   (5.57) 

where ( ) ( )( ) ( )( )2

2
0 212 .,.

L
K F K G C H Bβ

β φ
=

= +∑ � . 

Combing (5.41), (5.42), (5.46), (5.52) and (5.57) we finally get 

 
{ } ( )( )2 2,

n nEE H gKφ φ ′− ≤F
                (5.58) 

Here 
( ) ( )21 ,

KK
g C F Gδ

′ =
−

. 

K ′  is a positive constant independent of g and it follows from (5.41) that, for 
g sufficiently small, 1 2, 0φ φ ≠ . This is a contradiction and 1p = . This 
concludes the proof of theorem 5.2. 
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