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Abstract 
In this paper an Enhanced Bean Optimization Algorithm (EBA) is used to solve optimal reactive 
power problem. Stimulated by the diffusion of beans in nature, a novel swarm intelligence algo-
rithm-Bean Optimization Algorithm (BOA) has been projected previously. In the domain of inces-
sant optimization problems solving, Bean Optimization Algorithm has exposed a first-class per-
formance. In this paper, an Enhanced Bean Optimization Algorithm is presented for solving op-
timal reactive power problem. In this algorithm two novel evolution methodologies named popu-
lation migration and deductive information cross-sharing are proposed to perk up the perfor-
mance of Bean Optimization Algorithm. The projected Enhanced Bean optimization algorithm 
(EBA) has been tested in standard IEEE 30 bus test system and simulation results show clearly the 
enhanced performance of the projected algorithm in tumbling the real power loss. 
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1. Introduction 
Different algorithms are utilized to solve the Reactive Power Dispatch problem. Different types of numerical 
techniques like the gradient method [1] [2], Newton method [3] and linear programming [4]-[7] have been al-
ready used to solve the optimal reactive power dispatch problem. The voltage stability problem plays an impor-
tant role in power system planning and operation [8]. Evolutionary algorithms such as genetic algorithm, Hybrid 
differential evolution algorithm, Biogeography Based algorithm, a fuzzy based approach, an improved evolutionary 
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programming [9]-[15] have been already utilized to solve the reactive power flow problem. In [16]-[18] different 
methodologies like interior point, upgraded approach are successfully handled the optimal power problem. In 
[19] [20], a programming based approach and probabilistic algorithm is used to solve the optimal reactive power 
dispatch problem. This paper proposes an Enhanced bean optimization algorithm (EBA) to solve reactive power 
dispatch problem. Inspired by the diffusion mode of seeds, a novel swarm intelligence optimization algorithm 
named Bean Optimization Algorithm (BOA) has been projected already to solve various problems. Bean Opti-
mization Algorithm is mixture of nature evolutionary approach and narrow arbitrary search. Bean Optimization 
Algorithm has steady robust behavior on explored tests and stands out as a promising alternative to existing op-
timization methods for engineering applications [21]-[24]. In this paper, an Enhanced Bean Optimization Algo-
rithm (EBA) is presented for solving optimal reactive power problem. Two novel evolution mechanisms named 
population migration and deductive information cross-sharing are proposed to perk up the performance of Bean 
Optimization Algorithm. The proposed EBA has been evaluated in standard IEEE 30 bus test system. The simu-
lation results show that the projected approach outperforms all the entitled reported algorithms in minimization 
of real power loss. 

2. Objective Function 
2.1. Active Power Loss 
Main aim of the reactive power dispatch problem is to reduce the active power loss in the transmission network, 
which can be described as: 

( )2 2 2 cosk i j i j ijk NbrF PL g V V VV θ
∈

= = + −∑                           (1) 

where gk: is the conductance of branch between nodes i and j, Nbr: is the total number of transmission lines in 
power systems. 

2.2. Voltage Profile Improvement 
For minimization of the voltage deviation in PQ buses, the objective function turns into: 

vF PL VDω= + ×                                       (2) 

where ωv: is a weighting factor of voltage deviation. 
VD is the voltage deviation given by: 

1 1Npq
iiVD V

=
= −∑                                       (3) 

2.3. Equality Constraint  
The equality constraint of the Reactive power problem is represented by the power balance equation, and can be 
written as, where the total power generation must cover the total power demand and total power loss: 

G D LP P P= +                                         (4) 

where, GP —Total Power Generation, DP —Total Power Demand, LP —Total Power Loss. 

2.4. Inequality Constraints  
Inequality constraints define the limitations in power system components and power system security. Upper and 
lower bounds on the active power of slack bus, and reactive power of generators are written as follows: 

min max
gslack gslack gslackP P P≤ ≤                                    (5) 

min max ,gi gi gi gQ Q Q i N≤ ≤ ∈                                  (6) 

Upper and lower bounds on the bus voltage magnitudes are described as follows:      
min max ,i i iV V V i N≤ ≤ ∈                                    (7) 
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Upper and lower bounds on the transformers tap ratios are given as follows: 
min max ,i i i TT T T i N≤ ≤ ∈                                  (8) 

Upper and lower bounds on the compensators reactive powers are written as follows: 
min max ,c c C CQ Q Q i N≤ ≤ ∈                                  (9) 

where N is the total number of buses, NT is the total number of Transformers; Nc is the total number of shunt 
reactive compensators. 

3. Bean Optimization Algorithm 
Stimulated by the diffusion mode of beans, Bean Optimization Algorithm (BOA) has been proposed previously 
to solve the various problems. In BOA, the position of an individual bean is articulated with real number vector 
and written as  

{ }1 2 3, , , , nY y y y y=                              (10) 

where n is determined by the scale of problem .Bean group is comprises of large number of beans. The size of 
the bean group can be attuned depending upon realistic problems. In adding to the above, beans are propagated 
to the region and the area is defined by the type of problem. Father beans are those beans whose fitness value is 
greater than others. In BOA, the number and distribution of offspring beans will be placed according to their fa-
ther bean’s fitness value. The fundamental equation of BOA is written as follows, 

[ ]
[ ] [ ]

( )
[ ]

, if is father Bean
Distribution ,

if is not father Bean
nb nb

Y i Y i
Y i Y Y D

Y i


= + ×



                       (11) 

In the above equation, [ ]Y i  is the position of bean i. nbY  is the position of the father bean. Distribution (𝑌𝑌) 
is an arbitrary variable with a definite distribution of father bean in order to get the positions of its offspring’s. 
Parameter D can be set according to the range of the problem to be resolved. In adding to that, the allocation of 
some beans does not follow the equation Reported above. They select arbitrary positions in order to emphasize 
the global optimization performance. When the offspring beans finished positioning, their fitness value has to be 
calculated. The beans with most optimal fitness value will be chosen as the candidates of father beans in the 
subsequent generation. The candidates of father beans should also gratify the condition that the distance between 
every two father beans should be greater than the distance threshold. This condition assures that the father beans 
can have a superior distribution to keep away from early convergence and augment the performance of the BOA. 
If all the conditions are satisfied, then the candidate can be set as the father bean for subsequent generation. 

4. Enhanced Bean Optimization Algorithm 
Bean Optimization Algorithm (BOA) utilizes population evolution mechanism for solving optimization prob-
lems. Since most of the population evolution methods are continuous, they are complicated to solve discrete op-
timization problems. In this paper an Enhanced Bean Optimization Algorithm (EBA) is utilized for solving 
Reactive Power Problem. 

The algorithm model can be described as follows, 
1) Individual beans 
The position vector of an individual bean is located as  

{ }1 2 3, , , , .nY y y y y=   

The above indicates that there is a route as  

( )1 2 andn i jy y y y y i j→ → ≠ ≠ . 
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2) Population progress 
In the procedure of population migration, minimum two populations should be initialized. The father bean in 

each population will be mixed up in cross-species process through the interaction between populations in order 
to endorse the affluence of populations. 

3) Cross-sharing of deductive information 
In order to keep the deductive information of the father beans, there are cross operations between the father 

beans and the individual beans to create new offspring’s. 
The explicit operation is shown as follows. 
1) Pick an arbitrary position in the vectors of a father bean f and an individual bean s separately as a cross-re- 

gion. 
2) Swap cross-region between f and s. Then remove the duplicate elements in f and s separately. Two new 

offspring individuals’ g and h will be produced. 
In EBA, the first step is population has to be initiated (let the size of population be n). According to the fitness 

values of individual beans, choose the father beans (let the number of father beans be three): R1, R2, R3. (n − 3)/3 
individuals will be displayed as sub-populations “1” according to the Euclidean distance between individual 
beans and R1. By using same method, sub-populations 2 and sub-population 3 will be produced. Then let R2 be 
the cross father bean of sub-population 3 and cross operations will be carried out between R2 and individual 
beans in sub-population 3. Choose the offspring with the most excellent fitness value to shift the previous indi-
vidual bean in sub-population 3. Let R3 be the cross father bean of sub-population 1 and cross operations will be 
carried out between R3 and individual beans in sub-population 1. Pick the offspring with the most excellent fit-
ness value to shift the former individual bean in sub-population 1. Let R1 be the cross father bean of sub-popu- 
lation 2 and cross operations will be carried out between R1 and individual beans in sub-population 2. Choose 
the offspring with the most excellent fitness value to relocate the previous individual bean in sub-population 2.  

Reiterate the above procedure until the termination condition is met. 
EBA for solving Optimal Reactive Power problem  
Set the number of iterations be S. 
Arbitrarily produce n initial beans. 
Compute the fitness value of the preliminary beans and Select S father beans. 
Create z sub-populations by using clustering algorithm. 
While (the number of iterations < S) 
For i = 1:S 
For j = 1:n 
Cross operations are carried out between Yj and R(i+1); 
The bean with the best fitness value is recorded as Yj1; 
Yi = Yj1; 
End 
Modernize the Father beans; 
End 
End 
Output the finest solution. 

5. Simulation Results  
Enhanced Bean Algorithm has been tested in IEEE 30-bus, 41 branch system. The system has 6 generator-bus 
voltage magnitudes, 4 transformer-tap settings, and 2 bus shunt reactive compensators. Bus 1 is considered as 
slack bus and 2, 5, 8, 11 and 13 are considered as PV generator buses and the other buses are taken as PQ load 
buses. Generators buses (PV) are 2, 5, 8, 11, 13 and slack bus is 1. Control variables limits are listed in Table 1. 
The power limits generators buses are displayed in Table 2. Table 3 shows the projected approach succeeded in 
keeping the control variables within limits. 

Table 4 narrates about the performance of the proposed EBA algorithm. Figure 1 explains about the conver-
gence characteristics of the proposed EBA where it took 25 iterations to converge. Figure 2 shows about the 
voltage deviations during the iterations in the low, medium and high level through EBA method. Table 5 sum-
marizes the results of the optimal solution obtained by various standard methods.  
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Table 1. BASIC variable limits (PU). 

List of Variables Min. Value Max. Value Category 

Generator Bus 0.90 1.08 Continuous 

Load Bus 0.90 1.01 Continuous 

Transformer-Tap 0.91 1.00 Discrete 

Shunt Reactive Compensator −0.10 0.30 Discrete 

 
Table 2. List of generators power limits. 

Bus Pg. Pgmin Pgmax Qgmin 

1 90.00 47 121 −20 

2 82.00 18 75 −20 

5 50.00 10 41 −11 

8 20.00 10 32 −13 

11 20.00 10 19 −10 

13 20.00 11 35 −13 

 
Table 3. Control variables values after optimization. 

Control Variables EBA 

V1 1.0612 

V2 1.0503 

V5 1.0312 

V8 1.0417 

V11 1.0814 

V13 1.0601 

T4, 12 0.00 

T6, 9 0.01 

T6, 10 0.90 

T28, 27 0.90 

Q10 0.11 

Q24 0.11 

Real power loss 4.2781 

Voltage deviation 0.9057 

 
Table 4. Performance of EBA algorithm. 

Iterations 25 

Time taken (secs) 4.32 

Real power loss 4.2781 
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Figure 1. Convergence characteristics. 

 

 
Figure 2. Voltage deviation (VD) characteristics. 

 
Table 5. Comparison of real power loss. 

Methods Real power loss (MW) 

SGA [25] 4.98 

PSO [26] 4.9262 

LP [27] 5.988 

EP [27] 4.963 

CGA [27] 4.980 

AGA [27] 4.926 

CLPSO [27] 4.7208 

HSA [28] 4.7624 

BB-BC [29] 4.690 

EBA 4.2781 

6. Conclusion 
In this paper, Enhanced Bean Optimization Algorithm (EBA) has been efficiently solved the Optimal Reactive 
Power Dispatch problem. The projected algorithm has been tested in standard IEEE 30 bus system. Simulation 
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study shows the robustness of projected Enhanced Bean Optimization Algorithm (EBA) method in providing 
improved optimal solution by decreasing the real power loss. The control variables values obtained after the op-
timization by Enhanced Bean Optimization Algorithm (EBA) are well within the limits. 
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