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ABSTRACT 

The present work devotes to studying the elec- 
tric properties: electric quadrupole moment and 
electric field gradient (EFG) of molecules PdH 
and (PdH)−2 based on the full relativistic theory. 
It is the first time to explore that the force con- 
stants are essentially caused by electric field gra- 
dients, and indirectly with spectroscopic data. If 
EFG is positive, zero or negative, then the 2  
will be positive, zero or negative. Therefore, se- 
cond order force constants are adjustable to 
changing the intensity of EFG. 
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1. INTRODUCTION 
The force constants of diatomic molecules, in general, 

are derived from spectroscopic data [1], or may be deter- 
mined by a least-square fitting to the data of quantum 
mechanic calculations [2], and the latter is time tediously 
consuming and complicated. If the force constants and 
dissociation energy are known, the calculations of diato- 
mic potential are numerically straightforward.  

It is explored that the force constants are essentially 
connected with the electric field gradient (EFG), and in- 
directly with spectroscopic data. There are some works 
for the calculations of the electric field gradient using 
non-relativistic or relativistic quantum mechanic [3-5]. 
The present work has evaluated the EFG of molecules 
PdH and (PdH)−2 based on the full relativistic quantum 
mechanic. 

2. THE FULL RELATIVISTIC THEORY 
Symmetry plays an important role for quantum me-

chanical theory. There are three levels for quantum me-

chanical method: Non-relativistic based on the single 
point group, relativistic based on the double group [6,7] 
and relativistic based on the full symmetry group or qua-
ternion symmetry [8,9]. 

In consideration of the equivalence of space and time, 
for the relativistic theory based on the full symmetry 
group or quaternion symmetry, the time reversal symme-
try operation is included in the symmetry group. It is 
well known that the product of two space symmetry op-
erators is represented by the product of the correspond-
ing unitary matrices in the theory of group representation, 
however, time reversal symmetry operation is an anti-
unitary operator. The inclusion both of space and time 
operations, the group is called the full symmetry group, 
and their group representation is called a co-representa- 
tion, this nomenclature is introduced by Wigner [8,9]. 
The co-representation is not unitary representation; how- 
ever, it is still possible to be broken down to irreducible 
form. The third level, i.e., relativistic quantum mechani-
cal theory based on the full symmetry group or quater-
nion symmetry is applied by the work of T. Saue and the 
others. 

Time reversal operator or called Kramer operator [7, 
10,11] is defined as follows 

  *ˆ , ,r t r t                 (1) 

If Hamiltonian ̂  is a real function of r, then  

           
 

* * *ˆ ˆ ˆ ˆ, ,

ˆ ˆ                       ,

r r t r r t r r t

r t

  



,     

 



0

 (2) 

i.e. 

ˆ ˆ,                   (3) 

The commutator (3) is the necessary and sufficient con- 
dition for two operators ̂  and  having the same 
set of eigenfunctions, that is, the state is invariant to time 
reversal (motion reversal). 

̂
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It is proved that time reversal operator is antiunitary 
[10,11], i.e.  

*ˆ ˆ                   (4) 

It is also anti-linear operator. 
Kramer theorem [7,8,10,11]: It can be proved that 

 corresponding to J value of half odd integer, i.e. 
fermions, there will be the new double degeneracy by 
time reversal; and  corresponding to J value of 
integer, i.e. bosons, there will be no double degeneracy, 
where  identity. 

2̂  



2̂  

For the time-independent Dirac equation 

ˆ
Dh                     (5) 

where   2ˆ ˆˆDh mc c p    

0

V

where, 
0





  
 

  0 0
; ;             (6) 

20 2

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



2

And Pauli spins matrices 
 —  Unit matrix.  2 2

0 1

1 0x
 

  
 

; ;     (7) 
0

0y

i

i


 
  
 

1 0

0 1z
 

   

If , it is the Dirac equation of free electrons.  ˆ 0V 
Now, time reversal operator is defined using another 

equivalent method, i.e. Kramer theorem [8,9], in which 
, that is 2̂   2ˆ       , in which the state are 

recovered by twice of time reversal, however, the wave 
function is changed to the negative; If , that is 2̂  

2ˆ    , in which the state are recovered by twice of 
time reversal, the wave function is unchanged. Then   
and   are said to form a Kramers pair. Therefore, the 
operator can be expanded in terms of Kramer’s partners 
   and   . For example, Hermitian of one-electron 
operator [8,9] is defined as follows  

* *
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   (8) 

where  

ˆ
zd

z





, d̂ i
x y
 

 
 

.          (9) 

It is easy to know 

2
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icd icd

icd icd

 

 

   
      
     

  (11) 

That is, A is a Hermitian and B is antihermitian. For 
Kramer’s partners, Dirac operator ˆ

Dh  can be expressed 
as  

2 2

ˆˆ 00ˆ
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   (12) 

where, ˆ
Dh  is expressed as the quaternion, which exhib- 

its the time reversal symmetry. 
Quaternion algebra [12] was developed by Hamilton 

and Fresenius, however, limited applications of quarter- 
nion in quantum mechanics have been made in recent 
years. 

Quaternion is expressed as  

3

0 1 2 3
0

q V e V V i V j V 


 



     k


       (13) 

where  

1 2 3; ;z y xe i i e j i e k i  
  

     
  

   (14) 

where , ,  are quaternion units, i-imaginary, 0 , 

1 , 2  and 3V  are real part, 
i j k V

V V x , y  and z  are 
Pauli spins matrices in (7). Quaternion includes 3-dimen- 
sion complex space and one dimension real space. It is 
known from (7) to (11) that quaternion algebra includes 
both time and space reversal symmetry, then, it is called 
the full symmetry group, its matrix representation is call- 
ed co-representation. The ˆ

Dh  in (12) is the Dirac opera- 
tor of full symmetry group. The Dirac equation can there- 
fore be rewritten into quaternion algebra form 

ˆq q q
Dh                   (15) 

3. THE CALCULATIONS OF ELECTRIC 
PROPERTIES 

The calculations of energy and electric properties: 
electric quadrupole moment, electric field gradients of 
molecules PdH based on the full relativistic quantum 
mechanical theory with the basis dyall.v2z using of pro- 
gram DIRAC10. The results are shown as Tables 1 and 
2. 

The charge distributions of dipole for molecule PdH is 
calculated as follows  

 
 
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Table 1. The energy, electric dipole and quadrupole moment of 
molecule PdH.  

 

 
 

18

8 9

19

4.9161929

1.52859

4.9161929 10 CGSE cm
         

1.52859 10 cm 3 10

         1.0721/10 C

YY

xx yy

Q
q

r









  

 
 

  

 

 
Electron number* 47 

PdH  

Bond distance/A0 1.52859 

E/au 5044.9894383303208 

Electric dipole/Debye 3.37730 

Electric quadrupole/a.u. 
Qxx = 4.916192952229 
Qyy = 4.916192952229 
Qzz = 9.832385904457 

Suppose the potential of diatomic can be expressed as  

    2 3

2 3 4

1 1 1

2 6 24e eV k r r k r r k r r      4

e   (16) 
*Electron number 46 for Pd and 1 for H. 

Where r is the nuclear distance and  is its equilib-
rium nuclear distance, and 2 , 3  and 4k  are the qua- 
dratic, cubic and quartic force constants, respectively. The 
negative derivative of potential with respect to bond dis- 
tance r is the electric field force of nuclei, therefore  

er
k k

 
Table 2. The electric field gradients (EFG), k2 and  for mole-
cules. 

Molecule PdH (PdH)−2 

(EFG/au)* Nucleus: pd Nucleus: pd 

 1.029691xx yyq q    0.01756005xx yyq q 

 2.059396zzq   0.03512008zzq    

 Nucleus: H Nucleus: H 

 0.0924681xx yyq q    0.0789845xx yyq q  

 0.184936zzq   0.157969zzq   

k2/106 (ergcm−2) 0.598662 0.197680 

ω/cm−1 3187.5 (PdH ) 1831.6(PdH ) 

 2264.97 (Pd2H = PdD) 1301.5 (Pd2H = PdD) 

     2 3

2 3 4
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2 6e e
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qE f k r r k r r k r r

r


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 e

(17) 

where E is the electric field strength, q is the electric 
charge. 

From (17), it leads to the electric field gradient 
E

r




 

(EFG) 

PdH: Electron number 46 for Pd and 1 for H; (PdH)−2: Electron number 48 
for Pd and 1 for H; *1 a.u. = 9.71736E + 21 Vm−2.    2

2 3 4

1

2e

E
q k k r r k r r

r


     


e      (18) 

 
However, its quadrupole is the second-rank tensor 

with two dimension charge distribution (vertical plane 

V ), Figure 1 in which the unit of charge distributions is 
1019 C, C-coulomb, 

If r = re, then, the quadratic force constant  will be 2k

2

E
q

r





k                (19) 

The zzq  and  xx yyq  of PdH can be calculated as where q is negative and take its absolute value. If EFG is 
positive, zero or negative, then, the 2  will be positive, 
zero or negative. If we want the 2  to be zero or nega- 
tive, it is possible to make the EFG descended or tend to 
negative. 

k
k
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Suppose there is 1 au of electric charge and at 1au of 

electric field gradient, the quadratic force constant  2k
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            (20) 

 
For neutral molecule PdH, i.e., electron number of 47, 

and the  = 2.059396 for Pd and  = 0.184936 
for H, and their Mulliken Atomic Charges: Pd = 
0.037613, H = −0.037613. Then zzq zzq
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qzz = +2.144107

qzz = +2.144107 qxx(yy) = −1.0721

qxx(yy) = −1.0721 

 

 

Figure 1. The quadrupole charge distribution of PdH. 
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where 1.97719645 is the reduced mass of PdD.  

For (PdH)2, i.e., Electron number of 49, i.e., and the 
 for Pd and  for H, 

and their Mulliken Atomic Charges: Pd = 1.785709 , H 
= 0.214291. Then 

0.03512008zzq   0.157969zzq 
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6 2
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where 1.97719645 is the reduced mass of PdD. 

All the electric field gradients (EFG), quadratic force 
constants 2  and Harmonic frequencies k   for mole-
cules are listed in Table 2. 

4. CONLUSIONS 

From Equation (19), it is proved that the second order 
force constant is directly derived from electric field gra- 
dients EFG. Therefore, it is the first time to explore that 
the force constant is essentially caused by electric field 
gradients, and the second order force constant and its har- 
monic oscillator frequency have been derived from elec- 
tric field gradients. However, the force constants are usu- 
ally derived from spectroscopic data; however, it is indi- 
rect with spectroscopic data. Therefore, this is the sup- 

plemental to the spectral values.  
Momentously, the second order force constants are ad- 

justable to changing the intensity of EFG. If EFG is posi- 
tive, zero or negative, then, the 2  will be positive, zero 
or negative. It is obvious to see from Table 2 that 2  is 
descended from 0.59866×106 erg·cm2 of PdH down to 
0.19768×106 erg·cm2 of (PdH)2, where, it’s EFG from 

k
k

0.184936zzq   that is down to . 0.157969zzq
The linear charge distributions, ±0.73647/1019 C, of 

dipole moment for molecule PdH is much less than its 
two-dimension charge distribution of quadrupole moment 
qzz = 2.144107/1019 C and qxx(yy) = 1.0721/1019 C. The 
charge distribution of PdH could be comparable with that 
of molecules HBr or HCl; however, it does not like HF, to 
see Table 3 of references [13], and therefore quadrupole  
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Table 3. The linear charge distributions of molecule (HX, X = 
F, Cl, Br) [13]. 

 HF/10−19 C HCl/10−19 C HBr/10−19 C

Dipole moment ±0.6986 ±0.310468 ±0.2096 

Quadrupole moment    

qzz +0.4128 +0.7641 +0.9291 

qxx(yy) −0.2063 −0.3821 −0.4645 

 
charge distributions are quite characteristic for electric 
properties. 
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