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Abstract

In this work, we present four results for the Laplace inverse transform of
functions that involve the nth root of a product of linear factors. In order to
find the Laplace inverse transform, we considered a branch cut for the nth
root and a region of suitable integration, to avoid the branching points. Due
to that, the solution is in terms of integrals, we easily approach this solution
for some specific parameters.
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1. Introduction

Modeling phenomena using partial differential equations are attractive to
physicists, mathematicians, engineers, etc., this is due to many phenomena
such as diffusion of particles, heat diffusion, fluid flow behavior on porous
media, among others, are modeled with this type of differential equations (see
[1]-[7]). However, when we use the Laplace transform to find the solution of
these models, it is likely to find multivalued functions, so the Laplace inverse
transform is commonly solved by numerical methods, for example, in [8] [9]
studied models that predict the fluid flow on porous media, they used the
Laplace transform and found multivalued functions of the type V., and to give
the solution through Laplace inverse transform they used the Stehfest numerical
method. The Stehfest numerical method has restrictions for functions that have

discontinuities [10], so it is more advisable to find the exact solution. In some

DOI: 10.4236/0alib.1103741 July 6, 2017



https://doi.org/10.4236/oalib.1103741
http://www.oalib.com/journal
https://doi.org/10.4236/oalib.1103741
http://creativecommons.org/licenses/by/4.0/

U. Salmeron-Rodriguez

cases, it is possible to give the exact solution [11], but to obtain the exact
solution of these models, a deeper study of the Laplace inverse transform of the
multivalued functions found is necessary. In this work, we study Laplace inverse
transform for functions that involve the nth root of a product of linear factors. It

is divided into two sections as follows: In the first section, we use the Laplace
inverse transform defined as

1 S+io
f(t)=——|  e%F(s)ds, 1
(t)=5 1,8 F(s) (1)
to find the function f(t).Here 6>0 and F(S) involve to
Y(s+a,)(s+a)(s+a,)(s+a,)(s+a,),

where n is positive integer and a,<a, <a, <---<a, are real positive. The
function f (t) is represented in terms of integrals that are easily approximated

numerically. To find this function, we consider the branch cut and the integration
contour of Figure 1.

In section two, We give analytical examples and also numerically solve the

function f(t) for some particular cases and compare versus the Stehfest
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Figure 1. Integration contour.
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numerical method. We also show that the Stehfest numerical method does not

approximate well to the exact solution near the discontinuities.

2. Theorems

In this section, we propose and prove four theorems associated with the Laplace
inverse transform for multivalued functions that involve .. It should be
mentioned that in particular Theorem 4 can be used to find the solution of some
differential equations that model the fluid flow on porous media, for example
[11].

Theorem 1. Suppose neZ”, t>0, 0=a,<a <a,<--<a <, =% and

F(s):éq/(s+ao)(s+a1)(s+a2)---(s+akfl)(s+ak),

then the Laplace inverse transform of the function F (S) is given by

f(t)= Zk: ((Hl) Jf:j‘“le“uj(x)dx, (2)

e X
where
Uj(x):V(X_ao)(x—ai)"'(x—aj)( X+, ) (-x+a)(-x+a,).
Proof, Using the Laplace inverse transform, we have

f(t)=

As a,,—a,,—-a,,---,—a, are branch points of the function F (S) , then we
consider the region of the Figure 1 and the branch cut —n < Arg (S) <7 for the

1 S+io

o HweSXF (s)ds.

nth root. Using Cauchy Theorem is found

(1) = [""e*F (s)ds

27Ti S5—io

- 27t| (L‘l Il“l Tis1 1"i<+1+ 70) )

1
- j o IR e o I I :
2w \*n In 7k 7k Tkl YTks2
It is easy to prove that J. =0 when e¢—0. In addition also J. —0 to
70 7

j=12,---,k when ¢—>0, this is because if s:—aj+eei9 with 0<f<n
then

J,

thus J.,. —>0 when €¢—0. Analogously if s=-a, +ee’ with —-t<0<0 we
]

I | " +€|\/ —a;+e+ay ) o(-a reray ) o(-a +e+a ) (e)do,

]

prove that I/ —0 when e—>0.
]

For I , we obtain
Yk+1

J.,k <J:eRC°S(g)l'\‘/(R+ao)(R+ai)“'(R"‘ak)d@’
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Rtcos(6)

as t>0 and cosé isnegativein (n/2 71') then e —0 when R— oo,

thus J —0 itisfor & small enough. Similarly for .[

Yk+1 Tk+2
For integrals over I';; and over I'}; with j=0,12,.- k we analyze as
follows: If s=xe™ =-x with XG(a a,+1) we obtain

in

1n .
. len(x—a for k=0,1,--, |,
(s+ak)]/ = g( ) (4)
en (—x+a, )" for k=j+1,j+2,- .k
Using Equation (4) we find

ul(X):V(s+a0)(s+a1)..-(s+aj)(s+aj+1) (s+a)
:(s)l/“ (S+a1)’/” "‘<S+aj )l/n (S_’_ajﬂ)l/n (s+a )]/n

I'rc 1/n I1[ I7[ 1/n |0 l/n Q 1/n
=enx (X ai) (X a) en ( x+aj+l) --'e”(—x+ak)
(j+l)in
=e " u;(x),
then
& 1 a'+11 _
’Lm_ a1]+1;e ul( )dx:_LjJ ;e Xtul(x)dx' (5)

On the other hand, if s=Xxe™ =-x con xe (a am) we obtain

—(j+)in

uz(x)zQ/(s+ao)(s+a1)-~(s+aj)(s+aj+1)-~(s+ak) =e " u;(x),

then

J'r il g, , (X)dx. (6)

i+ aj X

Thus, for Equation (5) and Equation (6) we find
J +1)7I aj+1 1 —xt
+|, =-2isin| ——— —e u; (x)dx.
f B im0 e g
Finally, adding all integrals and replacing in Equation (3), we obtain

(1) Zkl ((Hl) JI:”EeXt”i(X)dX-

X

]+1

O

Theorem 2. Suppose neZ*, t>0, 0=a,<a <a,<--<8 <, =% and
1

Ys+ag)(s+a)(s+a,)(s+au)(s+a)

then the Laplace inverse transform of the function F (S) is given by

O e o

F(s)=

where
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u; (x)= . :
Q/(x—ao)(x—ai)---(x—aj)(—x+aj+1)-~(—x+ak_1)(—x+ak)

Proof. Again we use the region Figure 1. In analogy with the proof of the

previous Theorem we have L -0, I —0 and L —0 when ¢e—>0 for
0 7i i

j=12,---,k andalso L —0 and I —0 when R—> .

k+1 Yk+2

On the other hand we have

Jo =1 e (x) () = % (x) o,

aj+l
Aja
[ o==] e u, (x)dx,
Ui aj

where

(j+)in (j+))in
u(x)=e " u;(x) and u,(x)=e " u;(x),

then
_ L. (j+1)7‘t aju1__y
Ir,-+1+jr/,-+1__2'sm[T J'aj‘ e, (x)dx.

Therefore, we add all the integrals so we find the result.[]
Theorem 3. Suppose nmeZ", t>0, 0=a,<a <a,<--<a <, =D
and

S :lQ/(s+a0)(s+a2)(s+a4)---(s+ak73)(s+akfl) |
S ﬂ(s+ai)(s+ag)(s+a5)~-(s+ak72)(s+ak)

then the Laplace inverse transform of the function F (S) is given by

k
1[5} j+17‘C i a-+]__><
f(t) =;Z(‘;sm(%—1—r:jja;‘ 1;e 'u,; (x)dx
<

(8)

+£%5in[(i+1)ﬁ (1 +1)“]I32J+2le-xtuzjﬂ(x)dx,

T3 n m )i X

where

u; (X)=(x—ag)r (x-a) m-(x-a )5(—x+aj+l) m ~--(—x+ak71)ﬁ(—x+ak)7%.

1 1 1 1 1
n

1/n -/m -Im 1/n
Note that (X -a, ) (—X + aj+1) can change by (X -3; ) (—X + aM)
when kis even or odd.
Proof. The proof is analogous to the previous theorems. [

Theorem 4. Suppose t>0, r>0, O=a,<a <a,<--<a <, =0 and

1 K(rysra)(sra)(sa) (s as)(s+a)
S K (y(s+a)(s+a)(s+a,)~(s+au)(s+a)

where K, is the modified Bessel function of order 0 then the Laplace inverse

F(s)

transform of the function F (S) is given by
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k
il wal Lo 1
f(t):1+—ZJ' ! —e‘”‘lfzjfz(r,x)dx+z.[ J—e‘x“lfzjfl(r,x)dx 9)
L =

T 3 T%i2 X Bj1 X

where
k
g {E} for k even,
11{5} for k odd,
|o(ul(X))KO(UI(X)r)_KO(U'(X))IO(U'( ) ) forl=2j-1,
F,x) = Ko (u () + 271, (uy (%))
¥, (r,x) YO(UI(X))JO(UI(X)

)= Jo (U (X))o (u (¥)r) forl=2j-2
2 ( |

l,,Yy,J, arethe corresponding Bessel functions of order 0 and
U (x) =\/(x—a0)(x—a1).-.(x_aj J(=x+ay, ) (-x+ac)(-x+ay).

Proof. For the proof, we used the following properties of the Bessel functions
(see [12] [13] [14])

T . 1.
KV(Z)=i§eszf{Zezn ] [—n<argzs%nj, (10)
T v L 1
Kv(z):—ize 2 Hfzv)[ze 2 ] (—En<argZSnj, (11)
KV(ze‘“‘"):e"”‘”Kv(z)—insin(mvn)csc(vn)Iv(z),(meZ), (12)

where H'Y(z) and H'®(z) are the Hankel’s functions of the order v.
Consider the case when k is odd (for k even the proof is analogous). Also
consider the region of Figure 1 then f (t) is like Equation (3). Then L_ -0,
]

_[/—)0 for j=12,---,k when ¢—0, also L =-2ni when e€—0. For
] 0

the integrals on I i and on F'j with j=1,---,k+1 we obtain the following: if
j isofthe form 2j-1, we used Equation (10) and Equation (11), then

.[rzj—l * J.F'ZH - _ZiI;Zj{_:%e_Xt‘{jzj-Z (I’, X)dX, (13)
where
v, (r)= Yo (UZH (x)) J, (uzjf2 (x) r) -J, (uzjf2 (x))YO (uzjf2 (x) r) |

2 2
3o Uy 2 (%)) + Y (Ug; o (X))
On the other hand, if j is of the form 2j, we used Equation (12) then
1

ey o
J.sz-'— Ij =2 azj;;e t‘sz,l(f',X)dX, (14)
where
Wara (1 %)= IO(UZj_l(x))Ko(uzj‘l(x)r)_KO(UZJ—l(X))'o(”zj—l(x)r).

Ko (uzj_l(x))2 +r°l, (uzj_l(x))2
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Note that U, (X) is found using Equation (4) with n=2. As k is odd then
there are {g} +1 integrals of the form Equation (13) and there are {%} +1 of
the form Equation (14). Thus

J'+ +|,+et +j,
v Jh N T 9T

E}—l 1 E +1 1 (15)
=—2mi—2i z LZ‘ TZe W, L, (1 x)dx — 2mi ZL

7XI
ey —e ¥, (r,x)dx.
On the other hand, for I , we have that

2j-1 X
Tk+1

. o[ (B B ) J
o (&) ) ]
J

‘[7 K+

< J‘"ethos
a

SO, L isOwhen R—>ow for J§ sufficiently small. Similarly to . Thus,
Tk+ Yk+2
using LO =—2mi , Equation (15) and Equation (16), we arrive to
— [+l
1R ranl
_1+; Z; LZH;e ¥, (r x)dx
Bl
+ z Iaz, 1; ¥, (1 x)dx

O

3. Analytical Examples and Numerical Approximation

In this section, we give some analytical examples corresponding to the exact
solutions of the previous theorems and solve the integrals numerically for some
particular cases.

Example 1. We consider that k=1, n=2, 0=a,<a <a,=% and

F(s) :% s(s+a,), then using (2)

f(t):lsin[wJ (2 e fx(—xra)dx

T 2 X

1 o
+Lin (t+1)z Len
T 2 a X

_Lpmlow X(—x+a,)dx

w0 X

x(x—a)dx

Furthermore, since

al o o _a % [ait) (aitj
-[Oxe X(-xra)d="ee 2m| lo| ==+ L[ = |

with |, is the modified Bessel function of order « , then

f(t):%e?(lo[aé j+| [?D

OALIb Journal 7/11
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Example 2. We consider that k=2, n=2, 0=a,<a <a,<a =0 and

F (S) = ! , then using (7)

FGra)sea)
( =§sin[(°+21)”jjfe*‘ 5 ™
e e
e

SO

L et ! X
R Ty

—lj'we’x‘ ! dx
moe x(x-a,)(x-a,)
Example 3. We consider that k=1, n=3, m=2, O=a,<a =n<a, =
1 s

and F( ):Ezé(sjai)
[%} j+1)7T | ey
f (t):lzsin{%_‘?jj e Loy, (x)dx

T j=0 ®2j X
B
2

+1 Sin[(]+1)7I_(j+1)7t].|‘azj+zlextuzjﬂ(x)dx,

, then using (8)

;j:o 3 2 Qi X
SO
3

f(t)=£sm(fj TS I

T 3)°0x -X+7

_ 3
+lsin[—njj Tow s dx
T 6 )'" X X—m
_3r(5/6)t"°

F(Y2,7/6,-nt),

n

where |F, is the hypergeometric function.

Example 4. We consider that r>0, k=1, a = 1 and

1 ko(r,/s(s+1/e))

F(s)==
) s ko( s(s+]/e))

then using (9)

1041 1
f(t)=l+;J‘0(;e t‘Po(r,x)dx+.|'% e “p, (r,x)dx

where
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IO(ul(X)) Ko (ul(x)r)_ Ko (Ul(X)) IO(ul(X)r)
K, (ul(x))2 +7°l, (ul(x))2
Up (X) =4/X(—x+1/€) and u,(x)=x(x—1/e).

On the other hand, we solve the integrals numerically corresponding to the

lPl(r'x):

exact solutions of Theorems 1, 2, 3 and 4 then we compare versus Stehfest
numerical method. This method consist in numerically finding the Laplace

inverse transform of the F (S) using:

(1) Iogt(2)

where

min{i,ﬂ
m o 2

=1

ig(i)F[Mij

t

K2 (2K)!

k[zﬂ (;1—k)!k!(k—l)!(i—k)!(2k—i)!.

In Figure 2(a) and Figure 2(b) we observed in red color Equations ((2) and

10
0.010
8
0.008
----------- = Stehfest method smimimimimi - Gtehfest method
6 .
—~ | s Fixact solution = 0.006 i Exact solution
= Nl
Q\ \
4 \ 0.004/
2 \\ 1 0.002"
——— » ——
% 200 400 : 600 800 1000 0000 200 400 i 600 800 1000
(a) (b)
.. O 04
I - Stehfest method -
03 03
___________ - Stehfest method mmmmm Exact solution /
mmmimimn - Fixact solution
—_ _
N E
02 < 02
0.1 0.1 /
——— ﬁ
0.0
0 200 400 " 600 800 1000 0.5 200 400 t 600 800 1000
(c) (d)

Figure 2. Comparison of the exact solution (2), (7), (8), (9) with parameters n=2, k=5, a =1,

a,=m, a,=5, a,=6*, a,=10, r=2, m=2 and the Stehfest numerical method with n, =14 .
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20— \ I : :
1 \ \ \ ——————————— = Stehfest (n; = 8)

Ve Stehfest (n; = 12)

15 \ \\ _________ Stehfest (n; = 16)

\\\ \ mmmmnmnn [xact solution
N\

fEt)
/

0 2 4 6 8 10
t

Figure 3. Comparison of the exact solution (2) with paramteters n=2, k=5, a =1,

a,=m, a,=5, a,=6, a, =10 and Stehfest numerical method for different n,, this

is for ¢#small.

(7)) respectively with parameters n=2, k=5, a=1, a,=n, a=>5,
a,=€’ and a,=10. In Figure 2(c) we observed Equation (8) in red color
with the same previous parameters in conjunction with m=2. In Figure 2(d)
we observed Equation (9) in red color with the same previous parameters in
conjunction with r=2. On the other hand, in all plots of Figure 2 Stehfest
numerical method is shown in black color with n, =14 and functions F (S)
corresponding to the aforetmentioned parameters for each cases. As expected in
all cases the exact solution of the theorems proposed here coincide with Stehfest
numerical method for large ¢ values, however the stephens method does not
approach well near the discontinuities of the function, for example in Figure 3
we see in red color the same exact solution of Figure 2(a) for small ¢values, and
in black color the Stehfest numerical method for different n,. In this figure is
shown that if n, increase then Stehfest numerical method approximates better
to exact solution near zero but still the approximation is bad, this is because
Stehfest numerical method does not give a good approximation near points

where the functions are discontinuous (see [10]).

4. Conclusion

In this work, we solved the inverse Laplace transform for multivalued functions
that involving the nth root of a product of linear factors, we show that results are
correct and also give analytical and numerical examples. The numerical examples
were compared with Stehfest numerical method, concluding that the curves
coincide for values far from the discontinuities of the solution, while for values
close to the discontinuity the Stehfest numerical method does not have good

approximation.
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