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Abstract 
The relationship between the optimal asset allocation and the functional form of power utility is 
investigated for defined-contribution (DC) pension plans. The horizon dependence of optimal 
pension portfolios is determined by the argument of the power utility function. The optimal com- 
position of pension portfolios is horizon independent when terminal utility is a power function of 
wealth-to-wage ratio, and deterministically horizon dependent when terminal utility is a function 
of terminal wealth or replacement ratio (the pension-to-final wage ratio). The optimal portfolios 
all contain a speculative component to satisfy the risk appetite of DC plan members, which is do- 
minated by bonds under usual market assumptions. The optimal compositions of financial wealth 
on hand (the sum of pension portfolio and the short-sold wage replicating portfolio) are stochas- 
tically horizon dependent when wages are fully hedgeable and stochastic. The optimal pension 
portfolios also have a preference free component to hedge wage risk, when terminal utility is a 
function of wealth-to-wage ratio or replacement ratio. A state variable dependent component in 
optimal pension portfolios exists when terminal utility is a function of terminal wealth or replace- 
ment ratio, but it disappears when terminal utility is a function of terminal wealth-to-wage ratio 
and the risk premium is constant. 
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1. Introduction 
The optimal asset allocation problem for defined-contribution (DC) pension plans can be viewed as a special 
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form of consumption and portfolio problem. Most studies on the consumption and portfolio allocation strategies 
over multiple periods are built upon the classical dynamic optimization model by Merton [1], which assumes a 
constant interest rate and constant risk premium without wage income. Since empirical studies show that sto- 
chastic variations in interest rates and in risk premiums exist, it may not be appropriate to assume a constant in- 
terest rate for portfolios with a long horizon such as pension funds. Later studies extend Merton’s work with 
stochastic interest rates [2]-[4] or stochastic risk premiums [5]. Since contribution from wage income is also 
important for pension wealth growth, studies on DC plan strategies generally assume stochastic interest rates 
and deterministic or stochastic wages [6]-[10]. 

With stochastic interest rates, the financial market is usually assumed to have three types of asset: cash, bonds 
and equities (stocks). Boulier et al. [7], Deelstra et al. [8] and Battocchio and Menoncin [9] use these three as- 
sets in their studies on optimal asset allocation strategies for DC pension plans. In those studies, the stock price 
follows a geometric Brownian motion which includes volatilities from risk sources of both the interest rate and 
the stock market. Although stochastic interest rates make bonds distinct from cash and equities, in some studies 
bonds are not explicitly differentiated from other risky assets. Vigna and Haberman [6] assume two assets: one 
low risk asset and one high risk asset. Cairns et al. [10] use one risk-free asset and N risky assets, and the return 
on each risky asset follows a geometric Brownian motion with volatilities of N risk sources.  

One important difference between pension fund asset allocation problem and Merton’s consumption and 
portfolio problem is that, the objective of pension plans is to maximize the terminal utility and there is no con- 
sumption or consumption-derived utility before retirement. The optimal allocation strategy for a DC pension 
plan depends critically on the specifications of terminal utility function. Boulier et al. [7] and Deelstra et al. [8] 
assume that terminal utility is a power function of cash lump sum over a guaranteed minimum benefit; Battoc- 
chio and Menoncin [9] assume an exponential function of real wealth (wealth-to-price index ratio). To relate 
terminal utility with the existing standard of living, Cairns et al. [10] assume that terminal utility is a function of 
wealth-to-wage ratio or replacement ratio (pension-to-final wage ratio). The use of replacement ratio is more 
appropriate for an individual who intends to convert her pension wealth into a life annuity on retirement, which 
suggests that she is more risk averse and perceiving life annuities as good value.  

Using one risk-free asset and N risky assets and assuming that terminal utility is a power function of terminal 
wealth-to-wage ratio or replacement ratio, Cairns et al. [10] find that optimal asset allocation in risky assets 
needs three efficient mutual funds if the terminal utility is a function of replacement ratio. One mutual fund 
(which is heavily dominated by equities) is to satisfy the risk appetite of the plan member. The second fund 
(which is heavily dominated by cash) is to hedge the wage risk. The third fund (which is heavily dominated by 
bonds) is to hedge interest rate risk. Cairns et al. [10] call the three funds “equity”, “cash” and “bond” funds re- 
spectively. If the terminal utility is a function of wealth-to-wage ratio, the optimal asset allocation needs only the 
“equity” fund and the “cash” fund.  

Although Cairns et al. [10] indicated that the “equity”, “cash” and “bond” funds are heavily dominated by equi- 
ties, cash and bonds respectively; they did not provide a measure on how to gauge the dominance. Is it possible 
that the “equity” fund is dominated by bonds in some scenarios? The present paper tries to answer this question 
and extends the study of Cairns et al. [10] by investigating the composition of those mutual funds. For simplicity, 
I assume that the pension plan can invest in three assets, cash, bond and stock [7]-[9], and investigate three dif- 
ferent scenarios: the terminal utility is a function of terminal wealth, a function of terminal wealth-to-wage ratio 
or a function of replacement ratio. The assumption of wealth-to-wage ratio or wealth as the argument of terminal 
utility function is more appropriate for individuals who are reluctant to annuitize their pension wealth on retirement.  

This paper is organized as follows. Section 2 formulates the financial market, wage and pension wealth 
growth models. Section 3 presents the optimization problem and the Hamilton-Jacobi-Bellman equation. Section 
4 solves the optimal asset allocation problem for power utility when pension contribution has stopped or wage 
risk is fully hedgeable. Section 5 discusses and summarizes the results in this paper. 

2. The Model 
2.1. Market Structure 
The specifications of the financial market are similar to those in Boulier et al. [7], Deelstra et al. [8] and Bat- 
tocchio and Menoncin [9]. The financial market is frictionless and continuously open, with no arbitrage. There 
are three types of asset in the financial market: cash, bonds and equities. For simplicity, I assume only one equi- 
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ty asset, a stock, available, which can be considered as the index of a stock market. The uncertainty in the finan- 
cial market is described by two standard and independent Brownian motions Zr(t) and ZS(t) with [ ]0,t T∈ , de- 
fined on a complete probability space (Ω, F, P) where P is the real world probability. The filtration F = F(t) 

[ ]0,t T∀ ∈  generated by the Brownian motions can be interpreted as the information set available to the inves- 
tor at time t.  

The instantaneous risk-free rate of interest r(t) follows an Ornstein-Uhlenbeck process (Vasicek model)  

( ) ( )( ) ( ) ( ) 0d d d , 0 .r rr t r t t Z t r rα β σ= − + =                         (1) 

In Equation (1), α and β are strictly positive constants, and σr is the volatility of interest rate. The stochastic 
element Zr(t) causes the process to fluctuate in an erratic, but continuous fashion [11]. 

When the interest rate process is described by Equation (1), the price of zero-coupon bonds for any date of 
maturity τ at time t, B(t, τ, r), is governed by the diffusion equation [7] [8] [11]  

( )
( ) ( ) ( )( ) ( ) ( ) ( )

d , ,
, d , d , , 1,

, , r r r

B t r
r t b t t b t Z t B

B t r
τ

τ σ ξ τ σ τ τ
τ

= + − =  

where ξ is the market price of interest rate risk assumed to be constant, and 

( )
( )1 e,

t

b t
α τ

τ
α

− −−
= . 

The riskless asset has a price process governed by 

( ) ( ) ( ) ( ) 0d d , 0 .R t R t r t t R R= =                             (2) 

The riskless asset can be considered as a cash fund paying the instantaneous interest rate r(t) without any de- 
fault risk. The value of the cash fund at t is then 

( ) ( ) ( ) 

 0
0 exp d

t
R t R r s s =   ∫ .                            (3) 

There are zero-coupon bonds for any date of maturity, and a bond rolling over zero coupon bonds with con- 
stant maturity K. The price of the zero coupon bond with constant maturity K is denoted by BK(t, r) with 

( )
( ) ( ) ( )

d ,
d d

,
K

K r K r r
K

B t r
r t b t b Z t

B t r
σ ξ σ= + −   ,                        (4) 

where  

1 e K

Kb
α

α

−−
= . 

The relationship between B(t, τ, r) and BK(t, r) through the riskless cash asset R(t) [7] is  

( )
( )

( ) ( )
( )

( ) ( )
( )

d , , , d , d ,
1

, , ,
K

K K K

B t r b t R t b t B t r
B t r b R t b B t r

τ τ τ
τ

 
= − + 
 

. 

The above equation shows that the “rolling bond” can be obtained by a portfolio of one zero coupon bond and 
the cash asset, and that other bonds can also be obtained through a portfolio of the riskless asset and the “rolling 
bond”. 

The stock has a process of the total return governed by stochastic differential equation (SDE)  

( ) ( ) ( ) ( ) ( ) ( ) 0d , d d d , 0 ,S rS r r S SS t S t r t t v Z t Z t S Sµ σ σ= + + =                  (5) 

where 

( ) ( ),S Sr t r t mµ = +                                    (6) 

is the instantaneous percentage change in stock price per unit time. The volatility scaling factor vrS measures 
how interest rate volatility affects stock volatility and mS is the risk premium, which is assumed to be constant.  
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2.2. Wages 
The plan member’s wage, Y(t), evolves according to the SDE 

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) 0d d d d d , 0 ,Y rY r r SY S S Y YY t Y t t r t t v Z t v Z t Z t Y Yµ σ σ σ = + + + + =           (7) 

where μY(t) is a deterministic function of time, age and other individual characteristics such as education and 
occupation. These assumptions on wage processes are similar to those by Battocchio and Menoncin [9] and 
Cairns et al. [10]. Here σY is a constant and ZY(t) a standard Brownian motion, independent of Zr(t) and ZS(t). 
The volatility scaling factors, vrY and vSY, measure how interest rate volatility and stock volatility affect wage vo- 
latility, respectively. The parameter σY is a non-hedgeable volatility whose risk source does not belong to the set 
of the financial market risk sources. When σY = 0, the market is complete. Otherwise the market is incomplete. 

3. The Optimization Problem and Hamilton-Jacobi-Bellman Equation 
3.1. Terminal Utility Is a Function of Terminal Wealth 
The value of the plan member’s pension wealth at time t is denoted by W(t), and the proportions of fund wealth 
invested in the riskless asset, bonds and stock are denoted as θR(t), θB(t) and θS(t) respectively, 

( ) ( ) ( ) 1R B St t tθ θ θ+ + = ,                                  (8) 

The SDE governing the pension wealth process is 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ){ }
( )( ) ( )

( ) ( ) ( ) ( )1 1 1

d d dd 1 d

1 d

d d

d d .

B S B S

B S B K r S S

B K S rS r r S S S

R B SW t W t Y t t
R B S

W t r r b Y t t

W t b v Z W t Z

M r W t Y t t  W t Z

θ θ θ θ π

θ θ θ σ ξ θ µ π

θ θ σ θ σ

θ π θ

 = − − + + +  

 = − − + + + + 
+ − + +

′ ′= + + + Γ  

                (9) 

where π is the proportion of wage contributed to the pension plan and Y(t) is the wage income at period t, 

[ ] [ ] [ ]1 1 1

0
, , , .k r

B S K r S r S
rS r S

b
M B m Z Z Z

v
σ

θ θ θ σ ξ
σ σ

− ′′ ′ ′≡ ≡ Γ ≡ ≡ 
 

        (10) 

The stochastic optimal control problem can be written as follows: 

( )( )max ,E U W T T
θ

   , 

subject to 

( )
( ) ( )

1
1

1 1

0 0

d d d ,

0 , 0 , 0 ,

ww
t Z

M r W Y WW

w w W W t T

µ
θ π θ

′Ω    
= +     ′ ′ ′+ + Γ    
= = ∀ ≤ ≤

                    (11) 

where 

[ ]w r Y ′≡ , ( ) ( )w Yr Y rµ α β µ ′≡ − +   , 1

0r

rY r SY SYv Yv
σ
σ σ

 
′Ω ≡  

 
 

The solution to this problem should give us the optimal portfolio composition. The Hamiltonian correspond- 
ing to the optimization problem (11) is 

( ) ( )
2 2 2

2
1 1 1 1 1 1 12 2

1 1 .
2 2t w

J J J J JH J J M r W Y tr W W
w W w Ww W

µ θ π θ θ θ
 ∂ ∂ ∂ ∂ ∂′ ′ ′ ′ ′ ′ ′= + + + + + Ω Ω + Γ Ω + Γ Γ    ∂ ∂ ∂ ∂∂ ∂ 

 (12) 

In the above equation ( ), ,J t W w  is the value function (maximum expected terminal utility) and subscripts 
on J indicate partial derivatives. Differentiating Equation (12) with respect to θ gives the first-order condition 
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2 2
2

1 1 1 1 1 2 0H J J JM W W W
W w W W

θ
θ

∂ ∂ ∂ ∂′ ′= + Γ Ω +Γ Γ =
∂ ∂ ∂ ∂ ∂

,                 (13) 

where 
H
θ

∂
∂

 is a vector. The optimal portfolio composition is 

( ) ( )1 1*
1 1 1 1 1 1 1

W wW

WW WW

J J
M

WJ WJ
θ − −′ ′ ′= − Γ Γ − Γ Γ Γ Ω .                      (14) 

Here ( ) ( )* **
B St tθ θ θ ′ =   , the optimal proportions invested in bonds and stock respectively. The two  

terms on the right hand side of Equation (14) can be designated as 1θ
∗  and 2θ

∗  respectively, which are them- 
selves vectors with two elements corresponding to certain proportions of investment in bonds and stock. We can 
summarize the above results as 

Proposition 1: If the terminal utility is a power function of terminal wealth, the optimal composition in risky  

assets has two components, the speculative component ( ) 1
1 1 1

W

WW

J
M

WJ
−′− Γ Γ  (fund 1) to satisfy the risk appetite  

of the plan members and the component ( ) 1
1 1 1 1

wW

WW

J
WJ

−′ ′− Γ Γ Γ Ω  (fund 2) to hedge financial market risk. 

3.2. Terminal Utility Is a Function of Terminal Wealth-to-Wage Ratio 

Applying Itô’s lemma, we get the SDE governing the wealth-to-wage ratio ( ) ( ) ( )X t W t Y t= , 

( ) ( ) ( )2
2 3 2

1 1d d d d d dW WX t W Y Y W Y
Y Y Y Y

= − + − .                       (15) 

By substituting the value of W, Y, dW and dY, the SDE governing this pension wealth-to-wage ratio process 
is: 

( ) ( ) ( )d d dX t M u X t X Zθ π θ′ ′ ′ ′= + + + Γ + Λ   ,                        (16) 

where, 

[ ]

[ ]

2
2 2 2 2 2

2 2

2

2

, ,

0 0
, ,

0

.

K r K rY r
Y rY r SY S Y

S rY rS r SY S

K r
rY r SY S Y

rS r S

r S Y

b b v
M u v v

m v v v

b
v v

v

Z Z Z Z

σ ξ σ
µ σ σ σ

σ σ

σ
σ σ σ

σ σ

 +
≡ ≡ − + + + 

− − 
− 

′ ′Γ ≡ Λ ≡ − − − 
 

′≡

                (17) 

The optimal asset allocation problem is to find the strategy θ that maximizes the expected terminal utility of a 
plan member, 

( )( )max ,E U X T T
θ

   , 

subject to 

( ) ( )d d dww
t Z

M u X XX
µ

θ π θ
′Ω    

= +     ′ ′ ′+ + Γ + Λ     
                       (18) 

where,  

0 0r

rY r SY S YYv Yv Y
σ
σ σ σ

 
′Ω ≡  

 
.                               (19) 

The Hamiltonian corresponding to the optimization problem (18) is 
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( ) ( )

( ) ( )

2

2

2 2
2

2

1
2

1 2 .
2

t w
J J JH J J M u x tr
w X w

J Jx x
w X X

µ θ π

θ θ θ θ

 ∂ ∂ ∂′ ′ ′= + + + + + Ω Ω    ∂ ∂ ∂ 
∂ ∂′ ′ ′ ′ ′ ′ ′ ′+ Γ + Λ Ω + Γ Γ + Γ Λ + Λ Λ
∂ ∂ ∂

             (20) 

Differentiating Equation (20) with respect to θ gives the first-order condition 

( )
2 2

2
2 0H J J JMx x x

X w X X
θ

θ
∂ ∂ ∂ ∂′ ′ ′= + Γ Ω + Γ Γ +Γ Λ =
∂ ∂ ∂ ∂ ∂

,                   (21) 

The optimal portfolio composition is 

( ) ( ) ( )1 1 1* wXX

XX XX

JJM
xJ xJ

θ − − −′ ′ ′ ′ ′= − Γ Γ Γ Λ − Γ Γ − Γ Γ Γ Ω .                   (22) 

The three terms on the right hand side of Equation (22) can be designated as 0θ
∗ , 1θ

∗  and 2θ
∗  respectively, 

and the additional term 0θ
∗  compared with Equation (14) is a preference-free hedging component to hedge 

wage risk. The three terms on the right-hand-side of Equation (22) correspond to the optimal asset allocation 
strategy with three mutual funds labeled as “cash”, “bond” and “equity” in Cairns et al. [10].  

3.3. Terminal Utility Is a Function of Replacement Ratio 

Applying Ito’s formula to current replacement ratio ( ) ( )
( )

( )
( )( ),

P t X t
G t

Y t a t r t
= =  where P(t) is the pension in-  

come if annuitizing the pension wealth now and ( )( ),a t r t  the annuity rate, gives the SDE governing the re- 
placement ratio 

( ) ( ) ( )
( )

( )
( )

( )
( )2

2 3 2

1 1d d d , d , d d ,
, , , ,

X XG t X a t r a t r X a t r
a t r a t r a t r a t r

= − + −       .           (23) 

The process governing ( )( ),a t r t  uses the expression by Cairns et al. [10],  

( ) ( ) ( ) ( ) ( ) ( )21d , , d d  
2 a r a a r ra t r a t r c r d r r t d r Zσ α β σ  = − − −    

                (24) 

In the above equation, ( )ad r  is the duration of the annuity function, ( )ac r  is its convexity 

( ) ( )
( ),1

,a

a t r
d r

a t r r
∂

= −
∂

, ( ) ( )
( )2

2

,1
,a

a t r
c r

a t r r
∂

=
∂

.                       (25) 

By substituting W, dW, X, ( )( ),a t r t , dX and ( )d ,a t r , the SDE governing the replacement ratio process is: 

( ) ( )2 2 2d d dG t M G u G t G Z
a
πθ θ ′ ′ ′ ′= + + + Γ + Λ 

 
,                       (26) 

where 

( )
( )

( )

( ) [ ]

2

2 2 2

2 2 2 2 2
2

2

,

1 ,
2

0 0
, , .

0

K r rY a K r

S rY a rS r SY S

Y rY a rY a a r SY S Y a

K r
a rY r SY S Y r S Y

rS r S

b v d b
M

m v d v v

u v d v c d v d r

b
d v v Z Z Z Z

v

σ ξ σ
σ σ

µ σ σ σ α β

σ
σ σ σ

σ σ

 + −
=  

− − −  
 = − + − − + + + + − 
 

−  ′ ′′  Γ = Λ = − − − =   
 

   (27) 

The stochastic optimal control problem is  
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( )( )max ,E U G T T
θ

   , 

subject to 

( ) ( )22 2

d d d
ww

t Z
GG M u G

a

µ
π θθ

  ′Ω    = +      ′ ′Γ + Λ′ + +     

.                    (28) 

The Hamiltonian is similar to the wealth-to-wage ratio case and the optimal portfolio composition is  

( ) ( ) ( )1 1 1*
2 2

G wG

GG GG

J J
M

GJ GJ
θ − − −′ ′ ′ ′ ′= − Γ Γ Γ Λ − Γ Γ − Γ Γ Γ Ω .                 (29) 

We can summarize the results in subsections 3.2 and 3.3 as 
Proposition 2: If the terminal utility is a power function of wealth-to-wage ratio or replacement ratio, the op- 

timal portfolio for DC pension plans in risky assets consists of three funds: 1) a preference-free hedging com- 
ponent to hedge wage risk, 2) a speculative component to satisfy the risk appetite of the plan members, and 3) a 
state variable dependent hedging component to cover the plan member from financial market risk. 

4. Optimal Asset Allocation Strategy for Power Terminal Utility 
Since when there is non-hedgeable wage risk, the optimal portfolio problem for power utility has no analytical 
solution, the present study will only look at the scenario where wages can be fully hedged. When wage income  
is fully hedgeable ( )0Yσ = , let Q be the risk-neutral pricing measure and ( )rZ t  and ( )SZ t  independent  
standard Q-Brownian motions [10], the wage process under Q is 

( ) ( ) ( ) ( )( ) ( ) ( )d d d dY r rY r S SY S rY r r SY S SY t Y t t r t v v t v Z t v Z tµ ξ σ ξ σ σ σ = + − − + + 
  ,           (30) 

which implies that  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) }

2 2 2 21 1exp d
2 2

.

Y r rY r S SY S rY r SY St

rY r r r SY S S S

Y Y t s r s s v v v v t

v Z Z t v Z Z t

τ
τ µ ξ σ ξ σ σ σ τ

σ τ σ τ

  = + − + + + −      

   + − + −   

∫
   

         (31) 

Here ξr is a measure of how interest/bond volatility will affect wage, and ξS is a scale factor measuring how 
stock price volatility affects wages. The market value at time t for future contributions to the pension plan paya- 
ble between t and T is then 

( ){ } ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) }
( ) ( ) ( )( ){ }
( ) ( )

2 2 2 2

exp d d

1 1exp d
2 2

d

exp d d

.

T
Q tt t

T
Q Y r rY r S SY S rY r SY St t

rY r r r SY S S S t

T
Y r rY r S SY St t

E r s s Y F

E Y t s s v v v v t

v Z Z t v Z Z t F

Y t s s v v t

Y t f t

τ

τ

τ

π τ τ

π µ ξ σ ξ σ σ σ τ

σ τ σ τ τ

π µ ξ σ ξ σ τ τ

π

 −  
   = − + + + −  

 
   + − + −    

= − + −

=

∫ ∫

∫ ∫

∫ ∫

               (32) 

The pension plan can have an additional wealth of ( ) ( )Y t f tπ  by short-selling a replicating portfolio of  

value ( ) ( )Y t f tπ− , which will be paid off exactly by future contributions from wage incomes. The total  

pension wealth enhanced with the present market value of future contributions is ( ) ( ) ( )W t Y t f tπ+ , the op- 
timal composition of pension portfolio and their matrix representation are the same as in the case of no wage  
income contribution. The optimal strategy is to hold ( ) ( )Y t f tπ−  in the replicating portfolio and invest the  

augmented pension wealth ( ) ( ) ( ) ( )W t W t Y t f tπ= +  in the optimal composition of pension wealth. The  
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composition of the replicating portfolio can be written in vector form 

1

rS SY rY
R

KB
R R

S SY
R
R rS SY rY

SY
K

v v v
b
v
v v v

v
b

θ
θ θ

θ

− 
       = =     −   − −
  

.                              (33) 

In the above equation, the superscript R indicates replicating portfolio. 

4.1. Terminal Utility Is a Power Function of Terminal Wealth 
Since future contributions have been added to enhance the current pension wealth, the Hamiltonian Equation (12) 
becomes 

( ) ( )
2

1 1 1 2

2 2
2

1 1 1 1 2

1
2

1 .
2

t w
J J JH J J M r W tr
w W w

J JW W
w W W

µ θ

θ θ θ

 ∂ ∂ ∂′ ′ ′= + + + + Ω Ω ∂ ∂ ∂ 
∂ ∂′ ′ ′ ′+ Γ Ω + Γ Γ
∂ ∂ ∂

                 (34) 

I start with a trial solution by assuming that the value function has the form 

( ) ( ) ( )11, , , , , 1   .
1

J t W w g t w W g T w wγ γ

γ
−= = ∀

−
                        (35) 

Substituting the partial derivatives of the value function and the optimal proportion composition of pension 
fund investment θ*, Equation (14), and simplifying (see Appendix A for detailed derivation), the Equation (12) 
becomes 

( ) ( )
( )

( )1 1
1 1 1 1 1 1 1 1 1 1 12

1 1 1 1 0.
2 2

t w w wwg M g tr g M M r gγ γ γµ
γ γγ

− −  − − −′ ′ ′ ′ ′ ′ ′+ + Γ Γ Γ Ω + Ω Ω − Γ Γ − =  
−    

  (36) 

By the Feynman-Kac formula [12] [13], there exists a probability measure Q(γ) such that 

( )( ) ( ) ( )( ) ( ), , , tQg t w t E g T w T D t T Fγ  =   ,                      (37) 

where ( )w s  is governed by the SDE 

( ) ( )( ) ( )( )d d , dww s w s s w s s Zµ ′= +Ω    , ( )( ) ( ) 1
1 1 1 1

1
w ww s Mγµ µ

γ
−− ′ ′ ′= + Γ Γ Γ Ω  , ( ) ( )w t w t= , 

and 

( ) ( )
 

, exp d
T

t
D t T s sϕ =   ∫ , 

where 

( )
( )

( ) 1
1 1 1 12

1 1
2

s M M rγ γϕ
γγ

− − −′ ′= − Γ Γ − 
−  

. 

In Equation (37), Ft is the filtration, which can be interpreted as the information available to the investor at 
time t. The optimal composition is 

( ) ( ) ( )1 1*
1 1 1 1 1 1 1

1 d
T

tt
t

M E s s
w

θ ϕ
γ

− − ∂′ ′ ′= Γ Γ + Γ Γ Γ Ω   ∂∫ , 

Since ( ) 1
1 1M M−′ ′Γ Γ  in ( )sϕ  does not contain state variables, its derivatives with respect to state variable  
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are zero,  

( ) ( ) [ ]1 1*
1 1 1 1 1 1 1

1 1 d
T

tt
t

M E r s
w

γθ
γ γ

− −− ∂′ ′ ′= Γ Γ + Γ Γ Γ Ω
∂∫ .                    (38) 

The first term of the optimal composition in the above equation is 

( ) ( )
2 2 2

1
1 1 1 1 2 2

1 1 .rS r S rS S r

K r S K rS r S r

v v m
M

b b v m

σ ξ σ ξ σ
θ

γ γ σ σ σ ξ σ
−∗

 + +
′  = Γ Γ =

+  
 

The second term (see Appendix B for detailed derivation) 

( ) [ ]
( )

1
2 1 1 1  

1 1 e 1d .
0

t T
T

tt
t K

E r s
w b

αγ γθ
γ αγ

−
−∗  − ∂ − −′ ′= Γ Γ Γ Ω =  

∂  
∫  

This state variable dependent hedging component contains only bonds and it is horizon-dependent. The op- 
timal proportions of pension wealth invested in bonds and equities are 

( )
( )2 2 2 2

2 2

1 1 e 1 .
0

t T
rS r S rS S rB

KK r SS K rS r S r

v v m

bb b v m

ασ ξ σ ξ σθ γ
αγγ σ σθ σ ξ σ

∗ −

∗

 + +    − − = +   
+     

                (39) 

When the terminal utility is a function of terminal wealth, the optimal composition of financial wealth is  

( ) ( )
( )

( ) ( )
( )

( ) ( )
( )

( )

( ) ( )
( )

2 2 2 2

2

2

1

1 e 11
0

F R
B B B
F R
S S S

rS r S rS S r
t T

K r S

KrS r S

S

rS SY rY

K

SY

Y t f t Y t f t
W t W t

v v m
Y t f t b

W t bv m

v v v
Y t f t

b
W t

v

α

π πθ θ θ
θ θ θ

σ ξ σ ξ σ
π γ σ σ γ

αγσ ξ
γσ

π

∗

∗

−

      
= + −             

  + +
     − −  = + +       +         

−
− 


.




 

           (40) 

In the above equations, F
Bθ  and F

Sθ  are the optimal proportions of financial wealth invested in bonds and 
stocks respectively, and R

Bθ  and R
Sθ  are proportions of the replicating portfolio short-sold in bonds and stocks 

respectively. The optimal proportion of the financial wealth invested in risk-free assets is 

( ) ( ) ( )1F F F
R B St t tθ θ θ= − − . 

4.2. Terminal Utility Is a Power Function of Wealth-to-Wage Ratio 
When the terminal utility is a power function of wealth-to-wage ratio, Equation (20) becomes 

( ) ( )

( ) ( )

2

2

2 2
2

2

1
2

1 2 .
2

t w
J J JH J J M u x tr
w X w

J Jx x
w X X

µ θ

θ θ θ θ

 ∂ ∂ ∂′ ′ ′= + + + + Ω Ω ∂ ∂ ∂ 
∂ ∂′ ′ ′ ′ ′ ′ ′ ′+ Γ + Λ Ω + Γ Γ + Γ Λ + Λ Λ
∂ ∂ ∂

                (41) 

Substituting the partial derivatives of the value function ( ) ( ) 11, , ,
1

J t x w g t w xγ γ

γ
−=

−
 and the optimal pro- 

portion composition of pension fund investment θ*, Equation (22), and simplifying (see Appendix A for detailed 
derivation), we get 
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( ) ( )

( )
( ) ( )

1

1 1
2

1 1
2

1 1 1 0.
2

t w w wwg M g tr g

M M M u g

γµ
γ

γ γ γ
γ γγ

−

− −

 −′ ′ ′ ′ ′+ + Γ Γ Γ Ω + Ω Ω 
 

 − − −′ ′ ′ ′ ′− Γ Γ + Γ Γ Γ Λ − = 
−  

                (42) 

Using Feynman-Kac formula, the optimal portfolio composition is 

( ) ( ) ( ) ( ) 1 1 1*
 

1 d
T

tt
t

M E s s
w

θ ϕ
γ

− − − ∂′ ′ ′ ′ ′= − Γ Γ Γ Λ − Γ Γ + Γ Γ Γ Ω   − ∂∫ ,               (43) 

where 

( )
( )

( ) ( )1 1
2

1 1 1
2

s M M M uγ γ γϕ
γ γγ

− − − − −′ ′ ′ ′ ′= − Γ Γ + Γ Γ Γ Λ − 
−  

. 

Since all the terms in the function φ(s) do not depend on the state variables r and Y, its derivatives with re- 
spect to wt are zero and the above equation becomes 

( ) ( )1 1* 1Mθ
γ

− −′ ′ ′= − Γ Γ Γ Λ + Γ Γ .                           (44) 

The first term in the above equation is 

( )
2 2 2 2

1
0 2 2 2 2 2 2

1 1 rS SY rYK rY r S K rS SY r S

K SYKK r S K SY r S

v v vb v b v v
b vbb b v

σ σ σ σ
θ

σ σ σ σ
−∗ − −  −′ ′= − Γ Γ Γ Λ = =   −   

; 

The second term is 

( ) ( )
2 2 2 2 2

1
1 2 2 2

1 1 .rS r S rY r S rS S r rS SY r S

K r S K rS r S r SY r S

v v v m v v
M

b b v m v

σ ξ σ ξ σ σ σ σ σ
θ

γ γ σ σ σ ξ σ σ σ
−∗

 + + + −
′  = Γ Γ =

+ −  
 

The optimal proportions of pension wealth invested in bonds and equities are 

( )
2 2 2 2 2

2 2 2

1 1 .rS r S rY r S rS S r rS SY r SrS SY rYB

K SYK K r SS K rS r S r SY r S

v v v m v vv v v
b vb b b v m v

σ ξ σ ξ σ σ σ σ σθ
γ σ σθ σ ξ σ σ σ

∗

∗

 + + + −−   
 = +    + −     

      (45) 

The optimal proportion of pension wealth invested in risk-free assets is 

1R B Sθ θ θ∗ ∗ ∗= − − . 

The optimal composition of financial wealth is  

( ) ( )
( )

( ) ( )
( )

( ) ( )
( )

2 2 2 2 2

2

2

2

1

1

F R
B B B
F R
S S S

rS r S rY r S rS S r rS SY r S
rS SY rY

K r S
K

rS r S SY S
SY

S

Y t f t Y t f t
W t W t

v v v m v v
v v v

bY t f t
b

W t v m vv

π πθ θ θ
θ θ θ

σ ξ σ ξ σ σ σ σ σ
γ σ σπ

σ ξ σ
γσ

∗

∗

      
= + −             

 + + + −
−       = + +      + −     

  

  (46) 

4.3. Terminal Utility Is a Power Function of Replacement Ratio 
When the terminal utility is a power function of replacement ratio, substituting the partial derivatives of the val- 

ue function ( ) ( ) 11, , ,
1

J t G w g t w Gγ γ

γ
−=

−
 and the optimal proportion composition of pension fund investment  

θ*, Equation (29), into Equation (41) with x replaced by G, we get 
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( ) ( )

( ) ( )

1
2

1 1
2 2 2 2 22

1 1
2

1 1 1 0.
2( )

t w w wwg M g tr g

u M M M g

γµ
γ

γ γ γ
γ γ γ

−

− −

 −′ ′ ′ ′ ′+ + Γ Γ Γ Ω + Ω Ω 
 

 − − −′ ′ ′ ′+ − Γ Γ Γ Λ − Γ Γ = − 

            (47) 

Using the Feynman-Kac formula, the optimal pension portfolio composition is  

( ) ( ) ( ) ( )1 1 1*
2 2 2  

1 d
T

tt
t

M E s s
w

θ ϕ
γ

− − − ∂′ ′ ′ ′ ′= − Γ Γ Γ Λ + Γ Γ − Γ Γ Γ Ω   ∂∫ ,            (48) 

where  

( ) ( )
( )

( )1 1
2 2 2 2 22

1 1 1
2

s u M M Mγ γ γϕ
γ γ γ

− −− − −′ ′ ′ ′ ′= − Γ Γ Γ Λ − Γ Γ
−

. 

Since only u2 explicitly depends on the state variables,  

( ) ( ) ( ) [ ]1 1 1*
2 2 2 2

1 1 d
T

tt
t

M E u s
w

γθ
γ γ

− − −− ∂′ ′ ′ ′ ′= − Γ Γ Γ Λ + Γ Γ + Γ Γ Γ Ω
∂∫ .            (49) 

It is necessary to find out the modified process of r for computing integral in the third term in Equation (49) in 
the same way as in Section 4.1 when terminal utility is a power function of terminal wealth. The optimal propor- 
tions of pension wealth invested in bonds and equities are 

( )
( )

( )( )

2 2 2 2 2

2 2 2 2

1

1

e 11 .
0

a rY rS SYB

K SYKS

rS r S rY a r S rS S r rS SY r S

K r S K rS r S r SY r S

t T
a

K

d v v v
b vb

v v d v m v v

b b v m v

d
b

α

θ
θ

σ ξ σ ξ σ σ σ σ σ

γ σ σ σ ξ σ σ σ

γ
γ

∗

∗

−

− +   
=   

  
 + + − + −
 +

+ −  
 − −−  +
  

           (50) 

The optimal composition of the financial wealth in hand is similarly the sum of 
( ) ( )
( )

1
Y t f t

W t
π

+  pension  

portfolio of Equation (50) and 
( ) ( )
( )

Y t f t
W t

π
−  wage replicating portfolio of Equation (33). 

From the results in Section 4, we have the following 
Proposition 3: The optimal composition of DC pension portfolio with power utility functions are either static 

or deterministic lifestyle, the stochastic life styling in terms of pension plan financial wealth results from the 
stochastic wages.  

The state variables dependent hedging component corresponds to the “bond” fund in Cairns et al. [10] and 
they conclude that “bond” fund becomes zero when the pension plan is funding for a cash lump sum. As shown 
in the present study, it is when funding for wealth-to-wage ratio “bond” fund becomes zero, whereas when fund- 
ing for a cash lump sum “bond” fund does not become zero.  

Cairns et al. [10] conclude that the “equity” fund is dominated by equities, but they have not proved it be- 
cause they do not separate equities from bonds explicitly. In the present study, bonds and equities are explicitly 
separated; the “equity” term of Equations (39), (45) and (50) contains a substantial investment in bonds. To in- 
vestigate which asset is more dominant in the “equity” fund, the proportions of bonds and equities in the “equity” 
fund are calculated for different values of relative risk aversion with the parameters in Table 1, which are com- 
monly assumed in pension and finance studies [7]-[10]. The numerical results indicate that the speculative 
component or “equity” fund is actually dominated by bonds for all the three functional forms of power utility 
(Figure 1). 

The relationship between optimal asset proportions (which is static) and the relative risk aversion coefficient  
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            Table 1. Parameters used in numerical simulation.                                     

Interest rate Value 
Mean reversion, α 0.2 

Mean rate, β 0.05 
Volatility, σr 0.02 
Initial rate, r0 0.05 

Fixed maturity bond  
Maturity, K 20 years 

Market price of risk, ξ 0.15 
Stock  

Risk Premium, mS 0.06 
Stock own volatility, σS 0.19 

Interest volatility scale factor, vrS 3 or −3 
Wage  

Wage premium, μY 0.01 
Non-hedgeable volatility, σY 0.01 

Interest volatility scale factor, vrY 0.7 
Stock volatility scale factor, vSY 0.9 

Initial wage, Y0 1 
Contribution rate, π 10% 

Length of pension plan, T 45 
 

  

 
Figure 1. The relationship between relative risk aversion coefficient γ and the optimal proportions of bond and 
stock in “equity fund” for pension portfolio when terminal utility is a function of wealth, wealth-to-wage ratio 
or replacement ratio respectively. The asset ratio range is cut off at −3 and 3 in order to show details of asset 
proportions when 1γ < . Results for tnterest volatility scaling factor for stock 3rSv =  are shown, and the 
results are similar for 1rSv ≥ . (A) Terminal utility is a power function of terminal wealth; (B) Terminal utility 
is a power function of wealth-to-wage ratio; (C) Terminal utility is a power function of replacement ratio.      
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is shown in Figure 2(A) for the wealth-to-wage ratio case, also calculated with parameters in Table 1. It is easy 
to see from Figure 2(A) that an individual will stop short-selling cash for buying stock only when her relative 
risk aversion is high. 

The absolute value of the replicating portfolio decreases as t increases (i.e. the retirement date approaches), 
whereas W(t) is generally increasing in t. Because the optimal composition of the augmented pension wealth is 
different from the composition of the replicating portfolio, the change in their relative sizes will affect the op- 
timal composition of their sum, the financial wealth. Therefore, although neither the optimal composition of 
augmented pension wealth nor the composition of the replicating portfolio is horizon dependent when the ter- 
minal utility is a function of terminal wealth-to-wage ratio, the optimal composition of the pension plan financial 
wealth is horizon-dependent. When the terminal utility is a function of lump cash sum or replacement ratio, the 
horizon dependence comes from both the pension portfolio per se and the change in the relative sizes between 
the pension portfolio and the wage replicating portfolio. 

As illustrated in Figure 2(B) where parameters in Table 1 and γ = 2 are used in the numerical simulation, the 
optimal proportions of the three assets are horizon dependent. The values of cash, bond and stock in the finan- 
cial wealth and the total value of financial wealth (in terms of wealth-to-wage ratio) over the life of the pension 
plan are shown in Figure 2(C).  

The short-sold replicating portfolio is being paid off over time, so that the proportion of riskless asset in the 
financial wealth increases and the proportions of risky assets decrease. The optimal portfolio composition in 
terms of financial wealth is therefore stochastic lifestyling [10]. This is consistent with the results of Bodie et al. 
[14] and Campbell and Viceira [3] that the presence of (risky) labor incomes tilts the portfolios towards risky 
financial assets. 
 

  

 
Figure 2. (A) The relationship between the optimal composition of pension portfolio and the relative risk 
aversion coefficient when terminal utility is a power function of wealth-to-wage ratio; (B) The horizon-depen- 
dent profile of optimal proportions of cash, bond and stock in financial wealth for power utility over the life of 
the pension plan; (C) The values of cash, bond and stock in the financial wealth and the total value of financial 
wealth (in terms of wealth-to-wage ratio) over the life of the pension plan. For the simulation results shown in 
Figure 2(B) and Figure 2(C), parameters in Table 1 are used, the relative risk aversion coefficient γ = 2 and 
interest volatility scaling factor for stock 3rSv = . The results are from 1000 simulations.                     
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5. Conclusions 
In this paper the optimal portfolio problem under stochastic interest rate and wage income is solved for different 
functional forms of power utility, when there are three assets, cash, bonds and stock, in the financial market. 
Under the present model assumptions, the optimal portfolio (for an unspecified utility function) invests in both 
riskless and risky assets. The investment in risky assets contains three components when terminal utility is a 
power function of replacement ratio: a preference free hedging component, a speculative component, and a state 
variable dependent component. This result is consistent with that of Cairns et al. [10]. The three components are 
roughly corresponding to the “cash”, “equity” and “bond” funds in Cairns et al. [10]. When terminal utility is a 
power function of terminal wealth-to-wage ratio, the state variable dependent component disappears; when ter- 
minal utility is a power function of terminal wealth, the preference-free component disappears. 

Closed form solution is derived for power terminal utility when there is no non-hedgeable wage risk. The 
state-variable dependent hedging component disappears when the expected terminal utility is a power function 
of wealth-to-wage ratio. The preference free hedging component and the speculative component contain both 
bonds and stocks, and even the speculative component (“equity” fund) can have a larger proportion of bonds, 
which is different from the conclusion of Cairns et al. [10]. Since both the preference free hedging component 
and the speculative component are horizon independent, the optimal pension asset allocation strategy of pension 
wealth per se is horizon independent. The positive correlation between stock returns and wage growth increases 
the optimal proportion invested in stocks. When the future contributions from wage incomes are hedged by 
short-selling a replicating portfolio, the optimal portfolio composition of pension plan financial wealth (aug- 
mented pension wealth + short-sold wage replicating portfolio) is horizon dependent. 

To summarize, the optimal pension portfolio for the DC pension plans is horizon independent when terminal 
utility is a power function of pension wealth-to-wage ratio, and horizon dependent when terminal utility is a 
power function of terminal wealth or replacement ratio. The optimal portfolio composition of pension plan fi- 
nancial wealth is horizon dependent. The speculative component to satisfy the risk appetite of the plan members 
consists of both bonds and stocks.  
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Appendix A. Derivation of the Differential Equation for Feynman-Kac Formula 

The derivatives of the value function ( ) ( ) 11, , ,
1

J t W w g t w Wγ γ

γ
−=

−
 are 

1 1 1 1 1

2 2 1 1 1 1

, , , ,
1 1

, .
1

t t W WW w w

ww w ww Ww w

J g g W J g W J g W J g g W

J g g W g g W J g g W

γ γ γ γ γ γ γ γ

γ γ γ γ γ γ

γ γγ
γ γ

γγ γ
γ

− − − − − − −

− − − − − −

= = = − =
− −

= − + =
−

        (A1) 

In the above equations Jw, JWw and gw are vectors, and Jww and gww are matrices. 
Substituting the partial derivatives of the expected terminal power utility function in (A1) into the HJB Equa- 

tion (34) gives 

( )

( )

( )

1 1 1 1 1
1

2 2 1 1 1
1 1

1 1 1
1 1 1 1

1 1

1
2 1

1 0.
2

t w w
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γ γ γ γ γ γ
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γ γ γ γ
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γ γ

γγ
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θ γ θ θ γ

− − − − −
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′ ′+ + +
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  ′+ Ω Ω − +  −  

′ ′ ′ ′+ Γ Ω + Γ Γ − =

                (A2) 

Substituting the optimal composition of pension fund investment θ*, Equation (14), into (A2) and simplifying 
leads to Equation (36) 

( ) ( )
( )

( )1 1
1 1 1 1 1 1 1 1 1 1 12

1 1 1 1 0.
2 2

t w w wwg M g tr g M M r gγ γ γµ
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−    

 

For the scenario where terminal utility is a function of terminal wealth-to-wage ratio, replacing W with x in 
the value function and its derivatives in A1 and substituting the derivatives into Equation (41) gives 

( )

( )

( ) [ ]( )
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         (A3) 

Substituting the optimal composition of pension fund investment θ*, Equation (22), into (A3) and simplifying 
leads to Equation (42). 
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For the scenario where terminal utility is a function of replacement ratio, the equation has the same form ex- 
cept that Λ is replaced with Λ2, M with M2, and u with u2. 

  

http://dx.doi.org/10.4236/oalib.1100754


Q. P. Ma 
 

OALibJ | DOI:10.4236/oalib.1100754 17 July 2014 | Volume 1 | e754 
 

Appendix B. Solution for the Speculative Component 
It is necessary to find out the modified process of r for computing the second term in Equation (38). The matrix 
product 

( ) ( )
1

1 1 1 1 1
r

rY r SY rS r S
M

Yv Yv v m
ξσ

ξσ ξσ
− − 
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The modified process of r is 
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The solutions of the above processes, for s t≥ , are 
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The expected value of the modified interest rate process at time t is 
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The integral in the second term is 
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The second term 
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