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Abstract 
In the current article, the authors present a new recurrence formula for the determinant of a 
banded matrix. An algorithm for inverting general banded matrices is derived. 
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1. Introduction 
The aim of this work is to extend the algorithm presented in [1] to obtain the inverse of the banded matrix 
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Such matrices arise frequently in many problems such as computing the condition number or the discretiza-
tion of partial differential equation in 2D  or 3D  by finite difference [2]. In practice, the bandwidth p q+  
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is much less than n . 
Standard method to compute the inverse of the matrix B is to use the LU  based methods [3] and there are 

special algorithms taking into account the special form of the matrix [4]. Other methods were proposed more 
recently [5]. 

For the n n×  banded matrix B, where we assume that , 0i p ia + ≠  for 1, , ,i n p= −  we associate the se-
quence ( ), 1 ,1i k i n p k p

A
≤ ≤ + ≤ ≤

 defined by the following relations for 1, ,k p=  : 

, ,  for 1, , ,   i k i kA i pδ= =                                   (1) 
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Here ,i kδ  is the Kronecker symbol and we put , 0i ja =  if .i j q− >   
The relations above can be written in the matrix form 
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where 
T

1, 2, ,, , ,k k k n kA A A A =   . 

We shall note Q  the p p×  matrix ( ), 1 ,
.n i j i j p

A + ≤ ≤
  

The determinant of the matrix Q  is related to the determinant of the matrix B. This is the purpose of the next 
section. 

2. Remark 
Suppose that we have , 0i p ia + =  for some 1, , ,i n p= − . Let ( )εB  be the matrix obtained from B  by re-
placing ,i p ia +  such that ,i p ia ε+ =  with 0ε  . We have ( )0limε ε→ =B B . 

Then, we can compute 1−B  tending ε  e to 0 in ( )εB . 

3. Determinant of a Banded Matrix 
Theorem. Let the banded matrix B and the associated sequence ( ), 1 ,1

.i k i n p k p
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≤ ≤ + ≤ ≤
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where rI  denotes the r r×  identity matrix and D  is the ( )n p p− ×  matrix  
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and thus using the relation Equation 1 we get 
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where C  is the ( ) ( )n p n p− × −  triangular submatrix 
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and R  is a ( )p n p× −  matrix. 
Obviously, ( )det 1=T  and ( ) ( ) ( ) ( ) ( )det 1 det det .p n p−= −BT C Q  The result follows. 
Example. For 2,p q= =  formula of the determinant of the pentadiagonal matrix is presented in [6]. 

4. Inverse of a Banded Matrix 
Assume that the matrix B  is invertible and let us denote by jC  the -thj  column vector of the inverse ma-
trix 1.−B  

From the relation 1 ,n
− =B B I  where nI  denotes the identity matrix of order n , we get the relations: 

,
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for 0, , 1,j n p= − −  where ( )
T

, 1
n

j i j i n
E δ

≤ ≤
 = ∈    is the vector of order j  of the canonical basis of n

 . 

It follow from r1 that knowing the p  last columns 1 1, , ,n n n pC C C− − +  determine recursively all other col-
umns 1 1, , , .n p n pC C C− − −   We give a straightforward recurrence formulae for computing 1 1, , ,n n n pC C C− − + . 

Since the matrix B  is invertible, we obtain from the previous section that the matrix Q  is invertible too.  
We shall denotes 

T
1, ,, ,j j p jX x x =    the -thj  column vector of the matrix 1.−Q  

Theorem. The -thj  vector column of the inverse matrix 1,−B  1 ,j p≤ ≤  is given by 

,
1

p

n p j k j k
k

C x− +
=

= ∑ A  

Proof. We get from the relation Equation (1): 
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The result follows from the fact that 
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We will use the relations Equation (2) and r1 to explicit the coefficients ,s jc  for the inverse 1.−B  we have 
for 1 j p≤ ≤  and 1 :s n≤ ≤  
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Here are the different steps of our algorithm. The implementation is left to the readers’ choice. 

• Compute ,i kA  by the relations (1), (2) and (3). If ( )( ), 1 ,
det 0n i j i j p

A + ≤ ≤
=  then B  is non invertible. 

• Compute the inverse ( ), 1 ,i j i j p
x

≤ ≤
 of the matrix ( ), 1 ,

.n i j i j p
A + ≤ ≤

 

• Compute ,s n j pc + −  for 1 j p≤ ≤  and 1 s n≤ ≤  by the relation (4). 
• Compute ,s n j pc − −  for 0, , 1j n p= − −  and 1 s n≤ ≤  by the relation (5). 

5. Conclusion 
If we fix the bandwidth ,p q+  one can show easily that the complexity of the algorithm is ( )2 .O n  Of course, 
other algorithms of similar complexity exist (methods based on LU  decomposition for example). However, 
the new method provides more benefits to others: First, the recursive formulas are simple and can be imple-
mented effectively in a parallel machine to reduce the cost. Also, we can solve these relations for some matrices 
to get the explicit determinant of those matrices. 
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