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Abstract 
Titania nanopores were fabricated on silicon substrate. Ti thin films (600 nm) were first depo-
sited by radio-frequency (RF) magnetron sputtering at two substrate temperatures and then ano-
dized in glycerol electrolytes containing NH4F. The morphology and structure were identified by 
means of scanning electron microscopy (SEM), X-ray diffractometry (XRD). The effect of the tem-
perature on the Ti thin films deposited by RF magnetron sputtering and the applied voltage on 
nanopore morphology were investigated. Homogeneously distributed nanopores with dimensions 
in the range of 60 to 80 nm were obtained independently of the voltage applied during the anodi-
zation and the substrate temperature in sputtering deposition. 
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1. Introduction 
Highly o rdered, v ertically o riented T iO2 nanotube-arrays fabricated b y p otentiostatic a nodization o f tita nium 
constitute a material architecture that offers a large internal surface area. TiO2 nanotube arrays have been found 
to possess a variety o f advanced applications, including their use in sensors [1]-[7], d ye sensitized solar cells 
[8]-[10], hydrogen generation by water photoelectrolysis [11], photocatalytic reduction of CO2 under outdoor 
sunlight [12], and supercapacitors [13] [14]. 

Nanotubes arrays a lso have proved useful in related biomedical applications including molecular filtration, 
biosensors, tissue engineering and drug delivery [15]-[17]. 
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However, most of the works have been focused on the anodization of titanium foils, which limits the applica-
tion of such a material in functional microdevices (e.g. dye-sensitized solar cells or electrochromic devices) [18] 
[19]. It is therefore desirable to develop processes that facilitate the manufacture of TiO2 nanotubes or nanopores 
on an adequate substrate before electrochemical anodization. In recent years, some researchers have used the 
electrochemical anodization method to successfully grow the nanotube arrays from thin titanium films on a va-
riety of substrates including glass [20]-[22], conducting glass (FTO, ITO) [21] [23], and silicon [24]-[27]. T i 
thin films deposited on a semiconductor substrate, such as p-type Si (100), which has many promising applica-
tions in the development of future electronic devices. However, there are very few reports about the comprehen-
sive research on the influence of the titanium thin films microstructure on the growth of anodic TiO2. 

We have successfully developed films via anodizing metal titanium thin films deposited by RF magnetron 
sputtering on silicon substrates. Therefore, in this paper, we will discuss the effects of the microstructure of Ti 
films on the growth o f T iO2 nanotube or  nanopore, in order to optimize the fabrication process and finally to 
improve their properties. The effect of the temperature on the Ti thin films and the applied voltage on nanopore 
morphology were investigated. 

2. Experimental Procedure 
2.1. Deposition of a Ti Thin Film on a Si Substrate 
Ti films (600 nm in thickness) were deposited by RF magnetron sputtering on p-type Si (100) wafer with 300 
nm layer of SiO2 at room temperature in some cases and at 500˚C in another. Target of 99.9% Ti was used as the 
material source. The chamber pressure was maintained at 0.5 Pa during the deposition process. Sputtering was 
carried with a pure gas argon flowing of 8 cm3/min. The distance between the target and the substrate was 14 cm 
and the sputtering power was 150 W using RF power supply. Under these conditions, the deposition rate was 2.9 
nm/min and a 600 nm thick Ti film was obtained after 210 min.  

2.2. Fabrication of TiO2 Nanostructure 
Prior to  the experiments the Si samples were degreased by sonicating in acetone, isopropanol and r insed with 
deionized water (DI) and dried in a nitrogen stream. 

Anodization was performed applying a ramp during 30 min from 0 to the desire voltage (20, 60, 80, 100 V) 
and finally holding the voltage constant during for 1 h using a Keithley 6517B electrometer. The growth of the 
nanotube or nanopore arrays has been obtained in a glycerol solution with 0.6% ammonium fluoride in an elec-
trochemical cell with a platinum foil (1 cm2) as cathode and titanium film as anode at room temperature. Current 
variation du ring a nodizing was s imultaneously monitored by a  K eithley 2000 multimeter. T he s olution was 
stirred [28] using a magnetic stirring bar (20 mm long) at 150 rpm (referred as SAT). The distance between the 
two electrodes was kept at 2 cm in all the experiments. After the electrochemical treatment, the specimens were 
rinsed with deionized water and dried with a nitrogen stream. The anodized TiO2 was annealed to develop the 
anatase TiO2 nanostructure at 550˚C for 120 min in air.  

2.3. Characterization of TiO2 on Ti Thin Film 
The samples of the Ti film and TiO2 were characterized by scanning electron microscopy (SEM), X-ray diffrac-
tion (XRD). Scanning electron microscopes (Fei model Quanta 200 and Zeiss Supra40 Gemini) were employed 
for the morphological charactherization o f t he T iO2 samples. X-ray d iffraction (XRD) p atterns were recorded 
with a d iffractometer (PANalytical model Empyrean) equipped Cu Kα (λ = 0.15418 nm) using a generator vol-
tage of 40 kV and current of 40 mA. 

3. Results and Discussion 
3.1. Effect of Sputtering Parameters on Microstructure of Titanium Films 
The effect of the substrate temperature on the microstructural morphologies o f t itanium film deposited by RF 
magnetron sputtering technique was investigated. The morphology of thin films deposited by sputtering depends 
of the ratio of the substrate temperature (Ts) to the melting point of the film (Tm), therefore Ts/Tm. When Ts/Tm < 
0.3 the morphology of the film consists of columns typically tens of nanometers in diameter with an a few nm 
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inter-columnar zo ne t hat s eparates t hem. T he co lumns have poor c rystallinity o r a re a morphous. However if 
Ts/Tm > 0.3 the morphology of the film results in more isotropic and equiaxed crystallite shapes [26] [29]. 

With a substrate at room temperature (Ts ≈ 25˚C) to Ti fusion (Tm = 1660˚C) temperature (Ts/Tm) ratio of 0.02 
indicates that the surface morphology of Ti films should be in accordance with columnar structures. Neverthe-
less with 500˚C the substrate temperature the ratio is 0.3 therefore hoping for an equiaxed crystallite shapes.  

Figure 1 shows the SEM top images of Ti films deposited by RF magnetron sputtering at room temperature 
and 500˚C. Both films have fine granular structure, but more rough and some Ti grain coarse at 500˚C it was 
observed. From the morphological analysis carried out using observation by SEM, the grain size was calculated 
in a ll s amples. T he g rain size of f ilms de posited a t r oom t emperature was 60 nm  a nd 80 n m at 500 ˚C. T he 
roughness of arithmetical mean deviation was measured by atomic force microscope (AFM) obtaining 14 nm at 
room temperature and 88 n m at 500˚C, respectively. With the increase of the substrate temperature, the atoms 
migrate from the surface, the denseness is improved and grows a crystalline structure [30]. In titanium film de-
posited a t h igh t emperature a  g ood f ilm a dhesion was obs erved. H eated s ilicon substrate c ould i mprove t he 
denseness and crystallinity of the films, and also make Ti grains coarsen. 

In Figure 2, XRD patterns of Ti deposited by RF magnetron sputtering at room temperature and 500˚C were 
shown. Typical peaks of titanium phase at 2θ near 35˚, 38˚ and 40˚ are observed in the XRD pattern which cor-
respond t o t he pl anes ( 100), ( 002) a nd ( 101), r espectively. All of  pe aks a re i dentified a s hexagonal T i 
(00-044-1294).  

The strongest peak for the room temperature sample consists to (100) titanium, which is its preferential orien-
tation during the sputtering p rocess (Figure 2(a)). However, with the increase in the substrate temperature no 
preferred orientation is observed. The ratio of the peaks is similar as Ti (00-044-1294) card (Figure 2(b)). 

The competition between energy and surface free energy affecting the textures of the grains are heavily de-
pend on the d ifferent parameters such a s substrate temperature, p ressure, power and substrate p roperties. The 
(100), (101) or (002) orientations are the preferable ones in Ti films depending on the parameters mentioned 
above [31]-[34].  

The XRD results of the Ti films with varying substrate temperature may be interpreted on the basis of stress 
and the strain evolution mechanism. The compressive stress induced in the films contributed to the development 
of ( 100) o rientation a nd i t may have r elaxed t o t ensile mode at  higher substrate t emperature favoring t he 
equiaxed orientation. 

The lattice parameter was calculated by equaling the interplanar spacing d obtained from the position of the 
(100) peak using the Bragg condition. The values of lattice parameters are summarized in Table 1. The strain 
along t he a -axis, α is gi ven by the following eq. α = ( a – a0)/a0 × 100 where a i s the lattice parameter o f t he 
strained Ti film calculated from XRD data and a0 is the unstrained lattice parameter [32]. 

The value of strain was found negative in the case of 25˚C substrate temperature with a corresponding change 
in crystallite size from 2.95 to 2.90. However in the case of 500˚C substrate temperature the value of strain was 
found negligible. It shows the influence temperature on the microstrain of the Ti thin film. 
 

 
Figure 1. SEM top views of Ti films deposited at a) room temperature b) 500˚C.                                     

300 nm*
EHT = 3.00 kV WD = 4.2 mm Mag = 100.00 KX Signal A = InLens

(a)

200 nm*
EHT = 3.00 kV WD = 4.4 mm Mag = 100.00 KX Signal A = InLens

(b)
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Figure 2. XRD patterns of Ti films deposited at a) room temperature b) 500˚C.                                      
 
Table 1. Influence of substrate temperature on the microstrain, roughness and grain size of the Ti thin.                    

Parameters Grain size (nm) Average roughness (nm) Lattice arameter (Å) Microstrain (100) peak 
25˚C 60 14 2.901 –1.69 

500˚C 80 88 2.955 0.14 
 

The microstrain (100) peak in the case of 25˚C substrate temperature is compressive in nature and it decreases 
with the increase of temperature. The above is compatible with the thermal stress appearing on silicon by depo-
siting titanium [35]. Moreover when Ti thin film is deposited on large mismatch substrate like glass, the (002) 
orientation is the preferable [33]. The reason may be attributed to the fact that the different surface free energies 
are associated with different planes [36].  

In our case the different thermal expansion coefficient between Ti and substrate gives then rises to compres-
sive stresses in the film. The thermal stress induced in the thin film may have also contributed to determine the 
preferred orientation (100) in Ti film deposited at room substrate temperature.  

3.2. TiO2 Nanostructure Thin Films 
Figure 3 shows the SEM image of anodic TiO2 fabricated from Ti film deposited on Si substrate at room tem-
perature and 500˚C and different voltages (20, 60, 80 and 100 V). In order to convert the amorphous TiO2 struc-
ture into a crystalline one, samples were annealed at 550˚C for 2 h in air.  

Figures 3(a)-(d) show the anodized TiO2 formed for the case of titanium deposited at room temperature at 20, 
60, 80 and 100 V, respectively. Moreover in Figures 3(e)-(h) show t he T iO2 formed for the case o f t itanium 
deposited at 500˚C at 20, 60, 80 and 100 V, respectively. 

In Figures 3(a)-(d) it can be seen a nanoporous structure but Figures 3(e)-(h) show a more uniform structure. 
There are some grains with sizes well above the average. In these grains grow over one nanopore. The diameter 
of the pore remain relatively constant independently the applied voltage.  

Figure 4 shows the size of nanostructure grown on Ti films deposited at  room temperature and 500˚C as a 
function of the applied voltage. The nanostructure size is approximately 60 nm in all cases. In this work, we ob-
tained a Ti film with very small grain size, less than 100 nm. Therefore the nanostructure size may be limited by 
the grain size of the deposited titanium film and not to the applied voltage in the anodization. However accord-
ing to the literature in the case of Ti sheet, it is  well known that with increasing potential the size diameter al-
ways increases, this is in line with growth of anodic compact oxides. The grain size in Ti sheet is in the order of 
microns, therefore is not conditioning for the growth of the nanostructure in the anodization process. 

In the case of Ti thin films using conventional deposition methods, is possible to obtain by anodization different 
microstructures l ike nanopores or nanotubes [27] [31]. According to the technique used and the parameters in 
which d eposition takes p lace (temperature, p ressure, power) is  p ossible to  o btain Ti thin f ilms with different 
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Figure 3. SEM top im ages o f TiO2 structure f ormed by  anodization of T i f ilms de posited a t a ) b)  c ) d)  r oom 
temperature and e) f) g) h) 500˚C.                                                                   

(a) 20 Volts (b) 60 Volts

(c) 80 Volts (d) 100 Volts

(e) 20 Volts (f) 60 Volts

(g) 80 Volts (h) 100 Volts
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Figure 4. Size of TiO2 nanostructure grown on Ti films deposited at room 
temperature and 500˚C as a function of the applied voltage.              

 
grain size, roughness and crystal orientation.  

It is well known that the TiO2 nanostructures grown by anodization strongly depend off the morphology of the 
Ti film deposited on substrate. Some authors claim that the columnar structure in Ti thin film is essential for the 
nanotubes formation by anodic oxidation [26]. Other ones affirm that the crystallographic orientation of the Ti 
thin film is critical for the nanotubes obtention, but there have been cases in which the Ti thin film structure was 
columnar and nanopores were obtained instead of nanotubes. As well it was reported the growth of nanotubes 
from Ti thin film with different crystallographic orientation [31]. Others said that a possible cause for the forma-
tion of pores versus tubes could have been roughness differences [37]. An additional factor for pore and tube 
growth is associated with the presence of F− ions in the electrolyte and dissolution of metal-fluoride complexes 
[38].  

In summary the experimental details of the anodization process and the metal surface conditions strongly in-
fluence the growth of nanoporous/nanotubular structures.  

The corresponding XRD patterns of TiO2 nanopores fabricated from Ti film depositated on Si substrate at 
room temperature and 500˚C after being annealed are shown in Figure 5. The structure evidently consists of a 
mixed phase of anatase (01-086-1157) and rutile (00-034-0180). According with the literature it is  well known 
that there are a mixture of phases which depend strongly on heat treatment [39] [40] and of the substrate tem-
perature during the deposition of the film [41]. 

Typical peaks of anatase phase at 2θ near 25˚, 37˚ and 48˚ are observed in the XRD pattern, which correspond 
to planes (101), (004) and (200), respectively and typical peaks of rutile phase at 2θ near 27˚, 36˚, 41˚ and 54˚ 
are observed in the XRD pattern which correspond to the planes (110), (101), (111) and (211), respectively. 

At room temperature the strongest peak correspond to anatase phase (Figure 5(a)), while at 500˚C there are 
similar peaks corresponding to anatase and rutile phases (Figure 5(b)). The peak at 2θ near 33˚ belongs to Si 
(200) plane of the substrate. These results show that substrate temperature during titanium deposition influence 
strongly in the crystal structure of TiO2 nanotubes obtained by anodizing. The crystallinity degree of the rutile 
phase increases by increasing substrate temperature. 

4. Conclusions 
Ti films deposited by RF magnetron sputtering at room substrate temperature and 500˚C were performed on sil-
icon substrate. Nanoporous titanium oxide film was prepared by the anodization of titanium films in a glycerol 
solution with 0.6% ammonium fluoride at room temperature. In order to convert the amorphous TiO2 structure 
into a crystalline one, samples were annealed at 550˚C for 2 h in air. 

The nanoporous titanium oxide films had homogeneously distributed pores with an average pore diameter of 
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Figure 5. XRD patterns of TiO2 nanostructure prepared on Ti films at a) room temperature b) 500˚C.                     
 
60 nm independently of the voltage applied and the substrate temperature in sputtering deposition. Probably the 
pore size is limited by the grain s ize of the deposited titanium and not by the preferred orientation of the thin 
film titanium.  

In summary, a possibly critical parameter for the grow of the nanostructure is the grain size of the titanium 
thin f ilm. I f the grain size is very small, the pore diameter does not depend on the vo ltage applied during the 
anodization process.  

Further investigation is required to understand the relationship between the formation nanotubes/nanopores 
and the microstructure of Ti thin film. 
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