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Abstract

The present paper is devoted to the investigation of lossless transmission lines
terminated by a nonlinear load with an interval of negative differential resis-
tance and in series connected conductance. In contrast of almost all paper
when i=f(u), here the case u= f(i) is considered. A general method of
reducing the mixed problem to an initial value problem for neutral system on
the boundary is presented. Sufficient conditions for the existence-uniqueness
of an oscillatory solution are formulated. This is achieved by introducing an
appropriate operator acting on suitable function space whose fixed point is an
oscillatory solution of the initial value problem.
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1. Introduction

It is well known that all electronic circuits are nonlinear and the linear assump-
tion is only approximation (cf. [1]-[9]). Here a lossless transmission line termi-
nated by a nonlinear resistive element is considered. In view of [1], every resistive
element with an interval of negative differential resistance falls into one of the
following three groups: 1) The current is a single-valued function of the voltage.
Such an element is called a nonlinear conductance. For more complete descrip-

tion of the conductance it is assumed to be shunted by parasitic parallel con-
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nected capacitance; 2) The voltage is a single-valued function of the current.
Such an element is called a nonlinear resistance. In this case to obtain complete
description of the resistance one should include in series parasitic inductance; 3)
The characteristic V-7is a multi-valued function of both current and voltage. In
almost all papers only the first case is investigated [2]-[17]. The primary goal of
the present paper is to investigate the second case.

Let us note that the above classification corresponds to Ohm’s law u=Ri.
This means that the relation u= f (i) should be called nonlinear resistance,
while i= f (u),(i =Gu)—nonlinear conductance [1]. If we try to study the second
case in a usual way we have to solve the equation u= f (i) with respect to j
thatis, i=f*(u).But, in general, the inverse function is multi-valued one which
leads to multi-valued boundary conditions and hence to multi-valued differen-
tial equations with retarded arguments or differential inclusions. Many examples
are given in [1]-[18]. For instance (cf. [19]), in lightly doped varactors, electrons
may approach saturated drift velocity in the resistive epilayer. This phenomenon
increases the incremental resistance in a nonlinear manner. One approach to mod-
eling saturation is by the function U=R, (i + ai7) .

Figure 1 shows a lossless transmission line terminated by nonlinear load and
in series connected linear inductance where J;(t) is a current source function,
G, —the conductance of the source and L, —linear inductance. The nonlinear
load has an I V characteristic of the type u=f (i).

It is known that a lossless transmission line is described by the following li-

near hyperbolic system

di(x,t)/ox=—Cau(x,t)/at, ou(xt)/ox=—-Laoi(xt)/et (1)
where L and C are the specific constant parameters of the line and A is its
length.

Gy u=f(i) :|
S —— Llé
0 A
>

Figure 1. Lossless transmission line terminated by nonlinear load and in series connected
linear inductance.
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Here we assume a polynomial nonlinearity of the resistive element
u=f(i)=>_r,i" . In this manner we include the example from [19].
n=1
We formulate a mixed problem for System (1): to find a solution
u(x,t),i(xt) of System (1) for (x,t)ell= {(X,t) e R? (x.t)e [O,A]x [0,00)}

with boundary conditions

Jo(t)+Gu(0,t)=i(0,t), t=0; Lidi(A,t)/dt+zm:rni”(A,t):—u(A,t), t>0 (2)

and initial conditions
u(x,0)=uy(x),i(x,0)=i,(x), xe[0,A],
where U, (X),iy(X) are prescribed initial functions.

2. Transformation of the Hyperbolic System in Diagonal
Form

The System (1) can be rewritten in matrix form
au/at 0 YCllou/ox| [0
di/at 1/ L 0 |[ai/ox]| [0]

0 C| = |0
Introducing denotations U :[u} , A:[ Y }, 0 :{0} we obtain the
i

/L 0
equation
y + AQ =0. (3)
ot OX
. 0 1Cc]| . ..
To transform the matrix A= n in diagonal form we solve the cha-

1/L 1{; =0. Its roots are A4 = ]/\/E A, = 1/«/5

The corresponding eigenvectors are (51(1), §§1)) = (JE ~L ) ,

NN
& T

fo) Ao o 955 0]
Yot yiet) | o Ve

. V(x.t) .
Introduce new variables Z = I(X t) , where Z=HU and U=H"Z,

racteristic equation

( (2)) ( \/—\/—) and we form the matrix H :{

} . Its inverse

is H' =

that is,

V (%) =+C (x,t)+Li(x1) - u(xt =[V(xt)=1(xt) ]/ ZJ—
1(xt)=—/C (x,t)+~/Li(x.t) (xt)=[V (xt)+1(xt)]/(2VL)
Substituting U = H™'Z in Equation (3) we obtain

H™oz/ot+ A( H™oz/ 6X) =0 and after multiplication from the left by H we
obtain 0Z/ot+(HAH *)0Z/ax=0 or
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oV (x.t)/at+[av (x.t)/ox|/VLC =0, 8l (xt)/at—[al (x,t)/ox]/NLC =0.

Recall denotations Z; = /L/C —characteristic impedance and
V= 1/ +/LC —speed of propagation.

3. Reducing the Mixed Problem to an Initial Value Problem
on the Boundary

Prior to formulate an operator corresponding to the mixed problem we consider
the Cauchy problems for the characteristics of the hyperbolic system (1) (cf.

(17]):
d¢/dr=YJLC, &(t)=x and d&/dr=-1/VLC, &(t)=x
for each (x,t)eIl. Here the characteristics are constants A, = 1/J/LC >0 and
A= —1/ ~LC <0, and therefore continuous ones.
Denote by T =A/v=A~LC . To obtain boundary conditions with respect to

the new variables we substitute
u(0.t)=(V(0.1)=1(0,1))/(24C), i(0.t)=(V (0.)+1(01)/(2VL),
u(A)=(V (A -1(A1)/(24C), (A1) =(V (A +1(A1)/(2VL)
into boundary conditions (2) and get

3o (1)+(V (0,0)=1(0,1))(Gs/24C) = (v (0,)+ 1 (0,1)) /(2VL), t=0
(L/(2VE))[d(v (A )+ (A)]/dt+ D, (VA= 1(an]/(2vL)) @

—-(V(a)-1(A1)/(24C), t>0.

To obtain new initial conditions we proceed from
V (x,t)=+Cu(xt)+Li(xt),
1(xt)==J/Cu(xt)+VLi(xt)

Then

V (x,0) =+/Cu(x,0)++/Li(x0)=vCuy (x)+Lis (x) =V, (x)
I(x,0)=—\Eu(x,O)+ Li(x,O)s—\/Euo(x)+ Liy(x)
=1y(x), xe[0,A].

Now we able to formulate a mixed problem with respect to the new variables:

to find a solution of the system

oV (x.t)/at+1/(JLC)ov (x.t)/ox=0
al (x.t)/at-1/(NLC)a (x,t)/ox=0

xe[0,A];te[T, =) (5)

satisfying initial conditions
V (x,0)=V, (x), 1(x,0)=1,(x), xe[0,A]

and boundary conditions
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3o (1) +(V (0.)=1(0,1))(G, /24T ) = (v (0,t) + 1(0,0)) /(2VL), t=T
(Ll/ (2vL )[d (A)+1(A)) J/dt+zr2:rn([ (AD+1(AD]/( 2«/_)
~(V(AD)-1(A1)/(2C), t>T.

Repeating reasoning from [17] we integrate System (5) along the characteris-

tics and obtain
V(0,t-T)=V (A1), 1(0,t)=1(At-T).
Assuming that V (0,t)=V (t), I(A,t)=1(t) are unknown functions we ob-

tain the following initial value problem equivalent to the mixed problem (5) (cf.
[17]), (using denotation dV (t —T)/dt =V (t-T)):

V(t)=(—2ﬁ30(t)+(eozo+1)v (t—T))/(GOZO—l)EF (v, |)() t>T
I'(t):—\/'(t—T)—[ZO(V(t)—I(t—T))+ 1 (V (441 (t=T }/Ll ©

n=1
=F (V,1)(1), t=T
V(t) =V, (t), 1(t)=1,(t), te[0,T].
The initial functions V, (t),1,(t) are obtained from the initial functions
u(x,0)=uy(x),i(x0)=iy(x), xe[0,A]

after transition along the characteristics of the hyperbolic system (cf. [17]).

4. Existence-Uniqueness of an Oscillatory Continuous Solution

Now we are able to formulate the main problem: to find an oscillatory solution
of System (6) with advanced prescribed zeroes on an interval [T,oo), where
Vo (t),1,(t) are continuously differentiable prescribed oscillating functions on
the initial interval [0,T].

Let S —{rk}k 4
thatis, V,(z,)=0,1,(z,)=0 suchthat 7,=0, 7, =T . Besides
max{z,, -7, :k=0,1,---,n} <T, <oo.

Let S :{tk}:;o be a strictly increasing sequence of real numbers satisfying

neN be the prescribed set of zeroes of the initial function,

the following conditions (C):

(C1) t, :T;lmtk =o0; (C2) for every k there is s<k such that t —T =t,,
where t, eS; US.

It follows

0<A=inf{t,, —t, :k=012--}<sup{t,, -t :k=012}=T;<oo.
Consider the sets

My ={V () C[T,):V (t)=0and |V ()| <Vee"* ¥, teft ]},

M, ={1()eC[T,®):1(t,)=0and [I (t) < l,e""™), te[t,t ]}

(k =0,1, 2) , where V, 1, 4 are positive constants.
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Introduce the following family of pseudo—metrics

P (V. V) = max { N (1) |te[tk,tk+l]}

p(1,T)= max{e"’(t’t") [1(t)-T(1)[:te [tk,tk+1]} .

The set M,, xM, turns out into a complete uniform space with respect to the
saturated family of pseudo-metrics

P ((V1).(7,T)) = max [ o (V7)o (1T} (k= 01,2,
Using System (6) we define an operator
B=(B, (V.1),B,(V,1)):M, xM, > M, xM,
by the formulas
)= (23130 (1) +(GoZo +1)V (t-T)) [(GsZ, -1)
R (V 0)(t). te [t ] (k=012 ’

test

B, (V. 1)(1)= [ R (V. 1)(5)s (-8t 1)) | F (V. 1)(5)cs,

t t

teft t.,] (k=012-)

Remark 1.

1) In the above definitions of the operator B the functions V (t-T) and
I(t—T) in the right-hand side are substituted by the initial functions in the in-
terval [T,2T].

2) The conformity condition (CC)

I(T)=-V(0) (z [V(T)-1( )]+grn[V(T)+I(O)]n/(Z\/E)nlj/Li

becomes [(T)=-V (0). It is necessary when we look for a smooth solution.
We call a solution of System (6) the solution of the operator equation
(V.1)=(8 (V.1).B,(v.1)).
The following lemma is valid:
Lemma 1. Let be the source function satisfies
Jo(7)=0,3,(t) =0, |J | )| < 158 t e[ty b, ]. Problem (6) has a solution
(V ()1 ()) € M X MI iff the operator B has a fixed pointin M, x M, that is,

(V.1)=(8, (V.1). B, (V.1).

Proof Let (V (), | ()) €M, xM, be a solution of System (6). We show that
V=B,(V.1)1=B(V,I).

For the first equation an existence of solution is obviously equivalent to
V=8,(V,I).

To prove the same for the second equation we integrate the second equation
on the interval

[t t] <[t te.](k=0,1,2,-) and get

()= [F (V. 1)(s)ds = 0= 1 (t.,) jF v, I)(s)ds:tTlF, (V.1)(s)ds =0

T & T
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Therefore I(t) satisfies

:jF' (V.1 )(S)ds_((t_tk )/(tk+1 —b ))t:r F (V. 1)(s)ds, te [tk’tk+1]'

= 1=B,(V,1).

Therefore ( ( ) ( )) is a fixed point of the operator B.
Conversely, let ( ( ), )e M, xM, be a fixed point of the operator B, that

is V=B,(V,1);1 =B, (V,I). We prove the implication for the second equation.
Indeed, we have
t fei

= [R (V. 1)(s)ds—((t=t.)/(t,a—t)) [ R (V. 1)(s)ds, teft, b ,], (k=012,).
ty t

Since |(t ~t)/ (b —t, )| <L te[t,t,,] we estimate the second term:

j F, (V. 1)(s)ds

t

tis1

<[ [V(s-T)ds

+[Z°[T'V‘S>"’“T"“‘”"’SJ*ilfnl/(M)”“T<|v<s>|+|l<s-T>|>“ds}/ ’

Y tyaa
<V (s =T) =V (6 =T)[+(ZoVo/ L) j e ds + (ZV, /L) [ € Wgs
t

S (/I R Pt

<@l ) o[ 1) 1 ()mez(m/m)(nd
<2 ) #0320 (6% 1) ]
s<e~T°—1><vo+loeﬂ)/wm(zw;irnl((vﬁIoe”T)/(zf ) (e st m

j R (V,1)(s)ds

7 <M (u). For sufficiently large x>0 (and sufficiently small T;>0)

Let us assume that =y > 0. But we have obtained that

1T, =const we have M ()< y . The obtained contradiction implies

tia

J F, ( )( )dS 0. It follows | I F V | ( )dS and after a differentia-

ty T

tion we obtain (6).
Lemma 1 is thus proved.
Theorem 1. Let the following conditions be fulfilled:
1) The initial functions V,(.),l,(.)eC[0,T] satisfy conditions

Vo(7,)=0 and [V, (t) | <Ve 1 (1) < 1,8 te[r 1]
2) Jo(5)=0, 35 (t,) = 0.3, (1) < 1, teft, t.,]5

3) (2|0J—+|Gozo—]4voe ) (GeZo +1) Vo5
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4) Voo T+ (e (Vy + 1oe " )/(,uLl))(ZO +n§2(|rn |/n(2ﬁ)"71)(v0 + e )"'1(e<”‘1>”° +---+1)j <ly;

5) K, =[GyZ,—1e*" /(GyZ, +1)<1;

) L e (R (GO S

Then there exists a unique oscillatory solution of System (6), belonging to
M, xM,.
Proof We show that the operator B=(B,,B,) maps M, xM, into itself.
Indeed, (B\, (t), B, (t)) is continuous on [0,). It is easy to check that (re-
call that 7, =T)

B, (V. 1)(z) = (2V03 (7) +(GoZo ~1)V (7, ~T)) /(GsZ,) +1=0;
B, (V, I)(tk)=(2x/EJ0(tk)+(GOZO—1)V(tk—T))/(GOZO)+1:0;

n

B, (V,1)(z,)= j F (V. 1)(s)ds—((z, —Tn)/(y—rn))ii F (V,1)(s)ds=0;

B, (V. 1)(t )= [ F (V. 1)(8)ds (&, ~t)/(t.-t)) | F (V. 1)()ds =0,

We show that |BV (V1 )(t)| SVOe”(Hk) and |BI (V,1 )(t)| < Ioeﬂ(t*tk) for

te[t t..]-
First we notice that |(t —t)/(te —t, )| <Lteft,t].
For sufficiently large u# and telt, t,,,] for the first component we obtain

B, (v, 1)(0)] < (2|3 (0)] ]2, -1V (t-T)]) /(GoZ, +1)
<ttt (2I0x/f +]GoZy — UV, )/(GOZ0 +1) <V,e ).

For the second one we have

B (V)] TR (VD)8 -t ) J F(V.1)(s)()ds[= B, B,
8|7 (1))t

ivenefe B ot o) £ ivekedTi

<Vge ™ +( 0/Ll[ j s‘k)ds+lo:{e”(”‘k ds]+2| |/L1 zJ_) )j(Ve”“Mle”(S“k)) ds

m

<V,e T +(Zo/ﬂ|-1)(eﬂ(t—tk) _1)<Vo +1,e ) + ZO |/L1(2\/E) : j(vo +1,e )”jenﬂ(S—tk)ds
(' |/L1 nﬂ(zf) )(Vo +1,e77 )n (enﬂ(Hk) _1)
2\ In |/n(2\/_) )(V0 +1,e77 )n_l(e(“’l)‘ﬂo +...+1)j.

Ma

<Voe T+ 2o (€ —1) (Vy + e T ) [(1ly) +

n

'L

<Voe T o () (Vy + 1,eT) /(L) )(z0 +

/ﬁ\

n=;
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B, <|(t-t,)/(t..-t,)

From Lemma 1 we have

j F, (V. 1)(s)ds

<

j F, (V. 1)(s)ds

< ((ewo ~1)(Vo+ 1oe™) /(L) )[ (|r |/n(2\/_) )(V0 + e )nfl(e(”‘l)’”" +~--+1)j

[B (V. 1)(s)(1)

Therefore

<V,e T et ((V0 +1,e77 )/(ﬂLi))(ZO +i(|rn|/n(2x/f)n_lj(vo +1,e )n_l<e(”’l)‘”° +---+1)j
+((e”T° ~1) (Vo + 1ge™" )/( )[ +Z::(|r |/n(2\/_) )(VO +1,e7" )nfl(e(”‘l)"TO +~--+1)j

n

<t {Voe*” (e (Vo 16 ) /(ﬂg))(zo o (N A R C gﬂ

< gHltt) I,

B, = jF, (V.1 )(s)ds—j F (V.T)(s)ds

<|[(V(s-T)-V (s-T))ds

It remains to show that the operator Bis contractive one.

For the first component we obtain
B (v.1)()- B, (V.T)(1)(1)
<[GoZy ~AV (t-T) -V (t-T)| /G2, +1)
<Gz, -1 p* (v Ve /(GyZy +1)

<16z, ~1e T p ((V,1),(V.T)) /(GeZ, +1)

It follows

For the second one in view of the estimate from Lemma 1 we have
B (v.1)(t)- B, (V.T) (1)

<|[F (V1) (s)ds— [ F, (V.T)(s)ds

t ty

tis1 st

[ F(v.1)(s)ds— [ F (V.T)(s)ds

t T

+ |(t _tk )/(tm _tk )|

=B +B,

t &

t

+(zO/Ll)U v (s)—\7(s)|ds+;[|l (s—T)—I_(s—T)|ds]

t
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+Z|r|/L1(2\/_) f (Ve” W 4 ,et Ttk) (|V (s)|+||(s—T)—I_ s—T)|)ds

t

t

(
<V (s=T)-V(s=T)+(Z, /Ll)[ (vv)je’ “ds+ pM (1, I)je”(s'T"k)ds]

<szlT/o(l()(\/'\7)+(Zo(e/(t w )/(ﬂl-l))( (V. V) + ot )(|,|_)e—m)
=3I+t ) (0 (V)0 (1)) () e s
Z,+

=1 ) N t
<pM((v.1), (\7,?)){ Hit)goaT 4 gl tk)((1+e“‘T)/(uL1))[ i' In((Vo +10677)/(24T)) (e 1)/nﬂ

<e" WM ((v,1),(V, I)){e*‘T+((1+e*‘T )/(yLl))[Zo+g|rn|((Vo+loe*‘T)(fo)) ( Do . +1)H

B, <|(t—t,)/(te.. —t,)|

st

J(V'(s T)-V (s— T))ds+(ZO/L1)[T|V(s)—\7(5)|d5+tkf|l(s—T)—I_(s—T)|dsJ

+2| |/L1(2f) j (Ve” >+|e<”k) (|v V(s)|+[1 (s-T)-T(s-T)[)ds

i

jF (V,1)(s )ds—tTlF, (V.T)(s)ds

<(z 0/Ll)( (V V) _[ e Wds + plk (I I_) kJﬂe"(”‘k)ds]

T

+i|rn|/u(2ﬁ> g A A e (R T
(2t 7)1

({7 (1.7)e ) ) el (v ) (VT s

< 0T (et 2o (e -3 Slelof(v v (D)) (e -2)) |
<A O T)((e 2w ) ) 2o+ B (v e ) (D) (£ )

Therefore
\B. (V.1)(t)-B, (V.T)(t )‘
<0 (0,0, (e ) 2o Bl (b () )|
+pM (V. 1),(V,T))(e —1)((1+ e™)/(uLy)) {zo +Zm:|rn|<(\/0 + |0e*'”)/(zﬁ))nfl(e“‘l’”o +--.+1)}

se“(”k{e”T+e‘”°((1+e’”)/( )(z +Z| (T 1) (Vo + 10677 (24T )) H I((v.1),(v.T))
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It follows
(B, (V,1),B, (V. T)) <K, o ((V.1).(V.T))
where
Ky =e7 +e ((1+e_#T )/(/“-1))[20 +n22|rn|(e(”‘l>’”° +---+1)((VO +1,e77 )/(ZJE))HJ.
Consequently

P ((By (V. 1). By (V1)) (B (V.T).B (V.1))) < Kp™ ((V.1).(V.T),
where K =max{K,, K,}<1.

Therefore the operator Bis contractive one (cf. [17]) and its unique fixed point
is an oscillatory solution of (6).

Theorem 1 is thus proved.

5. Numerical Example

Our goal here is to check the inequalities of the main Theorem 1 for the 7-th or-

der polynomial. It is natural to assume V, =1,.

Consider a transmission line with specific parameters L=0.2uH/m;
C=9pF/m; A=10m; L =02uH; G,=1/35.Then
Z, =JL/C =/0.2x10°/9x10"2 =10°x0.149 =149Q;
T =AJLC :10\/(0.2 x10*)x(9x107?) =10x1.34x10"° =1.34x10°. The V-7
characteristic of the nonlinear element is
U=Ry(i+ai’)=Rgi+a-Ryi’ =ri+ni.

Let us take T,=0.2x10""; V,=1,~10"%; u=5x10";
4T, =5x10°x0.2x107%° =1;e" p =e’5*1°10*134“° *=e*~0; V,=10" Then

2JL/(G,Z, +1) +€"|G,Z, ~1/(GyZ, +1) = 24/0.2x10°° <(149/35)+1

1O4xe67°+e(149+|r1|+|r7|(e8—1)/(e—1)(1012 7(2 0.2x106))7]_
<5x10" x0.2x10° =10*
K, =e"*"°|(149/35)-1]/((149/35) +1) ~ 0 <1;

2.72
K, ~ {149+ +]r | 637(10° ) <2
The periodic solution is a particular case when T, =t —t, (k =0,1,2,---). We
can choose an initial approximation V © (t)=V,sin (a)ot) ,
1) (t) = 1, cos(@yt), where @, =2m/T, . Then the first approximation is

(k+1)T,

|<1>(t)=jFV(|<°>,|<°>)(s)ds (t—KT,)/T,) j F( 1©)(s)ds,

K KTo

te[KT (k+1)Ty |, (k=012
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VO (1) =[ 2913, (1) +(GoZ, -1V (t-T) | /(G2 +),
te[KT, (k+1)T, |.(k=0,12,")

and so on.

6. Conclusions

1) It is proved that V (t, )=V (A,t,)=0 and I(t,)=1(0,t,)=0. But it must
give a qualitative estimate of the solution of System (1), that is,
u(xt)=V (xt)/(24C)-1(xt)/(24C).
i(xt) =V (xt)/(2VL)+ 1 (x1)/(24L).

We note that every characteristic of the hyperbolic system with negative slope
passing through the point (0,t ) has the equation Xx=-vt+vt . Therefore
0=1(t)=1(0t,)=1(At,—-T) and I(xt)=0 along the straight line
X=-vt+Vvi, between 0 and A.In a similar way every characteristic with posi-
tive slope passing through the point (A,t ) has the equation x=vt-vt +A
and then 0=V (t )=V (A,t,)=V(0,t,—T) and V(x,t)=0 along the straight
line x=vt—vt, +A between 0 and A. In order to find common zeroes of
u(xt) and i(x,t) we have to intersect the straight lines X =-vt+vt, and
X=vt-vt +A.

2) A general method for analysis of transmission lines terminated by poly-
nomial nonlinearities is proposed and it is demonstrated on the 7-th order po-
lynomial.

3) An explicit solution by successive approximations can be obtained.
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