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Abstract

In this paper we investigate the new subclass of starlike functions in the unit disk

U ={zeC:|z]<1} via the generalized salagean differential operator. Basic proper-

ties of this new subclass are also discussed.
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1. Introduction

Let A denote the class of functions:

(1)

f(z)=z+a,2° +--

which are analytic in the unit disk U = {z eC: |z| < 1} . Denote by
zf'(z)
f(z)

Let g(z)=z+b,z°+ --€A. We say that f(z) is subordinate to §(Zz) (written
as f < @) if there is a function wanalytic in U with w(0) = O,|W(z)| <1,forall zeU.
If gis univalent, then f < g ifandonlyif f (0) =g (O) and f (U ) cg (U) [1].

Definition 1 ([2]). Let f €A1 e(O,l] and neN. The operator D] is defined
by

*

S = { feA:Re >0,zeU } the class of normalized univalent functions in U.
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( )=1(2),
=(1=2) f(2)+22'() =D, 1 (2), o
DI f (2)=(1-4)D}f (2)+22(D}  (2)) =D, (D} f(2)).zeU.

Remark 1. If f eA and f(z)=z+) a1, then

D f(z2)=2+), ,[1+(k-1)2] az" zeU.
Remark 2. For A =1 in(2), we obtain the Salagean differential operator.
From (2), the following relations holds:

(D1t (2)) =(Dpf (2)) +24(D2f (2)) 3)

and from which, we get

DI f (2) (Dif(2))

DT (2) @

with 17f(z)=f(z2).
This operator is a particular case of the operator defined in [3] and it is easy to see
that forany f eA, I} (D; f (Z))z DE(ij (Z)): f(z).
Next, we define the new subclasses of S .
Definition 3. A function f e A belongs to the class S] ifand only if
. DI* f(z2)

i) 0 A< 5)

Remark 3. S)=S".

Remark 4. f €S] ifandonlyif D}f(z)eS’.

Definition 4. Zet Uu=U,+U,i, V=V, +V,i and ¥, the set of functions
w(uVv):CxC—C satistying:

i) y/(u,V) is continuous in a domain Q of CxC,

ii) (1,0)eQ and Rey(1,0)>0,

iii) Rew (Uyi,v;)<0 when (U,i,v;)€Q and v, s-%(l+ u;) for zeU.

Several examples of members of the set W have been mentioned in [4] [5] and ([6],
p- 27).
2. Preliminary Lemmas

Let P denote the class of functions p(z)=1+¢z+C,z°+--- which are analytic in U
and satisfy Rep(z)>0,zeU .
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Lemma 1 ([5] [7]) Let w €Y with corresponding domain Q. If P(‘P) is de-
fined as the set of functions P(2) givenas p(z)=1+Cz+¢C,2°>++++ which are regu-
lar in U and satisty:

i) (p(z),zp’(z))eQ

ii) Rey(p(z),zp'(z))>0 when zeU .Then Rep(z)>0 in U

More general concepts were discussed in [4]-[6].
Lemma 2 ([8]). Let n and u be complex constants and h(Z) a convex univalent
function in U satistying h(O) =1, and Re(nh(z)+ ,u). Suppose peP satisfies the

differential subordination:

2p'(2)

p(z)+———2—=<h(z), zeU. (6)
If the differential subordination:
29'(2)
g(z)+————=h(z), q(0)=L1 (7)

has univalent solution q(z) in U. Then p(Z)—<q(Z)—< h(Z) and q(z) is the best
dominant in (6).

The formal solution of (6) is given as

_F()
q(z)= F(2) (8)
where
'7_77+1Ll Z;l*l H
F(2) - JorH ()" dt
and

H(z)= zexp[]‘: h(tt)_ldtJ

see [9] [10].
Lemma 3 ([9]). Let n#0 and u be complex constants and h(Z) regular in U
with h’(O) #0, then the solution q(z) of (7) given by (8) is univalent in U if (i) Re

~ ) _G(2) e - Q(2) o
{G(Z)—?]h(z)+y}>0,(n) Q(Z)—ZWES (iii) R(Z)—WES .

3 Main Results

Theorem 1. Let A€(0,1] and h(z) a convex univalent function in U satistying

1-2 D% (2)

h(0)=1, and RE(T‘i‘h(Z)j, zeU . Let fEA; If D;Tf(z)—<h(z), then

D;"f(2)
D'jf—(z)_< h(z).

Proof From (4), we have
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n+2 Dn+lf 7z '
Ijll—]c(z):(l_g)+z,1<’ll—())_
DI*f (2) DI*f (2)
n+2 n+l
If we suppose D”Il—f(z)-< h(z), we need to show that M< h(z). Using
D f (z) D} f (2)
the above equation and (4) and Remark 4, it suffices to show that if
(D™ (2)) 2(D"f (2))
—( 41 ( )) <h(z), then —< Al )) <h(z).
D} f(2) D; f(z)
Now, let
oo z(Djf (z))
D; f (2)
Then

2(D}f (2)) +(DIf (2)) = p'(2) D} f (2)+(DIf (2)) .
By (2) and (3) we have

2(D}"(2))  azp!(2)+(1-4) p(2) + Ap(2)
D;*f(z2) (1-2)+2p(z)

)

Applying Lemma 2 with 7=1 and u= % , the proof is complete.[]
Theorem 2. Let A €(0,1/2] and h(z) a convex univalent function in U satistying

h(0)=1, and Re(¥+h(z)j>0,ZeU .Let feA.If feS], then

D;*f (2)
D} f(2)

<q(z)

where

is the best dominant.
Proof Let f e SZ”, then by Remark 4,

z(Dj”f (z)) 142
DI*f(z) 1-z

By (9), we have
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where

z(Df (2))
To show that M
D;f(z)

p(z)<a(2)
Now, considering the differential equation
a(2) 9'(z) 1+z

+ =
1-2 1-z
5 ta()

<q(z), by Remark 4, it suffices to show that

whose solution is obtained from (8). If we proof that q(z) is univalent in U, our re-

sult follows trivially from Lemma 2. Setting u = %, n and h (z) = 1+z in Lemma

1-z
3, we have
i) ReG(z)=Re(u+h(z))>0,
i) Q)= C) _p, 2

G(z2) (1+B2)(1-2)
where f=24-1, so that by logarithmic differentiation, we have
Q'(z) 1 L1

Q(z) 1-z 1+pz -
Re 2Q'(z2) y (1-22)(1+2) 0

Therefore, 2) 12 >
Q(2) ., z
iii) R(z)—G(Z)—Z/I (l+,BZ)2
so that
ReZR'(Z)>ﬂ=y>O
R(z) 1+p

Hence, q(z) is univalent in U since it satisfies all the conditions of Lemma 3. This
completes the proof.[]
Theorem 3. S]™ cS].

Proof Let f €S]™. By Remark 4

z(D;'“f (z))'

R
"D (2)

> 0.
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Zp’(z) . z Dif
From (9), let y(p(z),2p'(2))= p(z)+-—5——— with p(z)=———7=~ for
1-1 D; f(z)
- 4 p(z) A
A
1-4 . . . .
Q=|C- —7 xC . Conditions (i) and (ii) of Lemma 1 are clearly satisfied by v .
l—ﬂ
—V
. . v, .
Next, y/(uzl,vl):u2|+ﬁ. Then  Rey (U,i,v,) if
T+u2i ( ﬂj +u22
A

vlg—%(1+u§). Hence, Rep( )>0 Using Remark 4, Re D/1 Z)>1 A which

f(2)
complete the proof.[]

Corollary 1. A/l functions in S] are starlike univalent in U.
Proof. The proof follows directly from Theorem 3 and Remark 4.0
Corollary 2. The class S| “clone’ the analytic representation of convex functions.

Proof. The proof is obvious from the above corollary and Definition 4.
2 3 2 3

The functions f(z)=z+z—+z—+--- and g(z)=z- L
21 3! 2x2! 3x3!

+--+ are exam-

ples of functions in S'.

Theorem 4. The class S} is preserve under the Bernardi integral transformation:

CJrljt“f c>-1. (10)

Prooflet feS],thenbyRemark4 D}f(z)eS . From (10) we get
(c+1)f(z)=cF(z)+zF'(2). (11)
Applying D] on (10) and noting from Remark 1 that D] (ZF'(Z)) = Z(DEF (Z))I ,

we have

n

z(DQf (z))’ _ (c+1)z(D2F(z))' +22(D2F(z)) |
D} f(2) cDjF(z)+z(D;‘F(z)),

Z(DEF(Z)),

"

ZZ(DQF(Z))

Let = d noting that =zp’' 2 ,
et p(z) DIF (2) and noting tha DI T (2) zp'(2)+p(z) - p(z)
we get
(D f(z)) Cb(2)+ zp'(z)
D; f(z2) c+p(2)
Let w(p( ). zp’( )) p(z)+ '(2) for Q= [(C 1><(C Then i satisfies
c+p(2)
2(D"f (2)) 2(D"F (z))
all the conditions of Lemma 1 and so Re ( Al ) >0 = REM>O. By

D f (2) DIF(2)
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Remark4 F eS].0

Theorem 5. Let f €S . Then fhas integral representation:

f(z):|n{zexp(j (tt) 1 ]}
for some peP.

Proof Let f €S}.Then by Remark4, D]F(z)eS" andso forsome peP

z(Djf (z)),

orfz) P

But i[Iog le(z)j: p(z)—l’so that
dz z

z

DIf(z)= zexp(joz%dt}

Applying the operator in Definition 2, we have the result.l]

1 .
With p(z)=1+—z, we have the extremal function for this new subclass of S
A

which is

Theorem 6. Let f €S). Then

as— K k=2

(1+(k-1)2)'
The function f}'(z) given by (13) shows that the result is sharp.
Proof Let f €S}, then by Remark 4, D] f(z)eS". Since it is well known that for
any feS’,
Theorem 7. Let f €S]. Then

r(1-R7)<|f (z) <r(1+R])

and
1-rR] <|f'(z)| <1+ 1R},
where
o0 d 0 k2
I — RE= ——M
é[n k-1)2] e kZ=;[1+('<—1)/1]n

Proof Let f € A.Then by Theorem 6, we have

|f(2)] <[+ Z'akHZ |‘ r[“Zm]

OALIib Journal 7/8
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and

sk
k=2 |:1+(k —l)/l:|n

|f(z)|2|z|—é|ak||zk|:r 1-
for |Z| =r<1.
Also, upon differentiating f € A, we get
0 k2

=[1+(k-1)A]

[t'(z)| §1+ik|ak||z“| <l+r
k=2

and
o k2

o _1_°°k k15 - .
I£'(2))2 é |ak||Z |> rk:z[1+(k—1)’1]n

for |Z| =r <1, This complete the proof.[]
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