A New Algorithm for the Determinant and the Inverse of Banded Matrices

Mohamed Elouafi ${ }^{1}$, Driss Aiat Hadj Ahmed ${ }^{2}$
${ }^{1}$ Classes Préparatoites aux Grandes Ecoles d'Ingénieurs, Lycée My Alhassan, Tangier, Morocco
${ }^{2}$ Regional Center for Career Education and Training (CRMEF)-Tangier, Tangier, Morocco
Email: med3elouafi@gmail.com, ait hadj@yahoo.com
Received **** 2014
Copyright © 2014 by authors and OALib.
This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/

Abstract

In the current article, the authors present a new recurrence formula for the determinant of a banded matrix. An algorithm for inverting general banded matrices is derived.

Keywords

Banded Matrices, Determinants

Subject Areas: Mathematical Analysis, Numerical Mathematics

1. Introduction

The aim of this work is to extend the algorithm presented in [1] to obtain the inverse of the banded matrix

$$
\boldsymbol{B}=\left(\begin{array}{ccccccc}
a_{1,1} & \ldots & a_{1, p+1} & 0 & & \ldots & 0 \\
\vdots & \ddots & & a_{2, p+2} & & & \vdots \\
\vdots & & \ddots & & & & \\
a_{q+1,1} & \ddots & & & & \ddots & \\
0 & a_{q+2,2} & \ddots & & & & \\
\vdots & \ddots & \ddots & \ddots & & & \vdots \\
0 & \ddots & & & \cdots & \cdots &
\end{array}\right),
$$

Such matrices arise frequently in many problems such as computing the condition number or the discretization of partial differential equation in $2 D$ or $3 D$ by finite difference [2]. In practice, the bandwidth $p+q$

[^0] of Banded Matrices. Open Access Library Journal, 1: e543. http://dx.doi.org/10.4236/oalib. 1100543
is much less than n.
Standard method to compute the inverse of the matrix \boldsymbol{B} is to use the $L U$ based methods [3] and there are special algorithms taking into account the special form of the matrix [4]. Other methods were proposed more recently [5].

For the $n \times n$ banded matrix \boldsymbol{B}, where we assume that $a_{i, p+i} \neq 0$ for $i=1, \cdots, n-p$, we associate the sequence $\left(A_{i, k}\right)_{1 \leq i \leq n+p,, \leq k \leq p}$ defined by the following relations for $k=1, \cdots, p$:

$$
\begin{equation*}
A_{i, k}=\delta_{i, k} \text { for } i=1, \cdots, p, \tag{1}
\end{equation*}
$$

and for $i=1, \cdots, n-p$:

$$
\begin{equation*}
-a_{i, p+i} A_{p+i, k}=\sum_{s=1}^{p+i-1} a_{i, s} A_{5, k}, \tag{2}
\end{equation*}
$$

and for $i=n-p+1, \cdots, n$:

$$
\begin{equation*}
A_{p+i, k}=\sum_{s=1}^{n} a_{i, s} A_{j, k} . \tag{3}
\end{equation*}
$$

Here $\delta_{i, k}$ is the Kronecker symbol and we put $a_{i, j}=0$ if $i-j>q$.
The relations above can be written in the matrix form

$$
\boldsymbol{B} A_{k}=\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
A_{n+1, k} \\
A_{n+2, k} \\
\vdots \\
A_{n+p, k}
\end{array}\right) \text {, }
$$

where

$$
A_{k}=\left[A_{1, k}, A_{2, k}, \cdots, A_{n, k}\right]^{\mathrm{T}} .
$$

We shall note \boldsymbol{Q} the $p \times p$ matrix $\left(A_{n+i, j}\right)_{1 \leq i, j \leq p}$.
The determinant of the matrix \boldsymbol{Q} is related to the determinant of the matrix \boldsymbol{B}. This is the purpose of the next section.

2. Remark

Suppose that we have $a_{i, p+i}=0$ for some $i=1, \cdots, n-p$, Let $\boldsymbol{B}(\varepsilon)$ be the matrix obtained from \boldsymbol{B} by replacing $a_{i, p+i}$ such that $a_{i, p+i}=\varepsilon$ with $\varepsilon \succ 0$. We have $\lim _{\varepsilon \rightarrow 0} \boldsymbol{B}(\varepsilon)=\boldsymbol{B}$.

Then, we can compute \boldsymbol{B}^{-1} tending ε e to 0 in $\boldsymbol{B}(\varepsilon)$.

3. Determinant of a Banded Matrix

Theorem. Let the banded matrix \boldsymbol{B} and the associated sequence $\left(A_{i, k}\right)_{1 \leq i \leq n+p, 1 \leq k \leq p}$. Then

$$
\operatorname{det}(\boldsymbol{B})=(-1)^{p(n-p)}\left(\prod_{i=1}^{n-p} a_{i, i+p}\right) \operatorname{det}(\boldsymbol{Q})
$$

Proof. Let \boldsymbol{T} the $n \times n$ triangular matrix

$$
\boldsymbol{T}=\left(\begin{array}{cc}
\boldsymbol{I}_{p} & \mathbf{0} \\
\boldsymbol{D} & \boldsymbol{I}_{n-p}
\end{array}\right)
$$

where \boldsymbol{I}_{r} denotes the $r \times r$ identity matrix and \boldsymbol{D} is the $(n-p) \times p$ matrix

$$
\left(\begin{array}{cccc}
A_{p+1,1} & A_{p+1,2} & \ldots & A_{p+1, p} \\
A_{p+2,1} & A_{p+2,2} & \ldots & A_{p+2, p} \\
\vdots & \vdots & \vdots & \vdots \\
A_{n, 1} & A_{n, 2} & \cdots & A_{n, p}
\end{array}\right)
$$

Report that

$$
\left(\begin{array}{cccc}
A_{1,1} & A_{1,2} & \ldots & A_{1, p} \\
A_{2,1} & A_{2,2} & \ldots & A_{2, p} \\
\vdots & \vdots & \vdots & \vdots \\
A_{p, 1} & A_{p, 2} & \cdots & A_{p, p}
\end{array}\right)=\boldsymbol{I}_{p}
$$

and thus using the relation Equation 1 we get

$$
B T=\left(\begin{array}{ll}
0 & C \\
Q & R
\end{array}\right)
$$

where \boldsymbol{C} is the $(n-p) \times(n-p)$ triangular submatrix

$$
\left(\begin{array}{cccc}
a_{1, p+1} & 0 & \cdots & 0 \\
a_{2, p+1} & a_{2, p+2} & \cdots & \vdots \\
\vdots & \vdots & \ddots & 0 \\
a_{n-p, p+1} & a_{n-p, p+2} & \cdots & a_{n-p, n}
\end{array}\right)
$$

and \boldsymbol{R} is a $p \times(n-p)$ matrix.
Obviously, $\operatorname{det}(\boldsymbol{T})=1$ and $\operatorname{det}(\boldsymbol{B T})=(-1)^{p(n-p)} \operatorname{det}(\boldsymbol{C}) \operatorname{det}(\boldsymbol{Q})$. The result follows.
Example. For $p=q=2$, formula of the determinant of the pentadiagonal matrix is presented in [6].

4. Inverse of a Banded Matrix

Assume that the matrix \boldsymbol{B} is invertible and let us denote by C_{j} the j-th column vector of the inverse matrix \boldsymbol{B}^{-1}.

From the relation $\boldsymbol{B}^{-1} \boldsymbol{B}=\boldsymbol{I}_{n}$, where \boldsymbol{I}_{n} denotes the identity matrix of order n, we get the relations:

$$
C_{n-j-p}=\frac{1}{a_{n-j-p, n-j}}\left(E_{n-j}-\sum_{i=n-j-p+1}^{n} a_{i, n-j} C_{i}\right)
$$

for $j=0, \cdots, n-p-1$, where $E_{j}=\left[\left(\delta_{i, j}\right)_{1 \leq i \leq n}\right]^{\mathrm{T}} \in \mathbb{C}^{n}$ is the vector of order j of the canonical basis of \mathbb{C}^{n}.
It follow from r1 that knowing the p last columns $C_{n}, C_{n-1}, \cdots, C_{n-p+1}$ determine recursively all other columns $C_{n-p}, C_{n-p-1}, \cdots, C_{1}$. We give a straightforward recurrence formulae for computing $C_{n}, C_{n-1}, \cdots, C_{n-p+1}$.

Since the matrix \boldsymbol{B} is invertible, we obtain from the previous section that the matrix \boldsymbol{Q} is invertible too. We shall denotes $X_{j}=\left[x_{1, j}, \cdots, x_{p, j}\right]^{\mathrm{T}}$ the j-th column vector of the matrix \boldsymbol{Q}^{-1}.

Theorem. The j-th vector column of the inverse matrix $\boldsymbol{B}^{-1}, \quad 1 \leq j \leq p$, is given by

$$
C_{n-p+j}=\sum_{k=1}^{p} x_{k, j} \boldsymbol{A}_{k}
$$

Proof. We get from the relation Equation (1):

$$
\boldsymbol{B} \cdot \sum_{k=1}^{p} x_{k, j} \boldsymbol{A}_{k}=\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
\sum_{k=1}^{p} x_{k, j} A_{n+1, k} \\
\sum_{k=1}^{p} x_{k, j} A_{n+2, k} \\
\vdots \\
\sum_{k=1}^{p} x_{k, j} A_{n+p, k}
\end{array}\right) \text {. }
$$

The result follows from the fact that

$$
\left(\begin{array}{c}
\sum_{k=1}^{p} x_{k, j} A_{n+1, k} \\
\sum_{k=1}^{p} x_{k, j} A_{n+2, k} \\
\vdots \\
\sum_{k=1}^{p} x_{k, j} A_{n+p, k}
\end{array}\right)=\boldsymbol{Q}\left(\begin{array}{c}
x_{1, j} \\
x_{2, j} \\
\vdots \\
x_{p, j}
\end{array}\right)=\left[\left(\delta_{i, j}\right)_{1 \leq i \leq p}\right]^{\mathrm{T}} .
$$

We will use the relations Equation (2) and r1 to explicit the coefficients $c_{s, j}$ for the inverse \boldsymbol{B}^{-1}. we have for $1 \leq j \leq p$ and $1 \leq s \leq n$:

$$
\begin{equation*}
c_{s, n-p+j}=\sum_{k=1}^{p} x_{k, j} A_{s, k} \tag{4}
\end{equation*}
$$

and for $j=0, \cdots, n-p-1$:

$$
\begin{equation*}
c_{s, n-j-p}=\frac{1}{a_{n-j-p, n-j}}\left(\delta_{s, n-j}-\sum_{i=n-j-p+1}^{n} a_{i, n-j} c_{s, i}\right) . \tag{5}
\end{equation*}
$$

Here are the different steps of our algorithm. The implementation is left to the readers' choice.

- Compute $A_{i, k}$ by the relations (1), (2) and (3). If $\operatorname{det}\left(\left(A_{n+i, j}\right)_{1 \leq i, j \leq p}\right)=0$ then \boldsymbol{B} is non invertible.
- Compute the inverse $\left(x_{i, j}\right)_{1 \leq i, j \leq p}$ of the matrix $\left(A_{n+i, j}\right)_{1 \leq i, j \leq p}$.
- Compute $c_{s, n+j-p}$ for $1 \leq j \leq p$ and $1 \leq s \leq n$ by the relation (4).
- Compute $c_{s, n-j-p}$ for $j=0, \cdots, n-p-1$ and $1 \leq s \leq n$ by the relation (5).

5. Conclusion

If we fix the bandwidth $p+q$, one can show easily that the complexity of the algorithm is $O\left(n^{2}\right)$. Of course, other algorithms of similar complexity exist (methods based on $L U$ decomposition for example). However, the new method provides more benefits to others: First, the recursive formulas are simple and can be implemented effectively in a parallel machine to reduce the cost. Also, we can solve these relations for some matrices to get the explicit determinant of those matrices.

References

[1] Aiat Hadj, D. and Elouafi, M. (2008) A Fast Numerical Algorithm for the Inverse of a Tridiagonal and Pentadiagonal Matrix. Applied Mathematics and Computation, 202, 441-445. http://dx.doi.org/10.1016/j.amc.2008.02.026
[2] Gravvanis, G.A. (2003) On the Solution of Boundary Value Problems by Using Fast Generalized Approximate Inverse Banded Matrix Techniques. The Journal of Supercomputing, 25, 119-129. http://dx.doi.org/10.1023/A:1023936410006
[3] Ran, R.S. and Huang, T.Z. (2009) An Inversion Algorithm for a Banded Matrix. Computers and Mathematics with Applications, 58, 1699-1710. http://dx.doi.org/10.1016/j.camwa.2009.07.069
[4] Trench, W.F. (1974) Inversion of Toeplitz Band Matrices. Mathematics of Computation, 28, 1089-1095. http://dx.doi.org/10.1090/S0025-5718-1974-0347066-8
[5] Kratz, W. (2001) Banded Matrices and Difference Equations. Linear Algebra and its Applications, 337, 1-20. http://dx.doi.org/10.1016/s0024-3795(01)00328-7
[6] Aiat Hadj, A.D. and Elouafi, M. (2008) On the Characteristic Polynomial, Eigenvectors and Determinant of a Pentadiagonal Matrix. Applied Mathematics and Computation, 198, 634-642. http://dx.doi.org/10.1016/j.amc.2007.09.005

[^0]: How to cite this paper: Elouafi, M. and Aiat Hadj Ahmed, D. (2014) A New Algorithm for the Determinant and the Inverse

