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ABSTRACT 
Eight separate applications of Bernoulli’s equation to fluid flows are reviewed. A possibility 
that Bernoulli’s law was anticipated, some 300 years earlier, by Leonardo da Vinci is pointed 
out as well as Einstein’s use of the equation for elementary explanations of several fluid 
motions. One example of how a classical mathematical technique applied to the standard 
theoretical description of the surface gravity wave inadvertently obliterated Bernoulli’s 
physics is reported. In the atmosphere a proposal is made that Bernoulli’s law helps to un-
derstand the low pressure inside a tornado. 

 

1. INTRODUCTION 
Where the speed is greatest, the pressure is least, and vice versa. Who does not believe that, or more 

likely, who thinks Bernoulli’s law is ok as far as it goes, but then lacks the confidence to use it? A surprise 
or two are coming. 

Many things have happened to Bernoulli’s law, almost everything except outright controversy. It has 
been enhanced by the addition of some physics terms, including friction, surface tension, acceleration un-
der gravitational attraction, and the centrifugal force. It has been utterly destroyed, shredded would be a 
good word, by the application of a standard mathematical technique in the historical and standard theory 
of the surface gravity wave. It may have been anticipated by an observation of Leonardo da Vinci some 
three hundred years earlier. And Einstein, in 1916, used it to explain in elementary terms certain observed 
fluid phenomena (bird flight, ocean wave propagation). 

In an earlier review article promoting the usefulness of the centrifugal force for solving and under-
standing various problems in physics [1], I experienced a stumbling block in the publication process. The 
reviewer wanted the chapter on the Kepler problem taken out. No persuasive reasons were given, such as 
pointing out errors in the manuscript. After doing that, the paper was printed. Years later that omitted 
chapter was published anyway although in a different context. 

Controversy surrounding the centrifugal force can surface in peculiar ways. Since every chapter in 
that review made use of the centrifugal force, singling out only one to be deleted still seems a bit strange. 

With Bernoulli this is not a difficulty, and the writing up is altogether more fun and positive. Follow-
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ing the Leonardo segment the sections are not strictly chronological with respect to when they happened 
to come to my attention during my career. Some sense of relative “importance” has been superimposed on 
the ranking order, and also occasionally two separate segments have been combined into a single one for a 
bit of streamlining. 

Some mornings I am reminded of Bernoulli at the break of day, when the pool circulation system be-
gins running and water flows from the Jacuzzi through a narrow notch in the dam into the pool. Snug up 
against the side of the pool beside the notch, where the speed of flow is fastest, sits the floating thermome-
ter for hours on end.  

2. LEONARDO DA VINCI 
There is a small amount of evidence that Leonardo da Vinci, through watching water flowing in riv-

ers, came up with an observational form of Bernoulli’s law. Start with a quote from a recent biography of 
da Vinci by Walter Isaacson, in his chapter 11 on birds and fight. “When he was compiling his bird trea-
tise, Leonardo began a section of another notebook with a directive to put them into a broader context. ‘To 
explain the science of the flight of birds, it is necessary to explain the science of the winds, which we shall 
prove by the motion of the waters,’ he wrote. ‘The understanding of this science of water will serve as a 
ladder to arrive at the knowledge of things flying in the air.’ He not only got the basic principles of fluid 
dynamics correct, but he was able to turn his insights into rudimentary theories that foreshadowed those 
of Newton, Galileo, and Bernoulli.” 

In addition to this general assessment is a specific single line from one of Leonardo’s notebooks: 
“where the water has more movement it is lighter if it is of the same height”. That sounds very close to be-
ing a statement of Bernoulli’s law. This sentence comes from a section of a book, The Nature of Water, in 
The Notebooks of Leonardo da Vinci, containing 135 pages taken from various notebooks of Leonardo 
and translated into English. There is no relation between this sentence and the ones that come before or 
after it in that volume. 

3. WING’S LIFT 
Although a completed theory of the lift force on a wing is not yet available, Bernoulli’s law has almost 

always played a major role in understanding how it must work. Where the speed is greatest, the pressure is 
least. Since the speed is observed to be greatest at the top of the wing, the pressure is least there. Conse-
quently an upward pressure gradient or force exists at the wing’s top surface causing lift.  

From observations also comes the fact that the speed of the fluid at the top of the wing, which is at its 
maximum there, monotonically decreases with increasing distance away from the wing. To predict the ve-
locity shear over the wing is the job of theory, but this is just where the incompleteness occurs at the 
present time. 

There is a way to single out and isolate the unknown feature of the problem of the lift force on a wing 
[2]. That much may prove to be helpful in the future, because at least one avenue out of many possible 
ones has been selected for following and searching for a solution. Leonardo da Vinci watched a rock in a 
stream that was wet on top. He noticed that water moved faster than average on the sides of the rock ra-
ther than going over the top of the rock. As far as I can tell from reading excerpts on water motion put to-
gether from his notebooks, he did not comment on how the perturbed velocity died away with increasing 
distance from the rock. Also he did not mention what happens in the case of two rocks in a stream where 
each rock was in the “influence zone” of the other one. 

Erect a vertical axis at the top surface of a curved wing. Formulate two equations in two unknowns, 
pressure and velocity, that apply along this axis. First is Bernoulli’s law and second is the force balance on 
a fluid particle traveling along a curved path: centrifugal force equals a pressure gradient. By itself each 
equation is non-linear. But when one equation is one unknown is obtained by elimination of a variable 
between the two equations, that equation is linear for either pressure or velocity! 

A clear prediction comes from the two governing equations: the pressure perturbation dies away from 
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the wing more rapidly than the velocity variation does. Exactly how rapidly the die-off rate is for each va-
riable remains unknown at this time due to a lack of knowledge of the unknown non-constant coefficient 
in the governing equations: how the radius of curvature of the streamlines varies with distance from the 
wing. Some-day measurements may be good enough to provide this missing information, or another 
theory could turn up. In any case, a problem to solve in the future has been pinpointed. 

4. GROOVED SPHERES AND CYLINDERS 
Next in importance to increasing understanding the lift force on a wing is explaining an enhanced 

method of reducing friction when a solid moves through a fluid. Bernoulli’s law plays a large part here too. 
Although nature probably started using the method eons ago, humans are apparently slow to catch on. 
Even an accidental discovery in the game of golf has not yet caught fire. 

Originally golf balls were made out of the sap of a particular type of tree. During 50 years of expe-
rience it was noticed that the balls with nicks and scrapes often traveled a greater distance. Therefore, 
when the golf balls were manufactured, round dimples were put into the surface on purpose. 

After this history became known to me not too many years ago, I selected two out of six identical 
(except for color) croquet balls from an old set to experiment with in the swimming pool. These balls came 
from the factory with small concentric grooves on their surfaces for some reason or other, perhaps style. 
One of the balls was made completely smooth by filling in the grooves with water proof wood putty and 
sanded. Their weights out of water were essentially the same. Being buoyant the balls would rise up 
through the water. Concern whether the path would be straight or wavy, and should the balls roll about an 
axis or not, caused me to have small holes drilled along diameters, passing through the centers of the cir-
cular grooves, so that the balls would slide up on taut wires. That concern turned out to be unnecessary, 
but it caused no harm. When released from the bottom of the pool simultaneously, the grooved ball 
reached the surface first every time for as many times as I was willing to do the trials [3]. 

A mechanical engineering friend watched some of the trials and made a few suggestions for further 
work. His point was that more evidence is always beneficial showing that grooves on solid bodies reduce 
friction, when the bodies move through fluids, and a different shape, specifically a cylinder, would be one 
step closer to potential applications than a sphere. Also he thought it would be a good idea to communi-
cate any significant results to a professor in the mechanical engineering department of UC San Diego (that 
was done in good time). Therefore a neighbor with great woodworking skills was asked to make two cy-
linders, a foot long and two inches in diameter, out of solid buoyant hard wood, one with grooves and one 
smooth. This was accomplished very well with beautiful craftsmanship, and the weights in air were made 
equal by drilling a hole in the flat bottom surface of the smooth cylinder. Top surfaces were both rounded. 

Meanwhile a single photograph with a single paragraph describing it were found in one of my eight 
or nine fairly standard fluid dynamics texts (the one in question was published by Oxford University 
Press). The streak photograph showed fluid flowing over a flat surface with a single groove in it. Fluid es-
sentially jumped the groove, which had a nearly square cross-section. Self-evident is the fact that where the 
flow jumped the groove, there was no friction on that part of the wall. If two grooves are made in the wall, 
friction should be further reduced. A priori one cannot say at present what the optimum number of 
grooves is for a given wall and a given speed of flow in order to optimize the reduction of friction. A golf 
ball appears to have about as many dimples on the surface as could be put there, and in tournament play 
the maximum number of dimples allowed on a ball is specified; if this number is exceeded, the player will 
be disqualified. 

For the cylinder trials in the pool a selection had to be made of the number and spacing of the 
grooves as well as the size of a groove. In fact, grooves where chosen instead of dimples. Seventeen grooves 
covered the surface of the one cylinder with a constant spacing of 3/8 inch between grooves. All grooves 
had a square cross-section with 1/8 inch on all three sides. Since the cylinders rose up vertically through 
the water, no guide wires were used. Swimmers took turns taking the cylinders down to the bottom of the 
deep end of the pool and letting them go simultaneously. Every time the top of the grooved cylinder 
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reached the air before the top of the smooth cylinder did, and by an average distance of one cylinder 
length. Clearly the grooved cylinder experienced less friction [4]. 

To explain this result Bernoulli’s law comes into play. Water is trapped in the grooves and does not 
go in or out of a groove. Because there is a lack of motion inside a groove, the pressure is relatively high 
there. Flow passing by the opening of the groove has lower pressure (where the speed is high the pressure 
is low). An outward pressure gradient holds the outside flow from entering the groove. 

Nature probably already anticipated, by many millions of years, this method of decreasing the force of 
friction in the form of scales on a fish. First of all, the sides of most fish are not polished to be smooth like 
are the surfaces of racing boats (rowing shells) of various kinds. A pattern the fish scales exhibit appears to 
be two intersecting sets of grooves that make equal angles to the vertical when the fish swims horizontally. 

Combining the results of the comparisons between grooved and smoothed surfaces of spheres and cy-
linders moving through water leads to greater confidence in suggesting a few practical applications of a 
method of friction reduction on solid bodies. One is to put grooves on the inside surface of pipes. For a 
constant pressure head the pipe with interior grooves is predicted to transport more fluid per unit time. A 
ship with vertical grooves below the waterline is expected to use less fuel to cross a given distance. After 
the grooves are in place, the talk will not be about savings in nickels and dimes. Plenty of room exists that 
can be filled with more effort in the future. 

5. AIR-CONDITIONING FLOW 
Another logical name for this section is Upside-down Flow, as will be shown below through examples 

that are non-intuitive but are a direct consequence of Bernoulli’s law [5]. How can cold air stick to the 
ceiling of a room in a house? How can water cling to the underside of an overhanging ledge without falling 
down through the air beneath it? Movement is the key. And basically nothing more than Bernoulli’s law is 
required. No extra physics terms need to be added. 

In designing a pitcher or coffee pot so that it will not leak or spill when liquid is poured from it, is 
Bernoulli’s law ever consulted? Probably not. If nothing else works, try pouring very slowly. This follows 
directly from Bernoulli’s law. A second suggestion, to make the exiting stream thicker, is based on expe-
riences related next. 

On vacation in Mexico at a very nice hotel, two swimming pools at different levels were connected by 
wide and smooth stone steps with a thin layer of water running down them. Each step overhung the one 
below with a ledge extending out about six inches and having a rounded end. Startling to me was the fact 
that the water flowed upside down on the underside of the ledge and did not fall off. Water is about 800 
times denser than air. How could it hang on to the ledge? While trying to figure out what was happening, I 
asked my grandson to jump into the pool near the top step to make a wave. He did and caused a thicker 
layer of water to flow over the step. This thicker layer could not negotiate the curve at the end of the step; 
it fell off making a small water fall which was repeated at the step below and the one below that. Evidently 
thickness of the layer is a significant parameter of the problem. For example, the hydrostatic pressure act-
ing normal to the upside-down flow will cause the flow to break away from the solid surface above if the 
layer is thick enough. 

Back at home I told this experience to a friend of mine, a retired mechanical engineer with a specialty 
in air conditioning. He said that in his profession an analogous thing is done on purpose. Cold air comes 
out of the ceiling through a vent in the middle of the room. Small vanes surrounding the vent direct the 
cold air parallel to the ceiling. The thin layer of flowing cold air sticks to the ceiling and makes its way to 
the nearest wall. Had I not been told, I probably never would have found out about this fluid flow pheno-
menon, since air is transparent. Remaining is the question: why do air-conditioning people want to cool a 
room this way?  

A carpenter was making a new threshold for the front door of our house out of one piece of hard-
wood and I happened to come along when he had it upside down cutting a small groove parallel to the 
outside edge and a few inches in. My curiosity got the better of me. He explained that rain water would 

https://doi.org/10.4236/ns.2018.104015


 

 

https://doi.org/10.4236/ns.2018.104015 146 Natural Science 
 

flow along the top surface, which had a gentle slope to it, out away from the front door, go around two 
almost right angle bends and then flow upside down along the bottom surface back toward the house. 
Wood rot would eventually occur inside the house as a result. The groove’s purpose was to break the Ber-
noulli suction of the flow so that the water fell down to the ground before entering the house. He just knew 
to do that; Bernoulli’s name would have fallen on deaf ears. 

Return to the pitcher or coffee pot spout. Typically the shape is triangular as viewed from above and 
from both sides, or like a pyramid cut in half, causing the exiting fluid to be squeezed in two directions: 
horizontally and vertically. Consequently the speed is greatest at the spout’s tip. Speed is the enemy in this 
case because the lowest pressure will be at the tip of the spout. Low pressure can enable the thin flow to 
stick to the outside of the container and go down to the counter or table. 

6. UPWELLING BY OCEAN WAVES 
All properties of the surface gravity wave are known from observations to monotonically decrease in 

magnitude with increasing depth below the air-water interface, variations in pressure and particle velocity 
in particular, and to vanish at depths greater than or equal to about one wavelength. What is not known 
for sure theoretically is the exact decay rate or whether pressure variations decrease more rapidly than ve-
locity variations do or if both decay at the same (exponential) rate. Two different theories exist, an old one 
and a new one. 

Take a straight length of rigid pipe, open at both ends, and hold it fixed in the vertical position below 
the waves so that the upper end never becomes exposed to the air. At any time the Bernoulli suction at the 
top opening will exceed that at the bottom opening when waves are passing by, no matter which direction 
they travel. Flow inside the pipe will always be upward on the average therefore [6]. 

Proof of concept was obtained on a small scale in a swimming pool. A glass tube was held fixed verti-
cally with the lower end in a container of blue dye. When waves were made on the surface by oscillating a 
wooden paddle, blue dye shot up the tube. 

Among the ideas for larger scale applications, there is one for farming the ocean. Deploy rigid vertical 
pipes and let them drift with the currents. Wind waves will overtake them because they travel faster than 
the currents. They can be held in the vertical position by floats pulling upward on the tops of the pipes and 
weights pulling down on the bottom ends. So called “desert” areas of the open oceans are the logical places 
to put these pipes, because there is not much life going on there. Plankton sink when they die and dissolve 
when they sink. Thus nutrients are deposited below the light zone and can no longer be used in growing 
new plankton. By wave action the nutrients would be pumped back up into the sunlit waters to start a food 
chain. My understanding is that something like this idea is catching on with a few Japanese scientists.  

7. SHREDDING BERNOULLI’S LAW 
Before discussing how the applications of Bernoulli’s law can be widened by adding certain physical 

terms to it, one example of how it can be utterly destroyed by mathematics is presented. 
In the early theoretical history of the surface gravity wave, the equations of fluid motion were sub-

jected to a solution technique that had been successfully applied before in other fields, such as astronomy. 
Perturbation expansion is the name of the method. For my PhD dissertation I got a full exposure to these 
perturbation expansions in order to solve a problem (wave-wave interactions) during a two or three year 
period, which did not lead to one of my fondest memories from graduate school.  

In all the governing equations each variable, such as pressure, velocity,…, is expanded in a series of 
terms of what is presumed to be ever decreasing magnitude: zeroth order, first order, second order,…etc. 
[The constant is actually not a variable but it is called “zeroth order” here for illustration purposes, which 
does not affect the main thrust of the argument.] Then a new set of equations is set up which contain only 
all terms of the same order. Solutions are sought to these new equations and then they are added together 
to get the total solution. A priori there is no guarantee that the end solution will make any sense or that the 
series formed will even converge. But when faced with nonlinear equations to start with, there are not very 
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many options to choose from. 
It is very easy to explain how the perturbation crunching machine can shred Bernoulli’s equation: 

pressure equals a constant minus one half the fluid density times the square of the fluid speed. Mathemat-
ically each term in this equation has a different order. The constant is zeroth order, pressure is first order, 
the square of the speed is second order. Therefore, by using the perturbation technique each term of Ber-
noulli’s equation would end up in a different new equation. In so doing a beautiful expression of physics 
has been completely ripped apart. This was not done with malicious intent in the beginning. It was just 
that belief in the mathematics was so strong, and the motivation to get around the non-linearity was al-
ways there, of course. 

As it turns out now, there is a pathway to understanding several characteristics of the surface gravity 
involving linear equations [7]. And the new theory preserves the integrity of Bernoulli’s law. For example, 
pressure variations are predicted to decay with depth faster than velocity variations do. Classically both 
pressure and velocity variations decay exponentially and at the same rate. Observations will eventually sort 
this all out.  

8. FLOW PAST ONE OR TWO CYLINDERS 
Flow past a single cylinder is a text book problem in hydrodynamics. Here the light of Bernoulli’s law 

will be shined on this configuration [8]. In the text books velocity all by itself is quickly brought out for 
discussion from Laplace’s equation, using the potential flow method that was previously useful in electro-
magnetic theory. But any mention of pressure is hard to find in these books. Bernoulli’s law couples to-
gether pressure and velocity, which would seem to be a more reasonable starting position to approach the 
phenomenon at hand. What follows is the same procedure described above for the wing’s lift force. It is 
believed to be worth saying again. 

Next, add to Bernoulli’s law, which is one equation in two unknowns, a second equation in the same 
two unknowns, pressure and velocity. That second equation is the balance of forces on a fluid particle 
traveling along a curved streamline: centrifugal force equals a pressure gradient. By itself each equation is 
nonlinear. However, if one of the unknowns is eliminated between the two equations, a linear equation in 
one unknown is obtained. This is a rather striking result, and it works for pressure as well as velocity! One 
draw-back is that there is an unknown constant in the governing equation, the radius of curvature of the 
streamlines as a function of distance from the cylinder. But that inconvenience is minor compared to the 
great simplicity of linearity. And if there is no other way, the constant can be obtained from a good set of 
measurements in the future, streak photographs, for example. Then the equation can simply be integrated 
numerically. 

One theoretical result comes out without detailed knowledge of the radius of curvature function. 
Perturbations of the flow pressure, due to the presence of the cylinder, die away at a faster rate than do 
perturbations of velocity. Such a prediction will not be found in the fluid dynamics texts. They forecast 
that velocity variations fall off as the inverse square of the distance, but they are silent about the die off rate 
of the pressure variations. Also apparently the inverse square law for velocity has never been held up 
against measurements. 

What happens if two cylinders are held fixed and parallel in a uniform flow [9]? Without guidance 
from any theory, one can guess what will probably happen. Nothing if the cylinders are very far apart. 
When the cylinders are within the perturbation zones of each other, then the perturbed velocity between 
them is expected to be larger than it would be if there were only one cylinder present because the two per-
turbed velocities should add together to some extent. That would mean the pressure between them would 
be lower than if only one cylinder were present by Bernoulli’s law and also lower than on the opposite 
sides of the cylinders. Consequently the cylinders will feel a net force trying to pull them together. 

On the other hand, suppose the two cylinders touch together such that no fluid can flow between 
them. Then there will be a net force attempting to pull them apart. If they are not rigidly fixed in position 
and begin to move apart, and the space between them widens sufficiently, the net force will pull them back 
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together. Under the right conditions there is a possibility of an oscillation being set up, at least in theory. 
The rope snapping against the flag pole when the wind blows and there is no flag flying might be a familiar 
example. 

9. VENA CONTRACTA 
English for the Latin heading is “contracted vein”, and the Latin name suggests the observation is 

pretty old, going back at least to Roman times. Make a circular hole in the side and near the bottom of a 
large container of water, wine or whatever. A steady stream of fluid comes out and gets narrower as it 
goes. What causes the narrowing? Simple question. Answers given in the texts are not completely satisfac-
tory to me. There is no way to calculate the amount of fluid that will be collected in a given period of time 
unless this contraction can be understood. Several fields of study are still interested in this problem in-
cluding fluid mechanics, some branches of engineering and even medicine (because of strokes). 

My attempts to explain the narrowing stream occurred off and on over a number of years, and I was 
completely stuck for an answer, until I got an e-mail from my younger nephew. In order to cool the sur-
face of his grinding wheel, he squashed the end of a copper tube, which had a smaller diameter than the 
width of the wheel, thinking the water exiting an oval shaped opening in the tube would then flare out and 
cover the whole surface of the wheel. When the opposite thing happened, his frustration led to the e-mail. 
Instead of widening the stream immediately narrowed. It occurred to me later that surface tension might 
be having an important influence, because the effects of it increase as the radius of curvature decreases. At 
the two ends of the oval opening in the horizontal plane the radius of curvature of the tube was the smal-
lest, so surface tension would expect to be greater at those two places than at the top and bottom of the 
tube. 

For some reason this idea never occurred to me for fluid exiting a round hole. However, it makes 
sense that surface tension acting uniformly around the surface of a round stream could make it become 
narrower as it went by squeezing. To help along that explanation I added a surface tension term to Ber-
noulli’s law, which I don’t think had ever been done before, and the result got published [10]. 

10. ROLL WAVES 
Anybody who has watched rain falling on a sloping street has seen roll waves. I did not know they 

were called that until I was told of it at a pretty advanced age. Even most of those educated in fluid dy-
namics will not have run across the name because reading about the phenomenon is usually encountered 
in the field of hydraulic engineering.  

Since friction is such an important part of understanding these waves, and friction and Bernoulli’s law 
do not mix very well, then this discussion of problems related to Bernoulli’s law will be unexpected by 
many readers. Strictly speaking Bernoulli’s law is derived from the equations of motion in fluid mechanics 
books by first assuming there is no friction. 

Anyway, rain is falling on a sloping street and waves are going downhill. First impressions are that 
there are wave crests but no troughs, and the crests are strangely far apart with an approximately constant 
separation. How hard it rains and how steep the slope of the road is do not seem to matter. A straightfor-
ward question is: why can’t the water flow down in a layer of constant thickness? Since water in the crests 
is farther away from the effects of friction with the road, that water can travel faster than the water if the 
thickness of the layer were constant, and it may very well be that the total downslope flux of water is larger 
with waves than without them. There appears to be no law of physics that says this should be so, such as 
maximizing the flux of mass.  

My attempt to understand the roll wave began with Bernoulli’s law and added in a friction term [11]. 
A colleague told me that such a thing had been done before and in one of my nine fluid dynamics texts (by 
Milne-Thompson) I found a single page devoted to the topic. New was my application of this technique to 
the roll wave. Studying this problem analytically is fairly complicated, the details of which are not of inter-
est here. Nevertheless, Bernoulli’s law is very helpful in this case also. 
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11. TORNADO AND DOWNBURST 
Both phenomena are misunderstood for logical reasons. The downburst occurs very infrequently so 

data on them are extremely scarce. Tornadoes are more frequent but they usually overpower and destroy 
most instruments that occur in or are put in their path. Tornadoes have rotation but the down burst does 
not. Bernoulli’s law will be featured in both, although modified by the addition of a vertical acceleration 
term due to gravity and density differences. 

One successful tornado measurement event took place in South Dakota when a rugged squashed cone 
shaped housing, containing several instruments, was placed on a road in the path of a tornado and the 
tornado went right over it without any destruction, or even movement of the contraption along the road. 
Reported to the public immediately afterward, in Weatherwise magazine for May/June 2004, was the re-
markable drop in pressure as the tornado went by. Other properties were also measured, the article said, 
temperature and relative humidity, but they have not yet reached the public after so many years. That is a 
puzzle to me. My conjecture was that the air inside the tornado was cold and dry, but I have not found out 
if I am right. Cold and dry air is denser than the typically warm humid air of the environment and so it 
would fall down to the ground. 

In spite of the downburst being such a rare happening, the occurrence can leave a footprint lasting for 
forty years. And if my thinking is correct, some people, once they find out, might decide not to fly in 
planes anymore. 

In the mail one day, at least 15 years ago, arrived a photograph from a friend living in southwestern 
Colorado. Later I saw the scene first hand from my car on a drive north on a paved road. Within a forest of 
green trees was a roughly circular brown area of dead trees lying on the ground. This area was considera-
bly larger than that of my friend’s house, which was only a few miles to the south. 

What is one to conclude from this photograph? Probably there were no witnesses to the event, and 
nothing written up about it of either a scientific or popular nature. Extreme observations imply extreme 
explanations. A force strong enough to knock to the ground a bunch of live trees apparently took place. 
Tornadoes are capable of doing this, but they are not known to occur in southwestern Colorado. Also ob-
vious evidence of rotary motion was not present which all tornadoes have apparently. 

Suppose a blast of air comes straight down out of the sky with enough velocity to do the damage that 
exists on the ground according to the photograph. To get such a high velocity, in the range of several hun-
dred miles per hour probably, linear acceleration must have been involved over a large vertical distance 
with no horizontal rotation at all. Very cold dry air, denser than its surroundings, presumably did just that. 
An analytical description for this explanation is Bernoulli’s equation plus an acceleration under gravity 
term, which I don’t think has been done before [12]. 

Although the tornado kills people, so there is an urgency in the dealings with it, the physical under-
standing is still in a confused state. For example, generally it is believed that at the core of a tornado rising 
motion takes place. My conviction is just the opposite: falling motion should exist starting when the funnel 
cloud moves from the cloud base to the ground and afterwards as well. Admittedly my training in oceano-
graphy, in spite of being in one of the better graduate schools (Scripps), did not include a single lecture on 
meteorology (the 100 mile trip to LA was an impenetrable barrier). A most elementary model, predicated 
on the downward movement of relatively cold and dry air, has been offered in which Bernoulli’s law is an 
integral part [13]. 

12. CONCLUSION 
Eight different applications and adaptations of Bernoulli’s equation within the field of fluid dynamics 

for air and water motions have been summarized. My involvement in all of them took place in the past 50 
years or so. More work can be done on several of the applications to build up the earlier efforts. Particu-
larly experimental data are needed. Speculations suggest that extended explorations involving the interac-
tions between fluid flows and one or two cylinders could lead to practical results, perhaps deriving energy 
from the natural movements of the atmospheric winds and ocean waves or currents. 

https://doi.org/10.4236/ns.2018.104015
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