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Abstract 
A new type of bi-stable spiral waves called “stepped spiral waves”, is investi-
gated in this study in an oscillatory medium exhibiting period-doubling bi-
furcations. Prior to the period-doubling bifurcation of this system, the stepped 
spiral waves are produced by an unwanted phase trajectory event; the loss of 
symmetry takes the form of synchronization defect lines, where the trajectory 
in the local oscillation phase space changes into two different ways. The for-
mation principle of this type of bi-stable spiral wave and the internal structure 
and geometry of these synchronization defects are studied, and several poten-
tial categories of stepped spiral waves are discussed. 
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1. Introduction 

Spatiotemporal pattern formation in reaction-diffusion (RD) systems is an un-
derlying mechanism responsible for complex biological patterns [1] [2] [3] [4] 
[5]. Spiral waves are typical patterns in RD systems [6]-[11] which have been 
observed throughout such diverse systems as chemical reactions [12] [13] [14] 
[15], fluid convection [16] [17], microorganism populations [18], Xenopus laevis 
oocytes [19], cardiac muscle [20] [21], chicken retinae [22], and model RD sys-
tems [23] [24] [25] [26] [27]. They have been extensively studied both experi-
mentally and theoretically. 

A spatially distributed oscillatory medium may undergo bifurcations when the 
period of the orbit doubles at every point in the system. Prior to the occurrences 
of these period-doubling bifurcations, the system may support stable rotationally 
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symmetric spiral wave solutions in the simple oscillatory regime (period 1) [28]. The 
dynamics in this regime are typically described by the complex Ginzburg-Landau 
(CGL) equation, the generic equation for an oscillatory medium near the Hopf 
bifurcation point at which oscillation appears. Spiral waves are a well-known 
feature of this regime and have been extensively researched to date [29], however, 
they can also exist in media with complex periodic or chaotic local dynamics [30] 
[31] [32]. Goryachev et al. [33], in one such previous investigation of the conse-
quences of period-doubling bifurcation on spiral wave structure and dynamics, 
identified the wavelength-doubled spiral wave. In this type of wave, the rotational 
symmetry of the original spiral wave is broken by the presence of synchronization 
defect lines; the phase of the local orbit changes by multiples of 2π. 

In this paper, we present a new type of spiral wave that is not caused by pe-
riod-doubling bifurcations in a new complex oscillatory medium. We found that 
one oscillatory medium can contain two oscillation modes at the same time 
when there exists a spiral wave. We also determined the mechanism of these os-
cillation modes, as discussed below. 

2. Model 

We built the model, ( ) ( )( )t t=c G c , to study the movement of a charged par-
ticle in a special electric field. Specifically, the calculations described here were 
carried out on this model, ( )( )tG c  describes the local reaction kinetics, 

x yG Ac= , y zG Bc= , 3
1 2 3z z y x xG Cc q c q c q c= + + + . And xc  is the location of 

the particle, yc  is its speed, and zc  is the acceleration of it. The rate of change 
of the special electric field is a function of xc , yc  and zc . In this electric field, 
chaotic motion of the movement of charged particle can occur. We have consi-
dered cases where the spatially homogeneous system ( ) ( )( )t t=c G c  exhibits pe-
riod-doubling bifurcation. As shown in the figure, when parameter 0.40C ≈ −  
( 1.00 sA = , 1.00 sB = , 1

1 1.00 sq −= − , 2
2 1.00 sq −= − , 6

3 1.00 sq −= ) ,  per iod- 
doubling bifurcation occurs. Numerical simulations show that the system enters 
chaos state via a period-doubling bifurcation route. But this period-doubling bi-
furcation doesn’t play a central role in the organization of stepped spiral wave 
which will be discussed below. Figure 1(a) shows the bifurcation diagram of the 
equation. The parameter C is set to a control parameter, and recorded the maxi-
mum of xc . As shown in Figure 1(a), the bifurcation graph is not continuous 
when period-3 occurs, which is a strange phenomenon. The reason of this 
strange phenomenon is phase trajectory catastrophe (the phase point turns from 
one limit cycle into the other one unpredictably). And this plays a central role in 
the organization of super-spiral structure. As shown in Figure 1(b), this system 
has three fixed points in the parameter region we provided above: O (0, 0, 0), P+ 
(+1, 0, 0) and P− (−1, 0, 0). O is an unstable focus-node point which is a stable 
node in one direction and an unstable focus in two directions. P+ and P− are un-
stable focus-node points that are unstable node in one direction and stable fo-
cuses in two directions. Specifically, this system has two different limit cycles in 
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Figure 1. (Color online) (a) Bifurcation diagram of proposed equation. Parameter C is set to a control parameter with recorded 
maximum of xc ; (b) Phase trajectory structures of the spatially homogeneous system in Equation (1). Parameters are 1.00 sA = , 

1.00 sB = , 0.42C = − , 1
1 1.00 sq −= − , 2

2 1.00 sq −= − , 6
3 1.00 sq −= .  

 
the region which plays a central role in the organization of the super-structure 
spiral waves (C = −0.42). One limit cycles is symmetrical with the other one 
about the fixed point O as shown in Figure 1(a). Under some conditions, such as 
parameter C changes, phase trajectory catastrophe will occur. 

Equation ( ) ( )( )t t=c G c  describes the movement (one-dimensional motion) 
of the charged particles in a rapidly alternating electric field. Then the movement 
of the uniformly charged oil slick (see Figure 1(c)) can be described by the equ-
ation as follows: 

( ) ( )( ) ( )2,
, ,

0 0
0 0
0 0

x

y

z

t
t t

t
D

D
D

∂
= + ∇

∂
 
 =  
  

c r
G c r D c r

D
                 (1) 

where ( ), tc r  is a vector, D is the diffusion coefficient. The movement of one 
point can drive the points around it, this effect is similar to diffusing phenome-
non. Various values of the parameter C in the interval [−1.0, −0.3] were consi-
dered, while the other parameters were fixed at 1.00 sA =  and 1.00 sB = . The 
scaled diffusion coefficient was ( )2 2

, 1.5 10x zD t −∆ ∆ = ×r , ( )2 0yD t∆ ∆ =r  
( 22.0 10 st −∆ = × ) in all calculations.  

We conducted simulations in a disk-shaped domain of radius 600 with no-flux 
boundary conditions. Equation (1) was integrated with an explicit fourth-order 
Runge-Kutta method, where the Laplace operator was approximated with nine 
nearest-neighbor sites. When the explicit fifth-order Runge-Kutta algorithm was 
used, there was no qualitative difference in the observed spatiotemporal behavior. 
Further, the same results were obtained when smaller space steps and time steps 
were used, indicating that the phenomena reported here cannot be ascribed to 
any improper selection of integration methods, step size, or other such factors. 

3. Results and Discussion 

Figure 2 shows the ( )0,xc tr  concentration field at a single time instant 0t . In  

https://doi.org/10.4236/oalib.1103982


J. Gao et al. 
 

 

DOI: 10.4236/oalib.1103982 4 Open Access Library Journal 
 

 

Figure 2. (Color online) In the case of 1.00 sA = , 1.00 sB = , 0.42C = − , 1
1 1.00 sq −= − , 

2
2 1.00 sq −= − , 6

3 1.00 sq −= , in structures of spiral waves for different C, each pattern is 
based on the same initial spatial values. C is (a): −0.50; (b): −0.40; (c): −0.33; (d): Phase 
diagram revealing regions of different wave forms; I and IV: Medium cannot support 
spiral waves; II: Medium can support stepped spiral waves; III: Medium can support sim-
ple spiral waves. Simulations were carried out on a disk-shaped domain of radius 600. 

 
cases where 0.43C ≤ −  was part of the period-1 regime, the medium supported 
a single, stable, one-armed spiral wave (Figure 2(a)). As the parameter C in-
creased, the spiral wave acquired a global structure different from that in a sim-
ple periodic medium prior to the period-doubling bifurcation of local dynamics 
( 0.43 0.35C− ≤ ≤ − ) (Figure 2(b)). In the case of 0.35C ≈ −  (i.e., a spatially 
homogenous model with bifurcation at * 0.40C ≈ − .), the local dynamics un-
derwent a period-doubling bifurcation and the spiral wave structure changed 
again (Figure 2(c). Figure 2(d) shows the B-C parameter space revealing regions 
of different wave forms.  

The whole spiral wave is divided into two parts by a curve (Figure 3(a)). Al-
though the spiral rotates, the curve is stationary up to numerical accuracy. The 
lower panel of Figure 3(a) shows ( )0,xc tr  in various colors indicating the 
curve connecting the spiral core and boundaries, denoted as Ω , where sharp 
changes in concentration occur. This spiral wave is different, in appearance and 
mechanism, from the wavelength-doubled spiral wave (Figure 3(b)) described 
by Goryachev et al. in 1998 as being caused by period-doubling bifurcations [33]. 

In the asymptotic regime, after the spiral reaches its steady state, the shape of 
the Ω  curve is a straight line segment with a short curved portion lying inside 
the core region. In the case of 0.43 0.35C− ≤ ≤ − , the phase trajectory of the 
point on one side of the Ω  curve, a stable limit cycle (period-1), is different 
from that on the other side. In other words, the points on either side of the curve  
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Figure 3. (Color online) Comparison among both categories of spiral waves. (a): In the 
case of C = −0.40, the other parameters are the same as in Figure 2; (a): Concentration 
field cₓ (r, t0) is shown as elevation in the upper panel and as grey shades in the lower Pan-
el; solid line depicts the Ω curve; (b): Wavelength-doubled spiral wave identified by Go-
ryachev et al. [33]. Also shown: Arc segment at radius r0 = 300 along which points were 
taken to construct Figure 4. 

 

 

Figure 4. (Color online) (a), (b): Loop exchange in local orbits as the Ω curve along the 
arc at radius r0 = 300 indicated in the lower panel of Figure 3(a). 1 0.05θ θΩ= −  (black 

line); 2 0.05θ θΩ= +  (red line); (c) Two ( )0,c tr  concentration time series calculated 

for the medium at the two points; (d) Maximum concentration ( )0,c tr  distribution in 

the medium supporting spiral waves. 
 

have different stable oscillation states (Figure 4(a)). Within the period-2 domain, 
the structure of the spiral wave on each side of the Ω  curve takes the form of 
half of the wavelength-doubled spiral wave; on one side of the Ω  curve, high 
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and low wave crests are alternately arranged. The points on both sides of the 
curve are then also in different stable oscillation states (period-2) as shown in 
Figure 4(b). 

Figure 4(c) shows two ( ),xc tr  time series (period-1) of the two spatial 
points on either side of the curve (across the Ω  curve along the arc): The 
phases of oscillation are the same, but at the maximum and minimum. We ob-
served that the maximum (minimum) concentrations of every point on each side 
of the Ω  curve are the same, and the maximum (minimum) concentration on 
the left of the curve is always greater (lower) than the other side of the curve 
(Figure 4(d)). This phenomenon is crucial to the organization of the spiral wave; 
the corresponding principle is discussed in detail below.  

Consider again the spatially homogeneous system ( ) ( )( )t t=c G c . A new va-
riable ( ) ( ) 0t t c= −C c  ( 0c  is the fixed point) can be defined so that the solu-
tion near the fixed point is ( ) 31 2

1 2 3e e e tt tt J J J λλ λ= + +C . Near fixed point O, 
there are the following function relationships (approximate solutions): 

( )
( )

1 1

2, 3 2 0

1 2

1 1.05

1 0.02
, 0

O O

O O O O

O O

k C

k C i
k k

λ

λ β

≈ + −

≈ + + ±

≥

                 (2) 

near P+ and P−: 

( )
( )

1 1

2, 3 2 0

1 2

1 0.85

1 0.75
, 0

P P

P P P P

P P

k C

k C i
k k

λ

λ β

≈ + −

≈ + − + ±

≥

                 (3) 

where β  can be any real number, k is the slope of the line, and λ  is the func-
tion of C.  

According to Equations ((2) and (3)), the attraction regions of P+ or P− de-
crease as parameter C increases while the affected area of O increases as C in-
creases. There could exist a single stable limit cycle in phase space when the 
overlap-area of P+ and P− attraction regions exceeds the critical level: the attrac-
tion regions of P+ and P− gradually decrease as C increases, and the phase orbit 
tends to rotate around P+ or P−. 

Figure 5 shows the attractor of this model on ( ),x yc c  plane with increase in 
parameter C. At 0.35C ≈ − , the phase orbit rotates around two different points 
P+ and P−. In some regions near fixed point P+ of the phase space, the orbit tends 
to rotate around P+; the same is true for P−. As shown in Figure 6, this attractor 
is significantly different from the Rössler attractor: The former has two unstable 
equilibrium points while the latter has only one. This is why the phase orbit 
tends to rotate around P+ or P− under the same conditions. The phase orbit can 
only rotate around one single point in the Rössler model, however, regardless of 
the parameters. So, in a Rössler medium, changes in spiral wave structure are due 
solely to period-doubling bifurcation. This phenomenon is responsible for the 
difference between stepped spiral waves and wavelength-doubled spiral waves.  

When the parameter C exceeds the critical value, the medium splits into two  
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Figure 5. (Color online) Structures of phase trajectories for varying parameter C, other parameters are the same as Figure 2. C is 
(a): −0.375; (b): −0.350; (c): −0.313. 
 

 

Figure 6. (Color online) Comparison of proposed attractor (a) and Rössler attractor (b) 
structures. 

 
kinds of oscillation forms based on the initial conditions (i.e., unrelated to period- 
doubling bifurcation). As shown in Figure 7, the spiral tip trajectory is a perfect 
circle containing half high concentration and half low concentration. The boun-
daries of high and low concentration form a straight line passing through the 
center of the circle. When the spiral tip enters S1, it forms the oscillation of S1; 
when it enters S2, it forms S2. The duration that the spiral tip stayed in S1 or S1 is 
half of the spiral wave period. The spiral tip produces two categories of waves: 
High (high concentration) and low (low concentration) waves, which spread to-
ward the boundary of the medium. The spiral tip is organization center of the 
entire spiral wave in a given reaction-diffusion system [34]. These two categories  
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Figure 7. (Color online) (a) Black circle marks spiral tip trajectory; (b) Partial enlarge-
ment inside (a). 

 

 

Figure 8. (Color online) Structures of possible spiral waves in a system with multi-scroll 
attractors. (a) Potential spiral wave in a system with three-scroll attractors; (b) Potential 
spiral wave in a system with four-scroll attractors. 

 
of waves are eventually evenly divided throughout the whole medium. 

4. Summary 

In this study, we discovered a novel complex-structure spiral wave called the 
stepped spiral wave, which formed in bi-stable media. According to the initial 
conditions, a phase trajectory catastrophe may occur with changes in parameter 
C causing the spiral tip to produce two types of wave: High (high concentration) 
and low (low concentration) waves, which spread towards the boundary of the 
medium. We expect this type of super-spiral structure can be observed in labor-
atory. Our numerical results suggest that these stepped spiral structures can be 
observed experimentally; we conjecture that a system with multi-scroll attractors 
may support stepped spiral waves. When the number of scrolls is three, the sys-
tem may support a stepped spiral wave as shown in Figure 8(a). When the 
number is four, the system may support a spiral wave as shown in Figure 8(b). 
In the future, we plan to conduct further studies to support this conjecture. 
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