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ABSTRACT 
The objective of this paper is to calculate the 
third virial coefficient in Hartree approximation, 
Hartree-Fock approximation and the Montroll- 
Ward contribution of plasma by  using the 
Green’s function technique in terms of the inte- 
raction parameter ξ , and used the result to 
calculate the quantum thermodynamic functions 
for one and two component plasma in the case  

of abnλ 3 1 , where ab
ab

h
m KT

λ
2

2  = is the thermal  

De Broglie wave-length. We compared our re- 
sults with others. 
 
KEYWORDS 
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1. INTRODUCTION 
The thermodynamic functions are of great interest for 

understanding the properties of plasma such as the ex- 
cess free energy and the pressure. An accurate descrip- 
tion of the pressure, volume and temperature (P-V-T) 
behavior represents one of the most important goals of 
statistical thermodynamics. Besides simulations, the eq- 
uilibrium behavior can be determined either from the 
equation of state (EOS) or from virial expansion. The 
properties and the behavior of many particle systems 
with Coulomb interactions are essentially determined by 
the long range character of the forces between the charg- 
ed particles. Therefore, systems with Coulomb interac- 
tions are of special interest and importance in statistical 

physics [1]. 
Many authors have calculated the excess free energy, 

Ebeling et al. [2] have calculated the virial expansion of 
the excess free energy until the second virial coefficient 
from the pair distribution function. Hussein and Eisa [1] 
calculated the quantum excess free energy for two com- 
ponent plasma. All these researches are used the method 
of Slater Sum in quantum statistical mechanics. Also, the 
thermodynamic functions which are calculated from 
these researches near to the classical limit. In this paper 
we use the Green’s function technique, which means that 
we have to start from the grand canonical ensemble. To 
our knowledge, no attempt to find the thermodynamic 
function until third virial coefficient by using Green’s 
function technique for one and two component plasma. 
The method of Green’s functions is one of the most po- 
werful techniques in quantum statistical physics and 
quantum chemistry. The main advantage of Green’s func- 
tions is that one can formulate exact equations of ap- 
proximations and set up consequent schemes to gain any 
higher approximation [3]. Another advantage of such 
Green’s functions is the existence of highly effective me- 
thods for their determination, such as Feynman diagram 
techniques, functional techniques and the formulation of 
equations of motion [4]. The single particle Green’s 
function in fact contains more detailed information than 
the total energy alone, to the extent that the local Slater 
correlation potential can be obtained from it [5]. Many 
authors used the method of Green’s functions such as 
Dewitt et al. [6] and have calculated the low density ex- 
pansion of the equation of state for a quantum electron 
gas. Riemann et al. [7] have calculated the equation of 
state of the weakly degenerate one-component plasma 
(OCP). 

The model under consideration is the two-component 
plasma (TCP); i.e. neutral system of point like particles 
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of positive and negative charges which antisymmetric 
with respect to the charges e ie e e= − = −  and therefore 
symmetrical with respect to the densities e in n n= = . 
Also, we used the one component plasma model (the 
model of identical point charges immersed in a uniform 
background, while the continuous charge density of the 
background is chosen to be equal and opposite to the 
average charge density of the point charges, so that the 
system as a whole is electrically neutral) for example the 
electron gas i ee e e= = −  and therefore symmetrical 
with respect to the mass e im m m= = . 

This paper is organized as follows: In Section 2, we 
present the Green’s function. In Section 3, we calculate 
the excess free energy until the third virial coefficient for 
one and two component plasma in quantum form. Also, 
we calulate the general formula of the third virial co- 
efficient in Hartree-Fock approximation. Finally, in Sec- 
tion 4, we calculate the pressure for one and two com- 
ponent plasma until the third virial coefficient. 

2. THE GREEN’S FUNCTION 
The n-particle Green’s function is defined by [8] in the 

following form 

( )
( ) ( ) ( ) ( ) ( )

12 2
ˆ 1 1

n

n

G n

i T n n nψ ψ ψ ψ+ +

=

− +



 

    (1) 

where, 

( ) ( )
( ) ( )
( ) ( )

12

12

 1 2 , 0,ˆ 1 2
 2 1 ,   0,

t
T

t

ψ ψ
ψ ψ

ψ ψ

+
+

+

 >= 
± <

       (2) 

12 1 2 21.t t t t= − = −              (3) 

T̂  is the time-ordering operator and { }1 1 11 , ,r t σ=  
with 1r  is the vector of location, 1t  is time, 1σ  is   
z -projection of spin. 

So we can defined the greater and lesser Green’s func- 
tion by 

( ) ( ) ( )
( ) ( ) ( )

 
1 2 12

 
1 2 12

, , 1 2 ,

, , 2 1 .

G x x t

G x x t

ψ ψ

ψ ψ

> ∗

< ∗

=

=
       (4) 

In the Hartree and the Hartree-Fock approximation the 
two particle Green’s function is given by 

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

2

2

1234 14 23 ,

1234 14 23 13 24 .

H

HF

G G G

G G G G G

=

= ±
    (5) 

Or the variational representation [8] 

( ) ( ) ( ) ( )
( )2

14
1234 14 23 ,

32eff

G
G G G

V
δ
δ

=       (6) 

where the polarization function ( ) ( )
( )
14

12
32ab eff

G
i

V
δ
δ

π = ±   

and ( )32effV  is the effective potential. 
Also the three particle Green’s function is defined by 

[8] 

( ) ( ) ( )
( ) ( ) ( ) ( )

3 2

2 2

123456 16 2345

15 2346 14 2356 .

G G G

G G G G

=

± +
 (7) 

3. THE EXCESS FREE ENERGY 
The excess free energy corresponds to the part of the 

free energy change in the real system that arises from 
interactions among ions [9]. The excess free energy exF  
can be calculated from the mean value of the potential 
energy according to a general quantum statistical formula 
with the coupling parameter λ  in the following form 
[10] 

( )1

0

d  .ex

N
F v tλ λ

λ
= ∫             (8) 

where 

( ) ( ) ( )     .
N ab abc

v t v t v t= + +       (9) 

( )
( )

( ) ( )1 2 2
4321

1  d d 12 1234 .lim2 abab c
ab

v t r r v G= ∑∫    (10) 

( )
( )

( ) ( )1 2 3 3
654321

 d d d 123 123456 .lim6 abcabc
abc

iv t r r r v G−
= ∑∫  

(11) 

( )

2 1

2 1 1

  , 0 1,
lim ,    , 

n i i

n j j j

x x i n
t t t t j

− +

+

→ ≤ ≤ −=  → > ∀

      (11.a) 

( ) 
ab

v t  and ( ) 
abc

v t  are the mean interaction po- 
tential for two and three particle respectively. 

After performing the integration with respect to λ  in 
Equation (8) we can get 

3

 , 
12π

ex
ab abcF VkT B Bκ 

= − + + + 
 

       (12) 

where the second virial coefficient is given by [4] 

( )

( ) ( ) ( )

3 3

,

33
2 2

1 12π ln
6 2

3 9 9
12π 8 2 1 4 2 12 2

ab a b ab ab ab ab
a b

a a
ab ab

a a

B n n K

n
s s

λ ξ κλ ξ

κ κλ κλ

  = − +    
 Λ

+ − + 
+ +  

∑


 

(13) 
and 

( )
( ) ( )1 2 3 1 2 3 3

654321
d d d 123456lim6abc abc

abc

iB r r r v r r r G= − ∑∫ (14) 

Now we will calculate the third virial coefficient; for 
Coulomb systems it is useful to apply, instead of v , the 
screened potential sv  in Eq.14 for three particle which 
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is given by the following form 

( ) ( )
( ) ( ) ( )4 5 6

 123 123

d d d 124 456,4 5 6 563

s
abc abc

S
abd def efc

def

v v

r r r v v+ + +

=

+ π∑∫
 (15) 

Then we can get the Eq.14 in the form 

;H HF S
abc abc abc abcB B B B= + +          (16) 

where, 

( )
( ) ( )1 2 3 3

654321
d d d 123 12,34,56lim6

H H
abc abc

abc

iB r r r v G−
= ∑∫  (17) 

( )
( ) ( ) ( ){

( ) ( ) ( ) ( )}
1 2 3

654321
d d d 123 16 π 12lim6
15 π 23 14 π 13 ,

HF
abc abc ab

abc

bc ac

iB r r r v iG

iG G

= − −

+

∑∫


 

(18) 
and 

( ) ( )

( ) ( ) ( )

1 2 3 4 5 6

3

1 d d d d d d 123 124
6

π 456,4 5 6 123 123456

S
abc abc abd

abc

S
def abc

B r r r r r r v v

v G+ + +

=

×

∑∫

 

(19) 
 , abc ab bc acv v v v= + +            (20) 

where ( ) 2 3, , , π , 12 , , , , ,  S H H H HF S
ab abc abc def abc abc abcv v v G G G B B B  

are the binary potential, the triplet potential, the triplet 
screened potential, the triplet polarization function, one 
particle Green’s function, the two particle Green’s func- 
tion in Hartree approximation, the three particle Green’s 
function, the triplet Hartree term, the triplet Hartree-Fock, 
the triplet screened respectively. 

3.1. The Hartree Term of Babc 
By substituting from Eq.5 and 7 into Eq.17 then the 

Hartree term of the quantum third virial coefficient H
abcB  

becomes 

( )

( ) ( ) ( ) ( ) ( ) ( ){
( ) ( ) ( )}

1 2 3d d d 123
6

16 25 34 15 26 34

14 26 35

H
abc abc

abc

iB r r r v

G G G G G G

G G G

−
=

±

+

∑∫
 (21) 

By taking the inverse Fourier transformation of the 
above equation and making use of the Wigner distribu- 
tion function [4]; 

( ) ( )

( ) ( )

1
1 1 1

2
2 2 2

d
 ,

2π
d

 .
2π

a

b

G p i f p

G p i f p

ω
ω

ω
ω

= ±

= ±

∫

∫
          (22) 

and using Equation (20) we obtain 

( ) ( ) ( )( )0 0 0 .
6

H
abc a b c ab bc ac

abc

iB n n n v v v= + +∑     (23) 

where the number density 

( )
( )

( )3

d , , .
2π

a a
pn R t f p Rt= ∫         (24) 

Eq.23 is vanishes for example for one component 
plasma such as the electron gas. 

3.2. The Hartree-Fock Term of Babc 
The polarization function is defined random phase ap- 

proximation by 

( ) ( )  π  12 21 ,ab ab a bi G Gδ < <= ±          (25) 

By substituting from Eq.25 into Eq.18 we can get the 
Hartree-Fock term of the quantum third virial HF

abcB  as 
follow 

( )

( ) ( ) ( ) ( )   

3 2 1 d d
2

1 1 12 21 13

HF
abc a abc

a

a a a

B s r tv

G G G< < <

= +

−

∑ ∫ (26) 

The inverse Fourier transform of this equation with the 
help of the Eq.22 gives 

( )
( )
( ) ( ) ( ) ( )

1 2 3
9

1 2 1 2 3

d d d3 2 1
2 2π

,

HF
abc a

a

aa a a a

P P P
B s

v p p f p f p f p

= +

−

∑ ∫
 

(27) 
where, af  and aav  are Fermi functions and the Fourier 
transform of Coulomb potential which is defined by 

( )

2

2
1 2

 a
aa

e
v

D p p KT
=

−


           (28) 

with rD ε ε=
 

 is the dielectric constant where , rε ε


 
are the vacuum and the relative dielectric constant. 

We assume that 

( )
( )

( ) ( ) ( ) ( )1 2 3
1 2 1 2 39

d d d
,

2π
aa a a a

P P P
I v p p f p f p f pα α = −∫

 
(29) 

By expanding ( ) ( )1 2,a af p f p  and ( )3af p  in po- 
wers of eα  and using the spherical polar coordinates 
(see Appdenix A) then 

( )( )( )
( )

( ) ( ) ( )1 2 31 2 3

1 2 3

2 2 2

4

`

3 2
1, 1 1 32 1

2 1 2 1 2 13
2 4 2π π

1 1
d , `

a b c a b cHF
abc

abc

r r rr r r

r r r

s s s e e e
B

D KT

e e
rr r

α α
α

α
+ +

−∞
= = =

+ + +
=

− −
×

∑
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(30) 
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Then 

( )( )( )
( )

( ) ( )
2 2 2

 2  
1 2 1 24

2 1 2 1 2 13 d ,` `
2 4 2π π

a b c a b cHF
abc

abc

s s s e e e
B I I

D KT
α

α α α−−∞

+ + +
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               (31) 

let 

( ) ( ) ( ) 2  
1 2 1 2 d .` `HFK I I

α
α α α α−−∞

= ∫                               (32) 

The calculation of ( )HFK α  analytically, gives 

 

( )
( ) ( ) ( ) ( )

( ) ( ) ( )
( )

[ ]( ) ( )

2
1 1

1 1

1 1 1

21, 1, 1

1 1

1 1 1
2  1

a a

a

k kk k
a

HF k k

k k k
k k k

ak k k

e e
K

k k k

k
k k e

k k k k k

α α

α

α
α

α

′′ ′′+ +
∞

′′= =

′ ′′+ + +
∞ ′ ′′+ +

′ ′′= = =

  − −  =   ′′ ′′    


′ − − −
′− + − 

′ ′′ ′′+ 


∑ ∑

∑

            (33) 

By substituting from Eq.33 into Eq.31 then we get 

( )( )( )
( )

( ) ( ) ( ) ( )

( ) ( ) ( )
( )

[ ]( ) ( )

2
1 12 2 2

4 1 1

1 1 1

21, 1, 1

1 12 1 2 1 2 13
2 4 2π π

1 1 1
2  1

a a

a

k kk k
aa b c a b cHF

abc abc k k

k k k
k k k

ak k k

e es s s e e e
B

k k kD KT

k
k k e

k k k k k

α α

α

α

α

′′ ′′+ +
∞

′′= =

′ ′′+ + +
∞ ′ ′′+ +

′ ′′= = =

  − −+ + +   =   ′′ ′′    


′ − − −
′− + − 

′ ′′ ′′+ 


∑ ∑ ∑

∑



      (34) 

 

where, ( ) 
1 2 ,`I α−  ,V  , , , ,a a as Kα µ  and T  are the  

Fermi integral, the volume, the spin projection, the 
degeneracy parameter, the chemical potential, the Boltz- 
mann’s constant and the absolute temperature respec- 
tively. 

Then we can written the third virial coefficient in the 
following form 

( )

( )( )

( )( )( )

6
6

3 3

2 4

6

27
8 4π 16π π

1 11 3 1
2 2 1 2 1 2 112 2 6 3

2
2 1 2 1 2 19 3

HF
abc

a a b

a a b

a b c

a b c

B KT

n n n
s s s

n n n
s s s

κΛ
= ×

  Λ Λ+
− +   + + +  

Λ
− 

+ + + 

 

(35) 

3.3. The Screened Contribution  
of Babc 

By substituting from Eqs.6 and 7 into Eqs.19 we can 
rewrite the screened quantum third virial S

abcB  until first 
three terms in the following form 

( ) ( )

( ) ( ) ( ) ( ) ( )

1 2 3 4 5 6
1 d d d d d d 123 124
2

π 456,4 5 6 123 16 25 34 ,

S
abc abc abd

S
def abc

B r r r r r r v v

v G G G+ + +

= ∫   (36) 

by using the pair potential and pair polarization function 
then 

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

1 2 3 4 5 66 d d d d d d 12 24

23 56 65 16 25 34

S
abc ab bd

S
bc

B r r r r r r v v

v G G G G G

= ∫   (37) 

Taking the inverse Fourier transformation of Eq.37 
and using Eq.20, where  

( ) 2

4π a b
ab

e e
v p

p
=  

is the Fourier transform of binary potential then we get in 
the weakly degenerate case or low degeneracy limit 
( )1α −  and the case of high temperature limit or low 
density ( )3 1  nλ   in the following form 

( )

( )
( )( )

2

2 2
1 1

0 2 2 2 2 2
1 1

96π

 1;3 2; 4 d
,

 1;3 2; 8

S
abc a b c a b c

abc

ab

a aaa

B n n n e e e

F L L

L L F L

β

λ

κ λ

∞

=

−

+ −

∑

∫
∑ 

  (38) 
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where ( )1 221 4πa a
d

ne
r

κ β= =  is the inverse Debye length and 1 1F  denotes the confluent hypergeometric function. 

The analytical calculation of the integral from Eq.38 is evaluated by solving this integral by parts and using Gamma 
functions in the regions of small κλ  (low densities, high temperatures) then we have 

( )
( ) ( ) ( )( )2 2 26

3

864π 23 π 397π 3 .
480 384004π

S
abc ab bc acB KTκ κλ κλ κλ

 
= − + + 

 
            (39) 

By substituting from Eqs.13, 23, 35 and 39 into Eq.12 we get the excess free energy until the third virial coefficient 
for one component plasma as follow 

( ) ( ) ( ) ( )

( )
( )

33 3
2 22 3 3

6
3 6 3 6

3 3

2

1 1 3 9 9 2π ln
12π 6 2 12π 8 2 1 4 2 12 2

1 1 272π ln
6 2 8 4π 16π π

1 11 3 1
2 2 112 2 6 3

ex e e
ee ee ee ee ee ee eee

e ee ee ee eee

e

e

n
F VKT n K

s s

n K KT

n
s

κ κλ ξ κλ ξ κλ κλ

λ ξ κλ ξ κ

  Λ  = − + − + + − +     + +      
  Λ + − + −    

Λ +
⋅ − + + 

∑

∑





( )( ) ( )( )( )

( )
( )

4 6

26
3

2
2 1 2 1 2 1 2 1 2 19 3

864π 23 π 397π 3 .
480 384004π

e e e e e

e e e e e

ee

n n n n n
s s s s s

KTκ κλ

  Λ Λ
−  + + + + +  

 
− −  

 

 (40) 

where K


 is the quantum virial function which given by [4] and 
1 22

2π
h
mkT

 
Λ =  

 
 is the normalized thermal wave 

length. 
Similarly, we can write the excess free energy until the third virial coefficient for two component plasma as follow 

( )

( ) ( )

( ) ( ) ( )

33
3

3 3
3 3

33
2 2 2

1 2π ln
12π 6 2

1 1ln 2 ln
6 2 6 2

3 3 6 9 9
12π 8 8 8 2 12 2 2 2

ex ee
e e ee ee ee

ii ei
i i ii ii ii e i ei ei ei

e e
ee ii ei

e

F VKT n n K

n n K n n K

n n
s

ξκ λ ξ κλ

ξ ξ
λ ξ κλ λ ξ κλ

κ κλ κλ κλ

    = − + − +    
   

      + − + + − +       
       

Λ
+ + + − −

+



 

( )( ) ( ) ( )( ) ( ) ( )( ) ( )

( ) ( )

( )

3

2 2 2

3 3
2 6 2 6

3
3 6

2 1

9 18 9
4 2 1 2 1 4 2 1 2 1 4 2 1 2 1

1 16π  ln 6π  ln
6 2 6 2

12π ln
6 2

i i

i

ee ei ii
e e e i i i

ei ei
e i ee ii ei ei e i ii ei ei

ee
e ee ee ee

s

s s s s s s

n n K n n K

n K

κλ κλ κλ

ξ ξ
λ λ ξ κλ λ λ ξ κλ

ξ
λ ξ κλ

 Λ
 +


+ + + 

+ + + + + + 
      + − + + − +      

      

 + − +
 

 



( )

( )( ) ( )( )( )

( )( )( ) ( )( )( )

3
3 6

2 4 66
6

6

6 2 6

12π ln
6 2

27 1 11 3 1 2
2 2 1 2 1 2 1 2 1 2 1 2 18192 π π 12 2 6 3 9 3

32 2 2
2 1 2 1 2 1 2 1 2 1 2 19 3 9 3 9

ii
i ii ii ii

e e i e e e

e e i e e e

i i i e i

i i i e e i

n K

n n n n n n
s s s s s s

n n n n n
s s s s s s

ξ
λ ξ κλ

κ β

    + − +     
    

  Λ Λ ΛΛ +
− − + −   + + + + + +  

Λ Λ
− − −

+ + + + + +



( )( )( )

( )
( ) ( ) ( )

2 6

2 2 26
3

3
2 1 2 1 2 13

864π 23 π 397π 3 397π 3 397π 3 .
480 38400 38400 384004π

i e

i i e

ee ei ii

n n
s s s

KTκ κλ κλ κλ

Λ


+ + + 
 

− − − −  
 

       (41) 
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4. THE EQUATION OF STATE 

Following the method of effective potentials devel- 
oped by [9] we get the pressure from the excess free 
energy as follow 

,

.
k

ex
id

T N

Fp p
V

 ∂
= −  ∂ 

           (42) 

where idp  is the ideal pressure and  

.
ex exF F

V V
κ

κ
 ∂ ∂ ∂

= ∂ ∂ ∂ 
 

By substituting from Eq.40 into Eq.42 we can get the 
equation of state until third virial coefficient for one 
component plasma; 

 

( ) ( )

( ) ( ) ( )

( )( ) ( )( )( )

3
2 3 3

33
2 2

2 4 66
6

6

1 2π ln
24π 6

9 273
24π 2 1 4 2 12 2

27 1 11 3 1 2
2 2 1 2 1 2 1 2 1 2 1 2 14096π π 12 2 6 3 9 3

864 

e ee ee ee ee
e

e
ee ee

e e e e e e

e e e e e e

p nKT KT n K

n
s s

n n n n n n
s s s s s s

κ λ ξ κλ ξ

κ κλ κλ

κ β

  = − + −   
 Λ

+ − + 
+ +  

  Λ Λ ΛΛ +
− − + −   + + + + + +   

−

∑


( )
( ) ( ) ( )26 3 6 3

3

π 23 π 397 π 3 12π ln .
480 38400 64π

ee e ee ee ee ee
e

KT n Kκ κλ λ ξ κλ ξ
   − + −       

∑


    (43) 

Also, by substituting from Eq.41 into Eq.42 we get the equation of state until third virial coefficient for two 
component plasma 

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( )

33
3

3 3
3 3

3 33
2 2 2

 2π ln
24π 6

ln 2 ln
6 6

9 93 3 6
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       (44) 

In the numerical calculation, we let 
16 281.38 10 erg/deg, 9.1066 10 gmeK m m− −= × = = ×  

10 23 3 27 14.8 10 esu, 10 cm , 6.624 10  , 
2a ae n h S− − −= × = = × =  
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5. DISCUSSIONS 

To our knowledge there is no paper to calculate the 
third virial coefficient by using Green’s function tech- 
nique until now; this paper is the first paper to calculate 
the third virial coefficient in Hartree, Hartree-Fock ap- 
proximation and the Montroll-Ward contribution by us- 
ing the Green’s function technique, and used it to calcu- 
late the quantum thermodynamic functions. In past the 
potential was used as the mean potential for two particles 
only so their results were until the second virial coeffi- 
cient, but in this paper we used the potential as the sum 
of the mean potential of two and three particles so our 
results were evaluated until the third virial coefficient. 
Also the quantum thermodynamic functions until the 
third virial coefficient which are calculated by using the 
binary Slater sum are near at the classical limit only; they 
used the potential as the pair potential only and neglected 
the triplet potential so there results Is not exactly correct 
results. We considered only the thermal equilibrium plas- 
ma in the case of one and two component plasma by us- 
ing Green’s function method. We obtained the general 
formula of the third virial coefficient in Hartree-Fock 

approximation analytically (Eq.34). 
As shown in Figures 1-3, we plotted the comparison 

between the excess free energy until the second virial 
coefficient for one and two component plasma of 
Ebeling et al. [11], Hussein et al. [1] until the third virial 
coefficient and our results until the third virial coefficient 
at 610T =  and 54 10× . We noticed that the curves are 
small nearly for small values of ξ , this is due to the 
difference between Green’s function technique which 
was used here and Slater Sum technique in Hussein et al. 
[2] and Ebeling et al. [11] which are given in Figures 
1-3. In these figures we observe that there exist 
difference for small values of ξ  for two comopnent 
plasma especially order 4e . Also, we plotted the compa- 
rison between the pressure until the second virial 
coefficient for one and two component plasma of Kremp 
et al. [4], Ebeling et al. [11], Hussein et al. [1] until the 
third virial coefficient and our results until the third virial 
coefficient up to order 2 4,  e e  and 6e  as shown in 
Figures 4-6. In Figures 5 and 6, the curves are far from 
each other for one and two component plasma. But in 
Figure 4, we observed that the red curve for Ebeling et 

 

 
(a) one component plasma                                        (b) two component plasma 

Figure 1. The comparison between the quantum excess free energy until the second virial coefficient [11] (black solid line), [1] (blue 
short dashed dotted line) until the third virial coefficient and our results (green long dashed line) up to order e2.                    
 

 
(a) one component plasma                                        (b) two component plasma 

Figure 2. The comparison between the quantum excess free energy until the second virial coefficient [11] (black solid line), [1] (blue 
short dashed dotted line) until the third virial coefficient and our results (green long dashed line) up to order e4.                    
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(a) one component plasma                                        (b) two component plasma 

Figure 3. The comparison between the quantum excess free energy until the second virial coefficient [11] (black solid line), 
[1] (blue short dashed dotted line) until the third virial coefficient and our results (green long dashed line) up to order e6.    

 

    
(a) one component plasma                                        (b) two component plasma 

Figure 4. The comparison between the quantum pressure until the second virial coefficient [11] (black solid line), [4] (red 
long dashed dotted line) and [1] (blue short dashed dotted line) until the third virial coefficient and our results (green long 
dashed line) up to order e2.                                                                              

 

    
(a) one component plasma                                        (b) two component plasma 

Figure 5. The comparison between the quantum pressure until the second virial coefficient [10] (red long dashed dotted line), 
[1] (blue short dashed dotted line) until the third virial coefficient and our results (green long dashed line) up of order e4.    

 

    
Figure 6. The comparison between the quantum pressure until the second virial coefficient (red dotted line), [1] (blue 
short dashed dotted line) until the third virial and our result (green long dashed line) up to order e6.                         
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al. [11] and green curve for our result are nearly for 
some values of ξ  for two component plasma. 
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APPENDIX A 
By expanding ( ) ( )1 2 ,a af p f p  and ( )3af p  in powers of eα  then 

( ) ( ) ( )1 2 3 1 2 3
1 2 3

1 2 31, 1, 1
1 ,r r r r r r

r r r
r r r

I e Iα
α αα + + + +

= = =

= −∑                          (A.1) 

where, 
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r pr p r pa
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e p pI p p e p p e p p e
p pD KT

α
∞ ∞ ∞ −− −− +

=
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          (A.2) 

by substituting by 2 2
2 2  r pν = , we get 
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−
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           (A.3) 

by using the integration by parts we get without Dirichlet formula 
2 22 2( ) 2 3 32 1 2 1

1 1 3 34 21 2 3 0 01
2

π
= d d d ,

(2π) π
r pr u r r pa

r r r p

e
I e u p p e p p e

D r KTα
∞ ∞ ∞ −− +∫ ∫ ∫



                (A.4) 

we have the integral region 1d du p  for the inner bounds, if we look at the curves 1,u p u= = ∞  which we want to 
solve in terms of ,u  we find that 1p u→  and finally we have 
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( ) 2 22
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              (A.5) 

which can be written as 
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