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ABSTRACT 
We report herein the design and synthesis of a series of novel fluoride-containing gossypol 
derivatives by the condensation reaction of gossypol with fluoride-containing aromatic 
amine. These fluoride-containing gossypol derivatives were characterized by IR, 1H-NMR 
and high resolution mass spectral data, then screened as antitumor agents against three 
human cancer cell lines (HeLa, A-549 and BGC-823) and a normal cell line (VEC) in vitro 
by using MTT cell proliferation assays. Results revealed that compounds 3a, 3c and 3f exhi-
bited superior anticancer activity against HeLa, compounds 3b,3c, 3e and 3f exhibited supe-
rior anticancer activity against A-549, compounds 3b, 3c and 3f exhibited superior anti-
cancer activity against BGC-823 compared to gossypol. In particular, fluorine substituent at 
the para positions of the phenyl ring showed remarkable inhibitory effects on HeLa (3c: IC50 
= 14.2 μM, 3f: IC50 = 8.34 μM), A-549(3c: IC50 = 6.32 μM, 3f: IC50 = 9.76 μM) and BGC-823 
cells (3c: IC50 = 8.62 μM, 3f: IC50 = 4.36 μM). Furthermore, all the compounds 3a-3f exhi-
bited lessened cytotoxicity against VEC compared to gossypol. 

 

1. INTRODUCTION 
Gossypol, the polyphenolic constituent isolated from cottonseeds, has been used as a male antifertility 

drug for a long time, and has been demonstrated to exhibit excellent anti-tumor activity towards multiple 
cancer types [1]. Up to now, gossypol has been showed to exhibit anti-tumor activities towards a wide 
range of tumors, such as Ehrlich ascites tumor cells [2], SW-13 adrenocortical carcinoma cells [3], hor-
mone-dependent and hormone-independent breast carcinoma [4, 5], colon carcinoma cell line HT-29 and 
LoVo [6], human pancreatic cancer cell line [7], prostate cancer cell lines [8], head and neck cancer cells 
[9, 10]. In addition, many synthesized gossypol derivatives and analogues possess disease-inhibiting activi-
ties [11], as anti-parasitic [12, 13], anti-malarial [14-16], anti-HIV [17-19] and anticancer [20-23]. Deriva-
tives such as gossypol Schiff bases prepared by modifying gossypol’s aldehyde groups were supposed to 
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reduce its host toxicity (Figure 1) while retaining or enhancing its therapeutic effects [24]. 
Fluorine substituents have become a widespread and important drug component. Organofluorine af-

fects nearly all physical and adsorption, distribution, metabolism, and excretion properties of a lead com-
pound. Its inductive effects are relatively well understood and enhancing bioavailability [25-27]. 
Top-selling fluorinated pharmaceuticals include the antidepressant fluoxetine (Prozac), the cholester-
ol-lowering drug atorvastatin (Lipitor), and the antibacterial ciprofloxacin (Ciprobay) (Figure 2) [28]. 

The aforementioned findings stimulated our interest in designing and synthesizing a series of fluo-
ride-containing gossypol Schiff base derivatives (Figure 3) which were anticipated to be a much higher 
anti-tumor activity yet lower systemic toxicity than gossypol. The activity of the target compounds were 
evaluated by three human cancer cell lines (HeLa, A-549 and BGC-823) and a normal cell line (VEC) in 
vitro by using MTT cell proliferation assays. To the best of our knowledge, the biological evaluation of 
fluoride-containing gossypol derivatives for in vitro anti-tumor activity is not reported [11]. 
 

 
Figure 1. Chemical structure of gossypol (The highlighted aldehyde 
groups were supposed to be toxicity). 

 

 
Figure 2. Major fluorinated drugs. 

 

 
Figure 3. Designing of fluoride-containing gossypol derivatives. 

HO

HO

OH

OH
CHO

CHO

OH

OH

toxicity

toxicity

O
H
N

F3C
HCl.

Prozac

NN
H

F

O

COO-

OHOH

1/2 Ca2+.

Lipitor

NN
HN

F
O

OH

O

Ciprobay

HO

HO

OH

OH
CHO

CHO

OH

OH
HO

HO

OH

OH
OH

OH

 *higher anti-tumor activity
*lower systemic toxicity

fluoride-containing gossypol derivativesgossypol

fluorine

fluorine

https://doi.org/10.4236/ns.2017.99030


 

 

https://doi.org/10.4236/ns.2017.99030 314 Natural Science 
 

2. RESULTS AND DISCUSSION 
2.1. Synthesis of Gossypol Derivatives 

Fluoride-containing gossypol derivatives 3a-3f were prepared by the condensation reaction of gossy-
pol1 with fluoride-containing aromatic amine 2a-2f (Scheme 1). 

Reaction conditions: For preparation of fluoride-containing derivatives 3. The gossypol (0.001 mol) 
dissolved in an excess of methanol (40 ml) was mixed with 0.004 mol suitable compound as shown in Ta-
ble 1 and the stirrer was added later. Next, put the reactor into the heat collection type constant tempera-
ture heating magnetic stirrer with 65˚C, the mixture was heated and refluxed for 4 hours to precipitate the 
yellow solid which was recovered by filtration and washed with petroleum ether-ethyl acetate (16:1). Then, 
the precipitate was purified by recrystallization from petroleum ether-ethyl acetate; For Compound 3, the 
structure can be interpreted by 1H NMR (Figure 4) [22]. 
 

 
Scheme 1. Synthesis of fluoride-containing gossypol derivatives 3a-3f. 

 

 
Figure 4. Attribution of proton NMR signals. 

 
Table 1. The suitable compounds required for the preparation of fluoro-gossypol derivatives. 
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8,8'-bis((E)-(2-fluorophenylimino)methyl)-5,5'-diisopropyl-3,3'-dimethyl-2,2'-binaphthyl-1,1',6,6',7,7'
-hexaol (3a): yellow solid, Yield: 0.61 g, yield: 75%; mp, 255˚C - 257˚C; IR (KBr, cm−1): 3352, 3102, 1580, 
1231, cm−1; 1H NMR (400 MHz, CDCl3): δ = 15.25 (d, J = 11.2 Hz, 2H, H-f), 10.28 (d, J = 11.2 Hz, 2H, 
H-h), 8.58 (s, 2H, H-b), 8.28 (s, 2H, H-e), 7.54 (s, 2H, H-g), 7.30 - 7.60 (m, 8H, H-, j, k, l, m), 3.81 (m, 2H, 
H-d), 2.05 (s, 6H, H-a), 1.52 (d, 12H, H-c); 13C NMR (100 MHz, CDCl3): δ = 173.1, 160.8, 158.5, 153.7, 
150.3, 146.1, 136.3, 132.5, 128.9, 127.9, 121.1, 120.3, 119.8, 119.8, 119.1, 117.1, 116.9, 116.7, 115.4, 105.7, 
26.3, 20.1, 20.2 ppm; HRMS EI (m/z): calcd for C42H38F2N2O6, 704.2695; found, 704.2698. 

8,8'-bis((E)-(3-fluorophenylimino)methyl)-5,5'-diisopropyl-3,3'-dimethyl-2,2'-binaphthyl-1,1',6,6',7,7'
-hexaol (3b): yellow solid, Yield: 0.58 g, yield: 71%; mp, 263˚C - 265˚C; IR (KBr, cm−1): 3357, 3100, 1580, 
1223, cm−1; 1H NMR (400 MHz, CDCl3): δ = 15.12 (d, J = 12.0 Hz, 2H, H-f), 10.20 (d, J = 12.0 Hz, 2H, 
H-h), 8.57 (s, 2H, H-b), 8.27 (s, 2H, H-e), 7.56 (s, 2H, H-g), 7.31 - 7.62 (m, 8H, H-i, k, l, m), 3.80 (m, 2H, 
H-d), 2.05 (s, 6H, H-a), 1.52 (d, 12H, H-c); 13C NMR (100 MHz, CDCl3): δ = 173.0, 160.8, 158.5, 153.6, 
150.1, 146.2, 136.3, 132.5, 128.9, 127.9, 121.3, 120.3, 119.1, 119.0, 118.9, 117.1, 116.9, 116.2, 115.2, 105.6, 
26.2, 20.1, 20.1 ppm; HRMS EI (m/z): calcd for C42H38F2N2O6, 704.2695; found, 704.2698. 

8,8'-bis((E)-(4-fluorophenylimino)methyl)-5,5'-diisopropyl-3,3'-dimethyl-2,2'-binaphthyl-1,1',6,6',7,7'
-hexaol (3c): yellow solid, Yield: 0.69 g, yield: 85%; mp, 265˚C - 267˚C; IR (KBr, cm−1): 3351, 3188, 1580, 
1210, cm−1; 1H NMR (400 MHz, CDCl3): δ = 14.94 (d, J = 11.6 Hz, 2H, H-f), 10.31 (d, J = 11.6 Hz, 2H, 
H-h), 8.54 (s, 2H, H-b), 8.24 (s, 2H, H-e), 7.52 (s, 2H, H-g), 7.29 - 7.57 (m, 8H, H-i, j, l, m), 3.80 (m, 2H, 
H-d), 2.04 (s, 6H, H-a), 1.51 (d, 12H, H-c); 13C NMR (100 MHz,CDCl3):δ = 173.6, 160.9, 158.5, 153.9, 
150.1, 146.1, 136.3, 132.5, 128.9, 127.8, 121.1, 119.8, 119.8, 117.1, 116.9, 116.7, 115.4, 105.6, 26.6, 20.2, 20.2 
ppm; HRMS EI (m/z): calcd for C42H38F2N2O6, 704.2695; found, 704.2698. 

5,5'-diisopropyl-3,3'-dimethyl-8,8'-bis((E)-(2-(trifluoromethyl) phenylimino)methyl)-2,2'-binaphthyl- 
1,1',6,6',7,7'-hexaol (3d): yellow solid, Yield: 0.53 g, yield: 64%; mp, 251˚C - 253˚C; IR (KBr, cm−1): 3360, 
3120, 1620, 1330, cm−1; 1H NMR (400 MHz, CDCl3): δ = 15.21 (d, J = 11.0 Hz, 2H, H-f), 10.10 (d, J = 11.0 
Hz, 2H, H-h), 7.74 (s, 2H, H-b), 7.62 (s, 2H, H-e), 7.68 - 7.26 (m, 8H, H-j, k, l, m), 5.77 (s, 2H, H-g), 3.76 - 
3.66 (m, 2H, H-d), 2.15 (s, 6H, H-a), 1.57 - 1.51 (m, 12H, H-c); 13C NMR (100 MHz, CDCl3), δ 175.0, 
154.8, 149.5, 146.8, 138.6, 133.5, 133.3, 130.2, 129.5, 127.1, 127.1, 127.0, 126.9, 125.3, 125.0, 122.3, 121.2, 
120.9, 119.0, 118.9, 116.4, 114.2, 106.4, 27.6, 20.2, 20.2, 20.1 ppm; HRMS EI (m/z): calcd for C44H38F6N2O6, 
804.2630; found, 804.2634. 

5,5'-diisopropyl-3,3'-dimethyl-8,8'-bis((E)-(3-(trifluoromethyl)phenylimino)methyl)-2, 2'-binaphthyl- 
1,1',6,6',7,7'-hexaol (3e): yellow solid, Yield: 0.68 g, yield: n83%; mp, 262˚C - 264˚C; IR (KBr, cm−1): 3360, 
3120, 1620, 1328, cm−1; 1H NMR (400 MHz, CDCl3): δ = 15.02 (d, J = 11.7 Hz, 2H, H-f), 10.14 (d, J = 11.7 
Hz, 2H, H-h), 7.79 (s, 2H, H-b), 7.65 (s, 2H, H-e), 7.54−7.41 (m, 8H, H-i, k, l, m), 5.79 (s, 2H, H-g), 3.77 - 
3.69 (m, 2H, H-d), 2.16 (s, 6H, H-a), 1.58 - 1.53 (m,12H, H-c); 13C NMR (100 MHz, CDCl3), δ 175.2, 
153.5, 149.5, 146.9, 140.2, 133.3, 133.1, 132.7, 132.3, 132.0, 130.5, 130.1, 129.6, 124.9, 122.2, 122.1, 122.1, 
121.2, 119.0, 116.4, 114.9, 114.9, 114.1, 105.7, 27.6, 20.3, 20.2, 20.1 ppm; HRMS EI (m/z): calcd for 
C44H38F6N2O6, 804.2630; found, 804.2634. 

5,5'-diisopropyl-3,3'-dimethyl-8,8'-bis((E)-(4-(trifluoromethyl)phenylimino)methyl)-2,2'-binaphthyl-
1,1',6,6',7,7'-hexaol (3f): yellow solid, Yield: 0.51 g, yield: 62%; mp, 261˚C - 263˚C; IR (KBr, cm−1): 3365, 
3129, 1622, 1335, cm−1; 1H NMR (400 MHz, CDCl3): δ = 14.89 (d, J = 12.0 Hz, 2H, H-f), 10.15 (d, J = 12.0 
Hz, 2H, H-h), 7.77 (s, 2H, H-b), 7.65 - 7.55 (m, 6H, H-e, i, j, l, m), 7.37 (d, J = 8.4 Hz, 4H), 5.75 (s, 2H, 
H-g), 3.78 - 3.68 (m, 2H, H-d), 2.16 (s, 6H, H-a), 1.58 - 1.55 (m, 12H, H-c); 13C NMR (100 MHz, CDCl3), 
13C NMR (100 MHz,CDCl3): δ = 175.5, 153.1, 149.8, 149.6, 146.9, 142.4, 140.9, 133.4, 130.2, 129.7, 127.2, 
127.1, 127.1, 119.0, 117.9, 116.5, 105.8, 105.8, 27.6, 20.3, 20.2, 20.1; HRMS EI (m/z): calcd for C44H38F6N2O6, 
804.2630; found, 804.2634. 

2.2. Anti-Tumor Activities 

All the fluoride-containing gossypol derivatives were screened for in vitro cytotoxicity against three 
human cancer cell lines (HeLa, A-549 and BGC-823) and a normal cell line (VEC) by MTT assay. In vitro, 
the cytotoxic activities of gossypol and fluoride-containing gossypol Schiff base derivatives were deter-
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mined by the MTT cytotoxicity assay, which was performed in 96-well plates. The tumor cell line panel 
consisted of HeLa (human cervical carcinoma), A-549 (human lung carcinoma), BGC-823 (human gastric 
carcinoma), VEC (human vascular endothelial cells) (final concentration in the growth medium was (2 - 
4) × 104/mL). MTT solution (20 μL/well) was added after cells were treated with drug for 48 h, and cells 
were incubated for a further 4 h at 37˚C. The purple form azan crystals were dissolved in 150 μL DMSO. 
After 5 min, the plates were read on an automated micro plate spectrophotometer at 570 nm. Assays were 
performed in triplicate in three independent experiments. The concentration required for 50% inhibition 
of cell viability (IC50) what was calculated. In all of these experiments, three replicate wells were used to 
determine each point. 

As shown in Table 2, it was found that substituent changes on the gossypol’s aldehyde groups have a 
great influence on the normal cells activity (3a - 3f), which exhibited lessened cytotoxicity against normal 
cells (VEC). The data reveal that compounds 3a, 3c and 3f exhibited superior anticancer activity against 
HeLa, compounds 3b, 3c, 3e and 3f exhibited superior anticancer activity against A-549, compounds 3b, 
3c and 3f exhibited superior anticancer activity against BGC-823 compared to gossypol. In particular, flu-
orine substituent at the para positions of the phenyl ring showed remarkable inhibitory effects on HeLa 
(3c: IC50 = 14.2 μM, 3f: IC50 = 8.34 μM), A-549 (3c: IC50 = 6.32 μM, 3f: IC50 = 9.76 μM) and BGC-823 cells 
(3c: IC50 = 8.62 μM, 3f: IC50 = 4.36 μM), which represented superior antitumor activity compared to gos-
sypol (IC50 = 23.3 μM against HeLa, IC50 = 19.1 μM against A-549, IC50 = 17.1 μM against BGC-823,), re-
spectively. Moreover, fluoride-containing gossypol derivatives 3c and 3f exhibit good safety profiles 
(IC50 > 100 μM against VEC). 

3. CONCLUSION 
In summary, a series of novel fluoride-containing gossypol Schiff base derivatives were synthesized 

and tested for their in vitro cytotoxic activities against three human cancer cell lines(HeLa, A-549 and 
BGC-823) and a normal cell line (VEC) by using MTT cell proliferation assays. All the compounds exhi-
bited lessened cytotoxicity against normal cells (VEC). Results revealed that compounds 3a, 3c and 3f ex-
hibited superior anticancer activity against HeLa, compounds 3b, 3c, 3e and 3f exhibited superior anti-
cancer activity against A-549, compounds 3b, 3c and 3f exhibited superior anticancer activity against 
BGC-823 compared to gossypol. In particular, fluorine substituent at the para positions of the phenyl ring 
showed remarkable inhibitory effects on HeLa (3c: IC50 = 14.2 μM, 3f: IC50 = 8.34 μM), A-549 (3c: IC50 = 
6.32 μM, 3f: IC50 = 9.76 μM) and BGC-823 cells (3c: IC50 = 8.62 μM, 3f: IC50 = 4.36 μM). Moreover, fluo-
ride-containing gossypol derivatives 3c and 3f exhibit good safety profiles (IC50 > 100 μM against VEC). 
And thus as anti-cancer drug, fluoride-containing gossypol Schiff base derivatives has a better application 
prospects. Studies to determine the in vivo pharmacokinetics and efficacy of compounds 3c and 3f against 
some selected tumor cell lines are currently underway. 
 
Table 2. The inhibiting effect of compounds 3a - 3f to HeLa, A-549 and BGC-823 cell lines in vitro. 

Compd. 
Normal cells IC50/μMol·L−1 Cancer cells IC50/μMol·L−1 

VEC HeLa A-549 BGC-823 
3a 83.4 19.6 20.7 19.1 
3b 75.2 29.1 15.5 11.4 
3c >100 14.2 6.32 8.62 
3d 89.8 33.7 22.3 22.2 
3e 98.4 23.6 12.7 18.9 
3f >100 8.34 9.76 4.36 

gossypol 36.5 23.3 19.1 17.1 
aIC50 values were the means of three independent experiments run in duplicate. 
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