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Abstract 
Maple is used to compute control laws of strict-feedback nonlinear systems. The sta-
bility of the system is also verified by Maple procedures. We show that computer al-
gebra systems can play an important role in nonlinear system design, in research, 
and education of nonlinear systems.  
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1. Introduction 

Nonlinear system study has been advanced greatly in the last few decades. In particular, 
the back-stepping method was discovered and applied in the design of nonlinear con-
trol systems [1].  

The complexity of the computation involved in the study of nonlinear systems makes 
the use of computer algebra inevitable. In fact, the nature of the computation of back- 
stepping, a recursive procedure, is symbolic. 

Computer Algebra System, also called CAS for symbolic computation, has been ad-
vanced greatly in the last few decades as well. Powerful computer algebra systems now 
are capable to do numerical computation, symbolic computation, graphing, and pro- 
gramming. The rich built-in functions in a computer algebra system make the study of 
complicated systems handy. 

Computer algebra has been used in the study of nonlinear systems in general (for 

How to cite this paper: Wang, R.D. and 
Ahangar, R. (2016) Computational Approach 
to Control Laws of Strict-Feedback Non- 
linear Systems. Open Access Library Jour- 
nal, 3: e2938. 
http://dx.doi.org/10.4236/oalib.1102938  
 
Received: September 8, 2016 
Accepted: October 6, 2016 
Published: October 10, 2016 
 
Copyright © 2016 by authors and Open 
Access Library Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/ 

   
Open Access

http://dx.doi.org/10.4236/oalib.1102938
http://www.oalib.com/journal
http://dx.doi.org/10.4236/oalib.1102938
http://creativecommons.org/licenses/by/4.0/


R. D. Wang, R. Ahangar 
 

2/12 OALib Journal

example, see [1]-[5]), and in the study of back-stepping in particular (for example, see 
[6]). However, for some reasons, computer algebra systems are not yet popular in the 
engineering society. In this paper, we show how computer algebra systems can be suc-
cessfully used in computing a control law for strict-feedback systems. 

The use of computer algebra systems allows researchers and students to save time 
from tedious and error prone computations and focus on the basic ideas and methods. 

Therefore, it is not only important for industrial applications, but also for research 
and education. Maple is one of the most powerful computer algebra systems in the 
world. We use Maple to compute control laws of strict-feedback systems. We also use 
Maple to verify the stability and other behaviors of the systems. 

In this paper, Maple procedures are listed and examples are given. 
To familiarize the audience in the community of control systems with computer al-

gebra systems is also a goal of this paper. 

2. Back-Stepping for Strict-Feedback Systems 

Assume a state vector nx R∈ , we define nonlinear recursive and strict-feedback sys-
tems by the following:  

( ) ( ) 1x f x g x z= +                              (1) 
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The recurrence relation (2) can be briefly described by: 

( ) ( )1 1, , , , , ,k k k k kz h x z z s x z z u= + 


                    (3) 

for 1, 2,3, ,k n=  , where R ,nx∈  ( )R, 1, ,kz k n∈ =  , and n is the vector field di-
mension. The value Ru∈  is the plant input and the new state variable zk is consi-
dered the plant output. 

The functions f and g in relation (1) can be described by 
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Lyapunov Stable Control Design: 
Assume that for the system, ( ) ( )x f x g x u= + , there exists a continuously differen-

tiable feedback control law ( )u xϕ=  a smooth, positive definite, and radially un-
bounded function 𝑉𝑉(𝑥𝑥)such that  

( ) ( ) ( ) ( )( )VV x f x g x x
x

ϕ∂
= +
∂

  

is negative definite, i.e., the system 
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( ) ( )x f x g x u= +  

is asymptotically stable.  
The following recursive procedure is used to compute a control law to stabilize the 

above strict-feedback system [7]. 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )1 1 1 1 1 1
1 1

1, ,
,

Vx z x z g x h x z f x g x z
s x z x x
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where 3, , .j k=   The control law can be described: ( )1, , ,k ku x z zα=  . 
There are other control laws based on back-stepping. The above control law may not 

be the best choice for a particular control system with particular design concerns. 
However The program can be modified if some application oriented guidelines are 
given. 

This paper is not for the detailed discussion of the back-stepping method; instead, it 
is for the computation of the method. From the above formulas one can see that the 
computation is very tedious and time-consuming.  

Computer algebra can be used to compute the control laws. 

3. Maple Procedures 

The following is a Maple Procedure for computing the control law 𝑢𝑢 of nonlinear 
strict-feedback systems. The first argument of the procedure is ( )f x . The second ar-
gument of it is ( )g x . The third and the fourth arguments are the known Lyapunov 
function, ( )V x , and the control law, ( )u xϕ= , for system ( ) ( )x f x g x u= + . 

The following program is the Maple Procedure designed to solve the dynamical con-
trol systems in (1), (2), and (3), in generalto compute a control law to stabilize the 
strict-feedback system. 

restart; 
with(linalg); 
strict:= proc (f, g, h, s, V, a)  

local z, alpha, n, k, i, j;  
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with(linalg); n := vectdim(f); k := vectdim(s);  
for i to 1 do  

alpha[1] := simplify((-z[1]+a-add((diff(V, x[i]))*g[i], i = 1 .. n)-h[1]+(diff(a, 
x[1]))*(z[1]*g[1]+f[1]))/s[1]);  

if k = 1 then break end if;  
alpha[2] := simplify((alpha[1]-z[2]-(z[1]-a)*s[1]-h[2]+add((diff(alpha[1], 
x[i]))*(z[1]*g[i]+f[i]), i = 1 .. n)+(diff(alpha[1],  
z[1]))*(z[2]*s[1]+h[1]))/s[2]);  

if k = 2 then break end if;  
for j from 3 to k do  

alpha[j] := simplify((alpha[j-1]-z[j]-(z[j-1]-alpha[j-2])*s[j-1]-h[j]+add 
((diff(alpha[j-1], x[i]))*(z[1]*g[i]+f[i]), i = 1 .. n)+add((diff(alpha[j-1], 
z[i]))*(z[i+1]*s[i]+h[i]), i = 1 .. j-1))/s[j])  

end do  
end do  

end proc; 
Program (1): This table is a copy of the Maple procedure named “strict” that will be 

used to execute for a variety of Nonlinear Control Systems. 
The following is the result of the execution of the Maple procedure to show phase 

portraits of second order nonlinear systems with arbitrary initial conditions. The ar-
guments described in the above “strict” procedure are systems of equations and num-
bers of initial value problems (up to 20) 

portrait:=proc(sys, m, tm, icr)  
local r,n,s,sx,sxi1,i,x,y,a,b;  
with(plots):  
x:=op(1,lhs(sys[1])); y:=op(1,lhs(sys[2]));  
n:=m; r:=rand(-5..5): s:=array(1..n): sx:=array(1..n): sxi1:=array(1..n):  
for i from 1 to n do  
s[i]:=dsolve({op(sys),subs(op(x)=0,x)=icr*(rand())/(2*10^(12))r(),subs(op(y)=0,y)=i

cr*(rand())/(2*10^(12))r()},{x,y},numeric);  
od;  

for i from 1 to 1 do 
sx[1]:=t->rhs(s[1](t)[2]): sxi1[1]:=t->rhs(s[1](t)[3]):  

if n=1 then break fi;sx[2]:=t->rhs(s[2](t)[2]): sxi1[2]:=t->rhs(s[2](t)[3]):  
if n=2 then break fi;sx[3]:=t->rhs(s[3](t)[2]):sxi1[3]:=t->rhs(s[3](t)[3]):  
if n=3 then break fi;sx[4]:=t->rhs(s[4](t)[2]):sxi1[4]:=t->rhs(s[4](t)[3]):  
if n=4 then break fi;sx[5]:=t->rhs(s[5](t)[2]):sxi1[5]:=t->rhs(s[5](t)[3]):  
if n=5 then break fi;sx[6]:=t->rhs(s[6](t)[2]): sxi1[6]:=t->rhs(s[6](t)[3]):  
if n=6 then break fi;sx[7]:=t->rhs(s[7](t)[2]): sxi1[7]:=t->rhs(s[7](t)[3]):  
if n=7 then break fi;sx[8]:=t->rhs(s[8](t)[2]):sxi1[8]:=t->rhs(s[8](t)[3]):  
if n=8 then break fi;sx[9]:=t->rhs(s[9](t)[2]):sxi1[9]:=t->rhs(s[9](t)[3]):  
if n=9 then break fi;sx[10]:=t->rhs(s[10](t)[2]):sxi1[10]:=t->rhs(s[10](t)[3]):  
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if n=10 then break fi;sx[11]:=t->rhs(s[11](t)[2]): sxi1[11]:=t->rhs(s[11](t)[3]):  
if n=11 then break fi;sx[12]:=t->rhs(s[12](t)[2]): sxi1[12]:=t->rhs(s[12](t)[3]):  
if n=12 then break fi;sx[13]:=t->rhs(s[13](t)[2]):sxi1[13]:=t->rhs(s[13](t)[3]):  
if n=13 then break fi;sx[14]:=t->rhs(s[14](t)[2]):sxi1[14]:=t->rhs(s[14](t)[3]):  
if n=14 then break fi;sx[15]:=t->rhs(s[15](t)[2]):sxi1[15]:=t->rhs(s[15](t)[3]):  
if n=15 then break fi;sx[16]:=t->rhs(s[16](t)[2]): sxi1[16]:=t->rhs(s[16](t)[3]):  
if n=16 then break fi;sx[17]:=t->rhs(s[17](t)[2]): sxi1[17]:=t->rhs(s[17](t)[3]):  
if n=17 then break fi;sx[18]:=t->rhs(s[18](t)[2]):sxi1[18]:=t->rhs(s[18](t)[3]):  
if n=18 then break fi;sx[19]:=t->rhs(s[19](t)[2]):sxi1[19]:=t->rhs(s[19](t)[3]):  
if n=19 then break fi;sx[20]:=t->rhs(s[20](t)[2]):sxi1[20]:=t->rhs(s[20](t)[3]):  
if n=20 then break fi;  
od; 

a:=plot([seq([sx[i],sxi1[i],0...001],i=1..n)],style=point,labels=[x, y],caption="The 
phase portrait with random initial conditions");  
b:=plot([seq([sx[i],sxi1[i],0..tm],i=1..n)],labels=[x, y],caption="The phase por-
trait with random initial conditions"); print(display(a,b)); sx,sxi1:  

end: 
Program (2): This table represents the execution of the Maple procedure named 

“portrait” to produce a sequence of graphs (sgraph) for the strict-feedback nonlinear 
control systems. 

Due to the paper size limitation, Maple procedure, and sgraphs to show the graphs of 
third order systems with arbitrary initial conditions are not listed. The arguments of the 
procedure are also systems of equations and numbers of initial value problems. 

Examples 
The following examples show that the above procedures work well. 
Example 1: Given a dynamical system (see the reference [8], pp. 592-594) 

2 3
1 1 1 1

1

x x x z
z u

 = + +


=





                          (4) 

The following are the Maple commands and results of the control solutions. 
>  

 

 

>  

 

 

>
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>
 

 

We use our Maple procedure “portrait” to demonstrate the phase portraits of the 
system with random initial conditions. It can be seen that the system is globally 
asymptotically stable. Since the procedure “portrait” uses different variable names and 
deeds for forming systems of differential equations in the Maple setting, we converted u 
to a suitable form first. 

>
 

 

>
 

 
>

 
The portrait in Figure 1 demonstrates the global stability of the strict feedback con-

trol systems with one level integrator z1 about the equilibrium point. 
Now consider the nonlinear system (4) with two integrators z1 and z2.  

2 3
1 1 1 1

1 2

2

x x x z
z z
z u

= + +
=
=







                               (5) 

The following are the Maple commands and results. 
 

 
Figure 1. Phase portrait of a nonlinear control system (4) with random initial conditions. 
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By executing the Maple procedure “strict” from the Program (1) and the “portrait” 
procedure from Program (2), we can generate a sequence of graphs that we labeled as 
a[1], a[2], and a[3].  

>  

 

 

>  

 

>  

 

>  

 

>  
>  (Figure 2). 
Example 2: The following example demonstrates three levels of integrators for 

back-stepping control (see the reference [9], p. 35)   

1 1 1

1 2

2 3

3

x x z
z z
z z
z u

=
 =
 =
 =









                               (6) 

We initiate functions f and g as necessary by (1). We use the Lyapunov function V to 
execute the Maple procedure “strict”. 
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a[1] 

 
a[2] 

 
a[3] 

Figure 2. a[1], a[2]), and a[3] are phase portraits of the nonlinear control system (5) in two levels 
using back-stepping algorithm. 
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>  

 

 

>  

 

 

>  

 

 

>  
 

Example 3: The following example is a nonlinear control system selected from the 
reference ([10], pp. 633-634): 

1 1
3

1 1 1 2

2

x z

z x x z
z u

=


= − +
 =







                       (7) 

We use functions f and g from the system (7) to be used for Equation (1). Running 
the Maple procedure “strict” from the Program (1) produces the solution. The “por-
trait” procedure generates a sequence of graphs that we labeled b[1], b[2], and b[3]. 

>  

 

 

>  
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>  

 

 

>  

 

 

>  

 

 

>  

 

>  

 

>  

 

>  
>  (Figure 3) 

4. Conclusions 

This paper shows the advantages of computer algebra systems like Maple in computa-
tion of nonlinear systems. Maple is successfully used to compute back-stepping control 
laws of nonlinear strict-feedback systems. The stability of systems with computed con-
trol laws is also verified by Maple procedures. As demonstrated by other researchers, 
computer algebra can be used for computing control laws of other systems with back- 
stepping. In general, it can be used to solve computation problems in science and engi-
neering. 
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b[1] 

 
b[2] 

 
b[3] 

Figure 3. The “portrait” procedure generates a sequence of graphs b[1], b[2], and b[3] for phase 
portrait of nonlinear control system (7). 
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We hope that more researchers, engineers, and students will take advantage of com-
puter algebra systems as a tool in problem solving. Computer algebra systems should 
play more important roles in industry, research, and education. 
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