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Abstract 
Actually, Arithmetic is considered as syntactically incomplete. However, there 
are different types of arithmetical theories. One of the most important is the 
second-order Categorical Arithmetic (AR), which interprets the principle of 
induction with the so-called full semantics. Now, whoever concluded that AR 
is sintactically (or semantically, since categoricity implies equivalence of the 
two types of completeness) incomplete? Since this theory is not effectively 
axiomatizable, the incompleteness Theorems cannot be applied to it. Nor is it 
legitimate to assert that the undecidability of the statements is generally kept 
in passing from a certain theory (such as PA) to another that includes it (such 
as AR). Of course, although the language of AR is semantically incomplete, 
this fact does not imply that the same AR is semantically/sintactically incom-
plete. Pending a response to the previous question, this paper aims to present 
a proof of the syntactic/semantical incompleteness of AR, by examples based 
on the different modes of representation (i.e. codes) of the natural numbers in 
computation. 
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1. Introduction 

The formal Peano’s Arithmetic (PA) and the second-order Categorical Arith-
metic (AR), differ only by the interpretation of the principle of induction:  

How to cite this paper: Raguní, G. (2017) A 
Proof of Syntactic Incompleteness of the 
Second-Order Categorical Arithmetic. Open 
Access Library Journal, 4: e3969 
https://doi.org/10.4236/oalib.1103969 
 
Received: September 24, 2017 
Accepted: October 23, 2017 
Published: October 26, 2017 
 
Copyright © 2017 by author and Open 
Access Library Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/ 

  
Open Access

https://doi.org/10.4236/oalib.1103969
http://www.oalib.com/journal
https://doi.org/10.4236/oalib.1103969
http://creativecommons.org/licenses/by/4.0/


G. Raguní 
 

 

DOI: 10.4236/oalib.1103969 2 Open Access Library Journal 
 

( ) ( ) ( )( )( ) ( )( )( )0p p x p x p s x x p x ∀ ∧∀ → →∀   

where s(x) is the succesor of x. In PA, p indicates any property that is expressible 
in the theory with a formula with (at least) one free variable, called x. In AR, p 
just indicates any unambiguous property of x. This different interpretation has 
important consequences. 

In set-theoretical language (formalizable in any formal Set Theory, as NBG, 
ZF or MK) we render the natural numbers as sets and make correspond a subset 
of natural numbers to each unambiguous property, so getting in the case of PA:  

( ) ( )( )1 0 1A P U A x U x A x A A U∀ ∈ ∈ ∧∀ ∈ ∈ → + ∈ → =    

where U is the set-universe of the model (called N in the standard model of the 
natural numbers) and P(U)1 the set of all subsets of U whose elements satisfy a 
property that is expressible with a formula with (at least) one free variable. P(U)1 
turns out to be denumerable [1], even effectively denumerable1. Consequently, 
in PA the principle of induction is an axiomatic schema that generates an effec-
tively denumerable number of axioms. Therefore, the theory is effectively axi-
omatizable2 and the incompleteness Theorems can be applied to it. 

On the other hand, for AR we get a similar set-expression for the induction 
but instead of P(U)1 we have just P(U), the set of all subsets of U. Now, if U is 
infinite (and this will be confirmed by the fact that U is equal or isomorphic to 
N) P(U) has a non-denumerable cardinality. Therefore, in this case the inductive 
axiomatic schema generates a non-denumerable number of axioms and the 
theory is not effectively axiomatizable: it does not satisfy the hypotheses of the 
incompleteness Theorems3. 

Besides, the quantification over all subsets of the set-universe (briefly called 
full second-order semantics) allows to demonstrate the categoricity of AR, i.e. 
that this theory has only one model (the standard one), up to isomorphism (De-
dekind’s Theorem)4. 

2. Is the Second Order Categorical Arithmetic (AR)  
Sintactically/Semantically Incomplete? 

Although the incompleteness Theorems do not apply to AR, it could be thought 
that the undecidable statements of PA, or part of them, continue to be undecid-
able in AR. But this is not guaranteed. 

Making use also of non-effective deductive methods, AR is capable to deduce 
a non-denumerable number of theorems, to which hence is impossible to assign 
an univocal code (like a gödelian code), except for an insignificant number of 

 

 

1Throughout the paper, we consider as valid the Church-Turing Thesis, so using always “effectively” 
rather than “recursively”. 
2Originally, effective axiomatizability is defined as decidability for the axioms. However, due to the 
Craig’s Theorem, at first order this definition can be made lighter by requiring just effective denu-
merability [2].  
3Evidently, the ambigous terminology of “strong enough arithmetical theory” here leads to error.  
4The addition of any comprehension axioms in AR invalidates the categoricity [3]. 
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cases; the same is true for the proofs. Thus, no similar strategy to that one used 
by Gödel to identify undecidable statements can be successful in AR. Here the 
Gödel’s famous statement (G), undecidable in PA, still means “no gödelian code 
of a proof of myself exists” but no longer “I’m not a theorem”, since not every 
proof has a gödelian code (those that have it, conversely, are insignificant). 
Nothing prohibits that G can be demonstrated in AR (here meaning “I am not 
provable in PA”) by one of the new inductive inferences. Analogous considera-
tions apply to the undecidable propositions considered by the Second incom-
pleteness Theorem. 

The full semantics contained in the principle of induction, admitting the pre-
dicability of any property that is expressible by the set theory language, increases 
dramatically the power and deductive skills of the language: references to me-
ta-mathematical concepts, to the truth, to other mathematical theories and their 
properties, etc., are possible with the only condition of unambiguity from a me-
ta-mathematical point of view. And the mere use of the concept of truth to de-
duce, seems enough to make questionable the syntactic incompleteness of the 
theory. 

Due to its categoricity, syntactic and semantical completeness5 are equivalent 
for AR. Anyhow, although the language used in AR is not semantically com-
plete6, this does not imply that AR is semantically (or syntactically) incomplete. 
To show it with an example, let consider the theory whose axioms are obtained 
by adding all sentences true in the standard model to the axioms of AR. We get a 
syntactically complete and still categoric system: thus, also semantically com-
plete. But due to the categoricity, its language continues to be semantically in-
complete. 

By the First incompleteness Theorems it is easy to show that the valid formu-
las of AR cannot be effectively deduced (e.g. [4] and [5]). This kind of semantical 
incompleteness is called sometimes inherent [5] or essential [6], but these adjec-
tives are not appropriate because, naturally, it does not imply the genuine se-
mantical incompleteness: it does not forbid that the valid formulas of AR can be 
deduced. 

Actually, the syntactic/semantical incompleteness of AR is yet to be proven 
and the only hint for a proof is based on the difference between the concepts of 
syntactic implication and truth [7]. 

3. Examples of Undecidable Statements in AR 

In computation, we assign a symbolic code to each natural number and, accord-
ing to it, define the operation rules. The most common codes are those loga-
rithmic, in base: 10, 2, 32, 64∙∙∙; but, of course, their theoretical number is infi-

 

 

5Where for semantically complete language (or, in a different case, theory) we understand a system 
always interpretable if consistent (or, that is equivalent, in which all the valid formulas are deduci-
ble). 
6By contradiction, we could apply the Löwenheim-Skolem (or Semantical Compactness) Theorem to 
conclude that AR is not categorical.  
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nite. As a classic, non-conventional example, we cite the representation (which 
we will call explicit) via one symbol (as “0” or “/”) repeated n + 1 times: “/” for 0, 
“//” for 1, etc. In principle, we are free to use arbitrarily irregular codes; for ex-
ample, one in which, starting from a certain n (or, more generally, for every 
element of a certain subset of natural numbers) new symbols of representation 
and/or operation rules are utilized [8]. The only thing that matters, from a logi-
cal point of view, is that then we are capable to define successfully the arithmeti-
cal operations, anyhow complicated they could be. The choice of a code rather 
than another determines differences in features that usually are not interesting 
for the Arithmetic: if we maintain this convention, models that use different 
codes are anyway isomorphic. But the full semantics allows to use such features 
to define unambiguous properties for natural numbers. A statement that men-
tions these properties has high probability of being unprovable. 

Examples are statements such as “every n is encoded by a chain of n + 1 sym-
bols” or “every n is encoded by a chain containing at most two different sym-
bols”. In fact they, nor their negated, can be theorems of AR: there exist inter-
pretations of AR in which they are “true” and others in which they are “false”7. 
This does not preclude that they are isomorphic because this new “truth”, having 
no properly arithmetical interest, can be excluded in order to distinguish differ-
ent models (so we are using the quotes). It is quite easy to build other undecida-
ble statements that refer to the code. 

More interesting examples of undecidability are obtained taking into account 
the concept of algorithmic randomness [9] [10] [11], which, in fact, refers to the 
symbolic strings. If-following a Chaitin’s (even tacit) convention-we define that 
a natural number is random if the string that represents it (i.e. its code) is ran-
dom, then we have that the statement “infinite random natural numbers exist” is 
undecidable. In fact it is “true” for the usual logarithmic codes of any base, but 
for example “false” for the explicit code. In fact, starting from a sufficiently large 
n, the string “//∙∙∙ (n times) ∙∙∙/”, and all the subsequent ones, are efficiently com-
pressible (using, for example, any logarithmic code), whatever the degree of effi-
ciency is agreed upon. Indeed, Chaitin’s version of the First incompleteness 
Theorem [12] does not prove that there is “randomness in Arithmetic”8, but that 
no arithmetical theory that satisfies the hypotheses of the theorem can prove that 
a long enough symbolic string is random, if it is so. 

4. Consistent Extensions of AR without Interpretations 

With the introduction of properties that mention the code, isomorphic models 
of AR can be distinguished on the basis of “truths” that usually are not consi-
dered arithmetical and, therefore, capable to invalidate the isomorphism. If, 
however, we decide to include the code between the properties that characterize 

 

 

7One can also observe that in the principle of induction (the only one that could infer such state-
ments), the satisfaction of the property for n does not imply satisfaction for n + 1, due to the afore-
mentioned arbitrariness of the codes.  
8Against the assertions of the same Chaitin, see [13] and [14].  
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a model, then an above described undecidable statement, considered as a new 
axiom, generates a theory that admits only specific models, i.e. equipped with a 
particular type of code. For example, if we choose as a new axiom the statement 
“every n is encoded by a chain containing at most two different symbols”, the 
new theory admits as specific models: the one who uses the explicit code, the lo-
garithmic-base 2 one and infinite others, together with all the isomorphic ones 
to them. The same thing happens with the statement “infinite random natural 
numbers exist”. 

However, even if you include the code between the properties that define a 
model, it is possible to show undecidable statements that are not satisfiable by 
any model. An interesting example is the statement “the code of every n is a 
random sequence” (or “every n is random”, following the convention above). 
Not only it is false in every model with a conventional code, but any attempt to 
build a special model in which it is true has to fail, because it would require you 
to be able to identify random numbers arbitrarily large, in violation of Chaitin’s 
version of the First incompleteness Theorem9. But there is more: even the mere 
existence of a model with such a code appears denied by the same randomness. 
In fact it seems impossible to define, by means of a finite number of instructions, 
arithmetical operation rules valid for unpredictable symbolic sequences. 
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