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Abstract 
We consider an inverse initial value problem of the biparabolic equation; this problem is ill-posed 
and the regularization methods are needed to stabilize the numerical computations. This paper 
firstly establishes a conditional stability of Holder type, then uses a modified regularization me-
thod to overcome its ill-posedness and gives the convergence estimate under an a-priori assump-
tion for the exact solution. Finally, a numerical example is presented to show that this method 
works well.  
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1. Introduction 
Let H be a complex separable Hilbert space endowed with the inner product ,⋅ ⋅  and the norm ⋅ , and 
( )L H  be the Banach algebra of bounded linear operators on H. Denote ( ):A D A H H⊂ →  as a positive and 

self-adjoint operator with compact resolvent; ( )1n nλ ≥  is the real eigenvalues of A; nX H∈  is the corres-
ponding orthonormal basis of eigenvectors, and nλ  satisfies 

1 2 30 and lim .nn
λ λ λ λ

→∞
< ≤ ≤ ≤ = ∞                         (1) 

This paper considers the inverse initial value problem for the biparabolic equation 
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( ) ( ) ( ) ( ) ( )

( ) ( )

2
2d 2 0, 0, ,

d
, 0 0,t

A u t u t Au t A u t t T
t

u T g u

  ′′ ′+ = + + = ∈ 
 
 = =

             (2) 

our purpose is to reconstruct the initial value ( ): 0f u=  from the final measured data gδ ; here δ  denotes the 
noisy level. 

In past years, many authors have considered the inverse initial value problem of classical parabolic equation 
tu a u= ∆  with 0a >  (see [1]-[4], etc.). However, it is well-known that the classical parabolic equation can not 

accurately describe the procedure of heat conduction [5] [6], so many models have been proposed to describe 
this procedure; among them the biparabolic model proposed in [7] can give a more adequate mathematical de-
scription for the process of heat conduction than the classical case. Meanwhile we note that, for the biparabolic 
model, up to now the literatures devoted to it are relatively scarce, except for [7]-[9]. On other models, we can 
see [10]-[13], etc. 

Problem (2) is ill-posed and the regularization techniques are required to stabilize numerical computations [14] 
[15]. In 2015, [9] considered this problem and proved a condition stability result of Hölder type, and then ap-
plied the Kozlov-Maz’ya iteration method to deal with it; the corresponding convergence results have been giv-
en, but unfortunately the condition stability result in [9] is not useful for the case of 0t = . In this paper, we 
firstly establish a conditional stability of Hölder type, which is valid at the point 0t = , then use a modified regu-
larization method to overcome its ill-posedness and give the convergence estimate under an a-priori assumption for 
the exact solution. On the similar references for this regularization method, we can refer to [16]-[18], etc. 

This paper is constructed as follows. In Section2, we establish the conditional stability of Hölder type for this 
problem, then use a modified regularization method to deal with it and derive the convergence estimate under an 
a-priori assumption for the exact solution in Section 3. Numerical results are given in Section 4. Some conclu-
sions are made in Section 5. 

2. The Ill-Posedness and Conditional Stability Estimate 
From [9], we know that the unique formal solution of problem (2) can be expressed as 

( ) ( )

1

1
e , , .

1
nT tn

n n n n
n n

t
u t g X g g X

T
λλ

λ

∞
−

=

 +
= = + 
∑                 (3) 

It can be noticed that, for [ )0,t T∈ , ( )1
e

1
nT tn

n

t
T

λλ
λ

− +
 + 

 tends to infinity as n →∞ , so in order to recovery  

the stability of solution ( )u t  given by (3), the coefficient ng  must decay rapidly. However, such a decay 
usually cannot occur for the measured data gδ , thus we have to use a regularization technique to restore nu-
merical stability. 

Note that, 

( )
1

e: 0 , , .
1

nT

n n n n
n n

f u g X g g X
T

λ

λ

∞

=

= = =
+∑                         (4) 

In general, under an additional a-priori bound assumption, a stability of the solution on the data can be ob-
tained, this is called the conditional stability. Let 0p > , 0E > , here we assume the exact solution ( ): 0f u=  
satisfy the a-priori condition 

22 2

1
e , , ,npT

n n n n
n

f E f f Xλλ
∞

=

≤ =∑                              (5) 

now we give a conditional stability estimate of Hölder type for ( ): 0f u= . 
Theorem 2.1. Let f given by (4) is the exact solution of problem (2) with the exact data g, assume the a priori 

bound (5) is satisfied, then we have the following stability result 
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( )
2

2 21, , ,
p

p pf C p T E gλ + +≤                            (6) 

where, ( )
( )

1
2

1 2
1 1

1, ,
1

p

pC p T
T

λ
λ λ

+ 
 =
 + 

. 

Proof. Using (4), Hölder inequality, (5), we have 
2 2 2

4 222
2 2

1 1 1

2
2 2 2 22 24 2

2 2

1 1

2
2 2 22
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e e e
1 1 1

e
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∞ ∞ ∞
+ +

= = =
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+

=

 
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

 

from the above estimate, the conditional stability result (6) can be established. 

3. Regularization Method and Convergence Estimate 
Let the exact and noisy data ,g g Hδ ∈  and satisfy 

,g gδ δ− ≤                                       (7) 

where ⋅  denotes the H-norm. Based on the ill-posedness analysis in Section 2, we define the following mod-
ified regularization solution 

( )
1

1 e: 0 , , .
1 1 e

n

n

T

n n n nT
n n n

f u g X g g X
T

λ
δ δ δ δ
α α λλ αλ

∞

=

= = =
+ +

∑                 (8) 

here, 0α >  plays a role of the regularization parameter. In the following, we give the convergence estimate 
under an a-priori assumption for the exact solution f. 

Theorem 3.1. Suppose that f given by (4) is the exact solution of problem (2) with the exact data g at 0t = , 
f δ
α  is the regularization solution defined by (8) with the measured data gδ . Let the measured data gδ  sa-

tisfy (7), and the a priori bound (5) is satisfied. If the regularization parameter is chosen as 
2

2
,

p

E
δα

+ =  
 

                                     (9) 

then we have the following convergence estimate 

( )
12 2

2 2 2ln .
p

p p pf f TE TE T Eδ
α δ δ

−
+ + +

  − ≤ +   
  

                  (10) 

Proof. For 0x > , we define the function 
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( ) 1 ,
e xTh x

xα −=
+

                                     (11) 

it is easy to verify that ( )h x  has a unique maximizer 0x  as Tα <  such that 

( ) ( ) ( )
( )( )0

ln
.

1 ln
T Th x h x h
T T
α

α α
 

≤ = = 
+ 

                     (12) 

Note that 

1 2: .f f f f f f I Iδ δ
α α α α− ≤ − + − = +                          (13) 

We firstly give a estimate for I1. By (4), (5), (7), (8), using (12) and the fact 
( )( )1 ln

T T
T αα α

≤
+

, we get 

( )

( )

( )( ) ( ) ( )
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1

=11

=1 =1
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∞ ∞
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Below, we estimate 2I . Using (4), (5), (8) with the exact data g, (12) and the inequality 

( )( ) ( )ln1 ln
T T

TT α αα α
≤

+
, one can obtain that 
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∑

∑

∑

 

From the above estimates of 1I , 2I , and combining with (9), the triangle inequality (13), we can obtain the 
convergence result (10). 

4. Numerical Implementations 
In this section, we use a numerical example to verify how this method works for the reconstruction of initial data 
f. Consider the following forward problem 

( ) ( ) ( )

( ) [ ]
( ) ( ) ( ) [ ]
( ) ( ) [ ]

22

2 , 0, 0, π , 0, ,

,0 0, 0, π ,

,0 sin sin 2 , 0, π ,

0, π, 0, 0, ,

t

u x t x t T
t x

u x x

u x x x x

u t u t t T

 ∂ ∂ − = ∈ ∈ ∂ ∂ 


= ∈
 = + ∈
 = = ∈

                  (14) 
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where ( )2 0, πH L= , 
2

2A
x
∂

= −
∂

 with the domain 2 1
0( ) = (0, ) (0, )D A H H Hπ π ⊂



, its eigenvalue and the 

eigenfunction are 2
n nλ = , ( )2 sin

πnX nx= , respectively. 

By the method of separation of variables, it is easy to obtain that the solution of problem (14) can be ex-
pressed as 

( ) ( ) ( )22

1
, 1 e sin ,tn

n
n

u x t c tn nx
∞

−

=

= +∑                          (15) 

where, ( ) ( )( ) ( )π

0

2 sin sin 2 sin d
πnc x x nx x= +∫ . We take the exact data as 

( ) ( ) ( ) ( )22

1
, 1 e sin ,

m
Tn

n
n

g x u x T c Tn nx−

=

= = +∑                 (16) 

the measured data is chosen as ( ) ( ) ( )( )rand sizeg x g x gδ ε= + , where ε  is the error level. 
In the computational procedure, the exact and regularization solutions are computed by (4), (8), respectively. 

The regularization parameter α  is chosen by (9) with 1, 1p E= = . For 0.001ε = , the numerical results for 
( ) ( ),0f x u x= , ( ) ( ),0f x u xδ δ

α α=  constructed from ( ),g u x Tδ δ=  with 0.5,1,2,2.5T =  are shown in 
Figure 1. For 0.0001,0.001,0.005,0.01ε = , the numerical results for ( )f x , ( )f xδ

α  constructed from 1T =  
are shown in Figure 2. 

From Figure 1 and Figure 2, we can see that this method is effective and feasible. Figure 1 indicates that, 
with the increase of T, the construction effects become worse, this is because the information of final value data 
will become less when T becomes big. Figure 2 shows that the smaller ε  is, the better the computed efficiency 
is, this is a normal phenomena in the inverse initial value problem of parabolic equation. 

5. Conclusion 
An inverse initial value problem of the biparabolic equation is investigated. We firstly establish a conditional 
stability of Hölder type for this problem, then use a modified regularization method to regularize it and derive  
 

 
Figure 1. 0.001ε = , ( ) ( ),f x f xδ

α  from different T  (dot: 0.5T = , star: 1T = , pentagram: 2T = , 

hexagram: 2.5T = ).                                                                          
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Figure 2. ( ) ( ),f x f xδ

α  from 1T =  under different ε  (dot: 0.0001ε = , star: 0.001ε =  pentagram: 

0.005ε = , hexagram: 0.01ε = ).                                                               
 
the convergence estimate under an a-priori assumption for the exact solution. Numerical results show that this 
method is stable and feasible. 
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