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ABSTRACT 

A mathematical model to describe the enzyme 
reaction, mass transfer and heat effects in the 
calorimetric system is discussed. The model is 
based on non-stationary diffusion Equation con- 
taining a non-linear term related to immobilize 
liver esterase by flow calorimetry. This paper 
presents the complex numerical methods (Ado- 
mian decomposition method, Homotopy analy- 
sis and perturbation method) to solve the non- 
linear differential Equations that depict the dif- 
fusion coupled with a non-linear reaction terms. 
Approximate analytical expressions for sub- 
strate concentration have been derived for all 
values of parameters α, β and γE. These ana- 
lytical results are compared with the available 
numerical results and are found to be in good 
agreement. 
 
Keywords: Reaction-Diffusion System; Immobilized 
Enzyme; Adomian Decomposition Method;  
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1. INTRODUCTION 

Flow reaction calorimetry has several advantages over 
a batch calorimetry method. The operation at a calo- 
rimetric experiment can be made exceedingly simple and 
equilibration time prior to the experiment can be omitted. 
Mixing of reactants can be achieved without the presence 
of a gaseous phase which is of great importance when 
experiments are performed with volatile liquids and in 
micro-calorimetric expriments where very small conden- 

sation-evaporation effects may affect the result. Surface  
adsorption effects which may cause seious systematic er- 
rors in micro calorimetry can be neglected if a steady liq- 
uid flow is allowed to continue until possible wall reac- 
tions have occurred [1]. Immobilized biocatalysts (IMB)- 
enzymes or whole cells are used in various areas of ana- 
lytical, medical, and industrial applications. Basically, 
enzyme kinetic parameters cannot be determined experi- 
mental data. For this purpose many experimental tech- 
niques can be used, that are more or less laborious and 
time consuming. Reaction kinetics of carboxyl esterase’s 
depends strongly on the nature of substrate. The hydroly- 
sis of different substrate activation [2] or it can follow 
the simple Michaelis-Menten kinetics [3]. 

Stefuca et al. [4] have described the principles and ap- 
plications of flow calorimetry (FC) in the investigation 
of the IMB properties. One of the last improvements of 
this technique was the introduction of an “auto calibra- 
tion” principle based on reaction solution recirculation 
enabling to determine true reaction rate of biocatalyst re- 
action without any requirement of an additional analyti- 
cal technique [5]. Vladimir Stefuca et al. [6] have de- 
rived the experimental data were treated by mathematical 
modelling based on material and heat balances of the 
reaction system. Recently, Fedor Malik [7] has devel- 
oped the mathematical model describing the enzyme re- 
action, mass transfer and heat effects in the calorimetric 
system.  

To my knowledge no rigorous analytical solutions of 
the substrate of phenyl acetate hydrolysis with steady- 
state conditions for all values of parameters ,     and 

E  have been reported. The purpose of this communica- 
tion is to derive approximate analytical expressions for 
the steady-state concentration of substrate using Adomian 
decomposition method, Homotopy analysis and pertur- 
bation method. 
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2. MATHEMATICAL FORMULATION OF 
THE PROBLEM  

The experimental set-up used for the capacity is de- 
picted in (Figure 1). The main part of the system ther- 
mostatic cell through immobilized enzyme column. The 
column was operated packed bed reactor 

The temperature difference between the column input 
and output, , is measured by thermistors and regis- 
tered by a personal computer. The system was kept at 
temperature of 303.15 K, while the buffer solution was 
continuously pumped through the column with constant 
flow rate of 1 ml/min. The experiment was started by re- 
placing the buffer solution by the substrate solution con- 
taining 1 - 200 g/l of MDX in 0.1 M acetate buffer (pH 
4.7). Two techniques of measurement were applied: sin- 
gle flow mode and total recirculation mode. The single 
flow mode was performed with the switching valve 2 
opened to the waste [7]. The substrate concentration gra- 
dient on the particle surface was calculated by the equa- 
tion of substrate balance in the particle [7]: 

T
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The equation must be solved subject to the following 
initial and boundary conditions:  

0 at 0, 0 1,SPc t r               (2) 
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where SP  is the substrate concentration in the particle, 

S  is the phenyl acetate concentration, e  is the diffu- 
sion coefficient, 

 
are the kinetic parameters 

and r is the particle radial co-ordinate, 

c
c D

, ,m m iV K K

pR  is the parti- 
cle radius. We can write the steady state equation as [7]: 
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The system governs the substrate concentration SP  
when there is no competitive inhibition in the reaction. 
The non-linear ODE (Eq.5) is made dimensionless by 
defining the following parameters:  

c
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where E  denote the reaction diffusion parameter, x is 
the dimensionless distance and  U x  is the dimen- 
sionless concentration. Here   and   denotes the sa- 
turation parameters. The above Eq.5 reduces to the fol- 
lowing dimensionless form  

2

2 2

d 2 d
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dd 1
EUU U
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        (7) 

The corresponding boundary conditions are 

1at 1U x                 (8) 

d
0 at 0

d

U
x

x
                (9) 

3. SOLUTION OF BOUNDARY VALUE 
PROBLEM USING ADOMIAN  
DECOMPOSITION METHOD 

Adomian’s decomposition method has been success- 
fully applied to linear and nonlinear problems. One of its 
advantages is that it provides a rapid convergent solution 
series [8]. However, the method applied to nonlinear 
Equations does not seem to be fast enough to be a effi- 
cient method to solve these kind of equations and one 
can find in the open literature some modifications pro- 
posed by several authors [9-13]. By applying the Ado- 
mian’s decomposition method, a new iterative method to 
compute nonlinear equations is developed and is pre- 
sented in this work. The Adomian decomposition method 
is an extremely simple method [9-13] to solve non-linear 
differential equations. First iteration is enough. Further- 
more, the obtained result is of high accuracy. Using this 
Adomian decomposition method (see appendix A and B),  

   (5) 

 

 

Figure 1. Experimental set-up of flow calorimetry.  
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the solution of Eq.7 becomes:  
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4. SOLUTION OF BOUNDARY VALUE 
PROBLEM USING HOMOTOPY 
ANALYSIS METHOD 

Perturbation methods are the most famous analytic 
techniques for nonlinear problems, which are widely ap- 
plied in science and engineering. In 1992, the homotopy, 
a traditional concept in topology, was used by Liao [14] 
to propose an approximation technique for nonlinear pro- 
blems, namely the homotopy analysis method (HAM). 
Using the concept of the homotopy, a nonlinear problem 
is transformed into a sequence of linear sub-problems 
that are easy to solve by means of the symbolic computa- 
tion software. In 1997 Liao [14] further generalized the 
HAM by introducing an auxiliary nonzero parameter 
(called today the convergence-control parameter). Dif- 
ferent from perturbation techniques, the HAM does not 
depend upon any small physical parameters, and besides 
provides great freedom to choose different base functions 
to approximate nonlinear problems. Especially, different 
from all other analytic approximation methods, the so- 
called convergence-control parameter of the HAM pro- 
vides us a convenient way to ensure the convergence of 
series solution. Thus, the HAM overcomes the restric- 
tions of the perturbation methods and therefore is more 
general. With these advantages and having the aid of 
high-performance computer and symbolic computation 
software, the HAM has been widely applied to solve 
many types of nonlinear differential Equations in science, 
engineering and finance [15]. Using this HAM (see Ap- 
pendix C and D) we obtain, the concentration of substate 
as follows  
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The analytical solution represented by Eq.11 contains 
the auxiliary parameter h, which gives the convergence 
region and rate of approximation for the homotopy ana- 

lysis method. The analytical solution should converge. It 
should be noted that the auxiliary parameter h controls 
the convergence and accuracy of the solution series. In 
order to define region such that the solution series is in- 
dependent of h, a multiple of h curves are plotted in 
Figure 2. 

5. SOLUTION OF BOUNDARY VALUE 
PROBLEM USING HOMOTOPY  
PERTURBATION METHOD 

The Homotopy perturbation method which doesn’t 
need small parameter is implemented for solving the  
 

 
(a) 

 
(b) 

Figure 2. The h curves indicate the convergence region, for α = 
0.5, β = 0.3 and γE = 0.5. 
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differential Equations and it is predicted that HPM can 
be founded widely applicable in engineering and in cases 
that don’t have exact solution this method can be used as 
semi-exact solution. Homotopy perturbation method yields 
a very rapid convergence and usually, one iteration leads 
to high accuracy of solution [17-25]. The Homotopy per- 
turbation method is a high accuracy method. Using this 
method (see Appendix E and F) we obtain   
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6. NUMERICAL SIMULATION 

The non-linear differentials Eqs.7-9 are also solved by 
numerical methods. The function bvp4c in Matlab soft- 
ware which is a function of solving two-point boundary 
value problems (BVPs) for ordinary differential equa- 
tions is used to solve this Equation. The Matlab program 
is also given in appendix G. Numerical values of the pa- 
rameters used in Fedor Malik et al. [7] in this work is 
given in Table 1. Its numerical solution is compared 
with Adomian decomposition method, Homotopy analy- 
sis and perturbation method in Table 2-5 and it gives sa- 
tisfactory result when α ≤ 1 and β ≤ 1.  

7. RESULTS AND DISCUSSION  

The primary result of this work is the first approximate 
and simple expression of concentrations of substrate 
(Eqs.10 (ADM), 11 (HAM) and 12 (HPM)). Figures 3-6 
show the analytical expression of concentration of sub- 
strate  for various values of dimensionless reac-   U x

tion diffusion parameter E  and saturation parameters 
,    . From these Figures 3-6, it is inferred that the 

value of the concentration of substrate  increases 
when dimensionless reaction diffusion parameter 

 U x

E  
decreases. Also in these Figures 3 to 6, it is known that 
the value of the concentration of substrate increases gra- 
dually and attains the maximum at the boundary  1x  .  

The normalized numerical simulation of three dimen-
sional substrate concentration  is shown in Fig-
ures 7-9. The time independent concentration 

 U x
 U x
0.00

 is 
represented in Figures 7-9 for fixed value of 1  . 
Concentration  U x  is slowly decreasing when E  is 
increasing. Then the concentration of u x  1  when 

1x   and also for all values of E ,   and  . In 
these figure, it should be noted that the value of the con-
centration of substrate decreases for all values of E . 
From this figures, it is apparent that the value of the 
concentration of substrate increases for various values of 
  increases.  

8. CONCLUSION 

A non-linear ordinary differential equation in the in- 
vestigation of kinetics of immobilized liver esterase by 
flow calorimetry has been solved using Adomian decom- 
position method, Homotopy analysis and perturbation 
method. The simple approximate expression of concen-
tration of substrate for all values of parameters ,     
and E  are reported. These methods can be easily ex- 
tended to find the solution of all other non-linear reaction 
diffusion equations for immobilized enzymes with re- 
versible Michaelis-Menten kinetics for various complex 
boundary conditions. These analytical results are useful 
for design and optimization of immobilized liver esterase 
by flow calorimetry. 

 

Table 1. Numerical values of the parameters used in this work. The fixed values of the dimension parameters are cS = 3.24, 5.932 
mmold·m−3, De = 9.4 × 10−9 dm2·s−1, Ki = 25, 17 mmold·m−3, Km = 9, 6.4 mmold·m−3, Vm = 13.7, 11.1 mK and Rp = 0.001. These are 
dimensional parameters used in Fedor Malik et al. [7]. 

Numerical value of parameter used in this work 
Parameter Unit 

Numerical value of parameter 
used in Fedor Malik et al. [7] 

Figure 2 Figure 3 Figure 4 Figure 5 

S

m

c

K
   --- 0.3 to 1.07 0.1 0.01 0.2 0.05 

2

S

i m

c

K K
   --- 0.07 to 0.3 0.01 0.1 0.5 0.0001 

x --- 0 to 1 0 to 1 0 to 1 0 to 1 0 to 1 

2

p m

E

e m

R V

D K
   --- 0 to 173.437 0.1, 0.5, 1 0.02, 0.5, 1, 2.5 0.1, 0.5, 2 0.01, 0.1, 0.6, 1, 3
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Figure 3. Dimensionless concentration U(x) versus dimensionless distance x when α 
= 0.1, β = 0.001. The curves a1, a2, a3 (ADM), b1, b2, b3 (simulation), c1, c2, c3 
(HPM), d1, d2, d3 (HAM) are plotted when γE = 0.1, 0.5, 1. Symbols (---) Eqs. 
10-12 and (…) numerical simulation. 

 

 

Figure 4. Dimensionless concentration U(x) versus dimensionless distance x when α 
= 0.01, β = 0.1. The curves a1, a2, a3, a4 (ADM), b1, b2, b3, b4 (simulation), c1, c2, 
c3, c4 (HAM), d1, d2, d3, d4 (HPM) are plotted when γE = 0.02, 0.5, 1, 2.5. Symbols 
(---) Eqs.10-12 and (…) numerical simulation. 
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Figure 5. Dimensionless concentration U(x) versus dimensionless distance x when α 
= 0.2, β = 0.5. The curves a1, a2, a3 (ADM), b1, b2, b3 (simulation), c1, c2, c3 
(HAM), d1, d2, d3 (HPM) are plotted when γE = 0.1, 0.5, 2. Symbols (---) Eqs.10-12 
and (…) numerical simulation. 

 

 

Figure 6. Dimensionless concentration U(x) versus dimensionless distance x when α 
= 0.05, β = 0.0001. The curves a1, a2, a3, a4, a5 (HPM), b1, b2, b3, b4, b5 (HAM), 
c1, c2, c3, c4, c5 (ADM), d1, d2, d3, d4, d5 (simulation) are plotted when γE = 0.01, 
0.1, 0.6, 1, 3. Symbols (---) Eqs.10-12 and (…) numerical simulation. 
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(a)                                                                  (b) 

Figure 7. The normalized three dimensionless steady-state concentration profiles U(x) calculated using Eq.10. The plot was con- 
structed for the values of α = 0.1 and β = 0.001, β = 0.001 and γE = 0.1. 
 

 
(a)                                                                  (b) 

Figure 8. The normalized three dimensionless steady-state concentration profiles U(x) calculated using Eq.11. The plot was con- 
structed for the values of α = 0.1 and β = 0.001, β = 0.001 and γE = 0.1. 
 

 
(a)                                                                  (b) 

Figure 9. The normalized three dimensionless steady-state concentration profiles U(x) calculated using Eq.12. The plot was con- 
tructed for the values of α = 0.1 and β = 0.001, β = 0.001 and γE = 0.1. s  
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APPENDIX A 

Basic Concept of the Adomian  
Decomposition Method (ADM) 

Adomian decomposition method [9-13] depends on 
the non-linear differential equation  

  ,F x y x 0              (A.1) 

into the two components  

      0L y x N y x           (A.2) 

where L and N are the linear and non-linear parts of F 
respectively. The operator L is assumed to be an invert- 
ible operator. Solving for  leads to   L y

   L y N y               (A.3) 

Applying the inverse operator L on both sides of Eq. 
A.3 yields 

     ,y L N y x             (A.4) 

where  x

y

 is the constant of integration which satis- 
fies the condition  Now assuming that the so- 
lution  can be represented as infinite series of the 
form  

  0.L  

0
n

n

y




  y               (A.5) 

Furthermore, suppose that the non-linear term  N y  
can be written as infinite series in terms of the Adomian 
polynomials nA  of the form  

 
0

n
n

N y A




              (A.6) 

where the Adomian polynomials nA  of  N y  are 
evaluated using the formula: 

 
0 0

1 d

! d

n
n

n nn
n

A x N y
n 






 

   
 
      (A.7) 

Then substituting Eqs.A.5 and A.6 in Eq.A.4 gives 

  1

0 0
n

n n

y x L A
 



 

  
 

 n






        (A.8) 

Then equating the terms in the linear system of Eq. 
A.8 gives the recurrent relation  

   1
0 1 0n ny x y L A n 

        (A.9) 

However, in practice all the terms of series in Eq.A.7 
cannot be determined, and the solution is approximated  

by the truncated series . This method has been  
0

n
n

y





proven to be very efficient in solving various types of 
non-linear boundary and initial value problems. 

APPENDIX B 

Analytical Solutions of Concentrations of 
Substrate Using ADM  

In this appendix, we derive the general solution of 
nonlinear Eq.7 by using Adomian decomposition method. 
We write the Eq.7 in the operator form, 

  21
EU

L U
U U


 


 

          (B.1) 

where 
2

1
2

d

d
L x x

x
 . Applying the inverse operator 1L  

on both sides of Eq.B.1 yields 

  1
21E

B U
U x A L

x U U


 
  

      
   (B.2) 

where A and B are the constants of integration. We let, 

   
0

n
n

U x U x




              (B.3) 

 
0

n
n

N U x A




               (B.4) 

where 

  21

U
N U x

U U 


      


        (B.5) 

In view of Eqs.B.3-B.5, Eq.B.2 gives 

  1

0 0
n E

n n

B
U x A L A

x


 


 

   n        (B.6) 

We identify the zeroth component as 

 0

B
U x A

x
              (B.7) 

and the remaining components as the recurrence relation 

  1
1

0
n EU x L A

n

 
 


n           (B.8) 

where An are the Adomian polynomials of . 
We can find the first few An as follows: 

1 2, , , nU U U

 0 0

1

1
A N U

 
 

 
         (B.9) 

   
 

1
1 0 1 2

1d

d 1

U
A N U U




  


      

  (B.10) 

The remaining polynomials can be generated easily, 
and so, 

0 1U                  (B.11) 

 
 

 

2

1

1

6 1

E x
U x



 




 
          (B.12) 
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   
 

2 4 2

2 3

1 7

20 6 606 1
E x x

U x
 

 

  
  

   


; 

   (B.13) 

Adding (B.11) to (B.13) we get Eq.11 in the text. 

APPENDIX C  

Basic Concept of Homotopy Analysis 
Method 

Consider the following differential equation [15]: 

  0N u t                 (C.1) 

where Ν is a nonlinear operator, t denotes an independ- 
ent variable; u(t) is an unknown function. For simplicity, 
we ignore all boundary or initial conditions, which can 
be treated in the similar way. By means of generalizing 
the conventional homotopy method, Liao constructed the 
so-called zero-order deformation equation 

         01 ;p L t p u t phH t N t p         (C.2) 

where  0,1p  is the embedding parameter, 0h   is 
a nonzero auxiliary parameter,  is an auxiliary 
function, L is an auxiliary linear operator, 

  0H t 
 t0  is an 

initial guess of ,  is an unknown function. 
It is an important, that one has great freedom to choose 
auxiliary unknowns in HAM. Obviously, when p = 0 and 
p = 1, it holds: 

u
 u t  :t p 

       0;0 and ;1t u t t u  t       (C.3) 

respectively. Thus, as p increases from 0 to 1, the solu- 
tion  ;t p

 u t
 varies from the initial guess  to the 

solution  Expanding 
 0u t

.  ;t p  in Taylor series 
with respect to p, we have 

     0
1

; m
m

m

t p u t u t p




         (C.4) 

where  

   
0

;1

!

m

m pm

t p
u t

m p








        (C.5) 

If the auxiliary linear operator, the initial guess, the 
auxiliary parameter h, and the auxiliary function are so 
properly chosen, the series (C.4) converges at p = 1 then 
we have: 

     0
1

m
m

u t u t u t




  .          (C.6) 

Define the vector 

 0 1, , , nu u uu               (C.7) 

Differentiating Eq.C.2 for m times with respect to the 
embedding parameter p, and then setting p = 0 and fi- 
nally dividing them by m! we will have the so-called 

-order deformation Equation as: thm

    1 1m m m m mL u u hH t     u       (C.8) 

where  

   
 1

1 1

;1

1 !

m

m m m

N t p

m p



 

   
 

u      (C.9) 

And 

0,   1,

1,   1.m

m

m



  

           (C.10) 

Applying 1L  on both side of Eq.A8, we get 

       1
1 1m m m m mu t u t hL H t 
     u   (C.11) 

In this way, it is easily to obtain  for  at mu 1,m 
thM  order, we have 

   
0

M

m
m

u t u t


             (C.12) 

when , we get an accurate approximation of 
the original Eq.C.1. For the convergence of the above 
method we refer the reader to Liao [15]. If Eq.C.1 ad- 
mits unique solution, then this method will produce the 
unique solution. If Eq.C.1 does not possess unique solu- 
tion, the HAM will give a solution among many other 
(possible) solutions. 

M 

APPENDIX D  

Approximate Analytical Solutions of the 
System of Eqs.7-9 Using HAM 

In this appendix, we indicate how Eq.11 in this paper 
is derived. The Homotopy analysis method was con- 
structed to determine the solution of Eqs.7-9.  

2

2 2

d 2 d

dd 1
EUU U

x xx U U


 

 
 

       (D.1) 

In order to solve Eq.D.1 by means of the HAM, we 
first construct the zeroth-order deformation Equation by 
taking   1H t  , 

 
2

2

2 2

2 2

2
2

2

d 2 d
1

dd

d 2 d d 2 d

d dd d

d 2 d

dd E

U U
p

x xx

U U U U
ph U

x x xx x

U U
U U

x xx



 

 
  

 

   
      

   

 
    

  

x
    (D.2) 

The approximate solutions of Eq.D.2 are as follows 
2 3

0 1 2 3 .U U pU p U p U           (D.3) 

Substituting the series (D.3) in Eq.D.2 and equating 
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the like powers of p we get 
2

0 0 0
2

d d2
:

dd

U U
p 0

x xx
             (D.4) 

 

2
1 1 1

2

2 2
0 0 0

02 2

2
2 0 0
0 02

d d2
:

dd

d d d d2
1

dd d

d d2

dd E

U U
p

x xx

U U U U
h h U 02

dx xx x

U U
h U h U

x xx



 



  
      

  

 
   

 

x x





(D.5) 

 

2
2 2 2

2

2 2
1 1 1 1

02 2

22
2 0 01 1
0 12 2

2
0 0

0 1 12

d d2
:

dd

d d d d2 2
1

dd d

d dd d2 2

d dd d

d d2
2

dd E

U U
p

x xx

U U U U
h h U

x x x xx x

U UU U
h U h U

d

x x xx x

U U
h U U h U

x xx



 

 



   
      

  

  
     

   

 
   

 

x




(D.6) 

The boundary conditions becomes 

   0
0

d 0
1 1, 0

d

U x
U x

x


           (D.7) 

and  

   d 0
1 0, 0 1,2,3,

d
i

i

U x
U x i

x


        (D.8) 

Now applying the boundary conditions Eq.D.7 in Eq. 
D.4 we get 

 0 1U x                 (D.9) 

Substituting the values of 0  in Eq.D.5 and solving 
the Equation using the boundary conditions Eq.D.8 we 
obtain the following result: 

U

   2
1 1

6
Eh

U x x 
           (D.10) 

Substituting the values of U0 and U1 in Eq.D.6 and 
solving the Equation using the boundary conditions Eq. 
D.8 we obtain the following result: 

   

 

2

2

2 2

2 2 4 2

1
6 6

1
6 6

7

6 20 6 60

E E

E E

E

h h
U x

h x h x

h x x

   

  



   

   

 
   

 

2

  (D.11) 

To find few iteration we get, the solution of  U x  to 
reach the better approximation. Adding (D.9), (D.10) 

and (D.11), we get Eq.11 in the text.  

APPENDIX E 

Basic Concept of the Homotopy  
Perturbation Method (HPM) 

We outline the basic idea of Homotopy perturbation 
method. This method has eliminated the limitations of 
the traditional perturbation methods. On the other hand it 
can take full advantage of the traditional perturbation 
techniques, so there has been a considerable deal of re- 
search in applying homotopy technique for solving va- 
rious strongly non-linear equations. To explain this me- 
thod, let us consider the following function  

    0,A u f r r              (E.1) 

with the boundary conditions of  

, 0,
u

B u r
n

     
            (E.2) 

where A , ,B  f r  and   denote a general differen- 
tial operator, a boundary operator, a known analytical 
function and the boundary of the domain  , respec- 
tively. Generally speaking, the operator A can be divided 
into a linear part L and a non-linear part N. Eq.2.1 can 
therefore be written as  

      0L u N u f r             (E.3) 

By the homotopy perturbation technique, we construct 
a homotopy    , : 0,1v r p R   which satisfies 

 
         
 

0

,

1 0

0,1 ,

H v p

p L v L u p A v f r

p r

  .     

 

  (E.4) 

or 

       
   

0,

0.

0H v p L v L u pL u

p N v f r

  

    
       (E.5) 

where  0,1p  is an embedding parameter, and 0  is 
an initial approximation of Eq.E.1, which satisfies the 
boundary conditions. Obviously from Eqs.E.4 and E.5, 
we will have 

u

     0,0 0H v L v L u            (E.6) 

     ,1 0.H v A v f r            (E.7) 

when p = 0 Eq.E.4 or E.5 becomes a linear Equation; 
when p = 1 it becomes a non-linear Equation. So the 
changing process of p from zero to unity is just that of 
   0 0L v L u   to     0A v f r  . We can first use 

the embedding parameter p as a “small parameter”, and 
assume that the solutions of Eqs.E.4 and E.5 can be 
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written as a power series in p 
2

0 1 2v v pv p v              (E.8) 

Setting p = 1, results in the approximate solution of 
Eq.E.1: 

0 1 2
1

lim
p

u v v v v


              (E.9) 

The combination of the perturbation method and the 
Homotopy method is called the Homotopy perturbation 
method.  

APPENDIX F 

Approximate Analytical Solutions of the 
system of Eqs.7-9 Using HPM 

Solution of the Eqs.7-9 using Homotopy perturbation 
method. In this appendix, we indicate how Eq.12 in this 
paper is derived. Furthermore, a Homotopy was con- 
structed to determine the solution of Eqs.7.  

 

 

2

2

2
2

2

d 2 d
1

dd

d 2 d
1 0

dd E

U U
p

x xx

U U
p U U U

x xx
  

 
  

 
  

       
 




   (F.1) 

The approximate solutions of Eq.F.1 is   

2 3
0 1 2 3U U pU p U p U            (F.2) 

Substituting Eq.F.2 into Eq.F.1, and comparing the 
coefficients of like powers of p  

2
0 0 0

2

d d2
:

dd

U U
p 0,
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             (F.3) 
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 
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 
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 (F.5) 

The boundary conditions are 

   0
0

d 0
1 1, 0

d

U x
U x

x


         (F.6) 

and  

   d 0
1 0, 0 1, 2,3,

d
i

i

U x
U x i

x


         (F.7) 

Solving the Eqs.F.3 to F.5 and using the boundary 
conditions (F.6) and (F.7), we can find the following 
results  

 0 1U x                  (F.8) 

 
 2

1

1

6

E x
U x

 
              (F.9) 

 2

2 2

7

6 60

6 6 120

E E

E E

U x

4
Ex x

   

  

    
 

     
 


   (F.10) 

According to the HPM, we can conclude that  

   

     
1

0 1 2

lim

.

p
U x U x

U x U x U x




   
   (F.11) 

Using Eqs.F.8-F.10 in Eq.F.11, we obtain the final 
results are described in Eq.12. 

APPENDIX G 

In this appendix, we derive the solution of Eq.F.4 by 
using reduction of order. To illustrate the basic concepts 
of reduction of order, we consider the Equation  

2

2

d d

dd

c c
P Qc R

xx
              (G.1) 

where P, Q, R are function of x. Eq.F.4 can be simplified 
to 

 2 22
2 2

2

1d d2

d 6d

E

E E

xU U

x xx


 


       (G.2) 

Using reduction of order, we have 

 2 2 12
; 0;

6

E

E E

x
P Q R

x


 


       (G.3) 

Let 

2U wv                 (G.4) 

Substitute (G.4) in (G.1), if  is so chosen that  2U

d
2

d

w
Pw 0

x
               (G.5) 

Substituting the value of P in the above Eq.G.5 be- 
comes  

1
w

x
                 (G.6) 

The given Eq.G.2 reduces to  

1v Q v R1                (G.7)  
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where  % -------------------------------------------------------------- 
function u0 = pdex1ic(x) 2

1 0,
4 2 1

P P
Q Q R

c


    

R
        (G.8) u0 = 1; 

% -------------------------------------------------------------- 
Substituting (G.8) in (G.7) we obtain,  function [pl,ql,pr,qr] = pdex1bc(xl,ul,xr,ur,t) 

pl = 0;  2 3

6

E

E E

x x
v


x x 


            (G.9) ql = 1; 

pr = ur-1; 
qr = 0;    Integrating Eq.G.9 twice, we obtain  

2 5 3 3 3

6 20 6 6 6
E

E E

x x x
v Ax B

  
 

      
 

x
  (G.10) APPENDIX I 

Determining the Region of h for Validity 
Substituting (G.6) and (G.10) in (G.4) we have, The analytical solution should converge. It should be 

noted that the auxiliary parameter h controls the conver- 
gence and accuracy of the solution series. The analytical 
solution represented by Eq.11 contains the auxiliary pa- 
rameter h, which gives the convergence region and rate 
of approximation for the Homotopy analysis method. In 
order to define region such that the solution series is in- 
dependent of h, a multiple of h-curves are plotted. The 
region where the distribution of  and  U x  U x  
versus h is a horizontal line is known as the convergence 
region for the corresponding function. The common re- 
gion among  U x  and its derivatives are known as the 
over all convergence region. To study the influence of h 
on the convergence of solution, the h-curves of  0.5U  
and  0.5U   are plotted in Figures 2(a) and (b) re- 
spectively, for E0.5,  0.3,  0.5     . These figures 
clearly indicate that the valid region of h is about (−2 to 
−0.5). Similarly we can find the value of the conver- 
gence control parameter h for different values of con- 
stant parameters. 

2 4 2 2

2 6 20 6 6 6
E

E E

B x x x
U A

x

  
 

      
 

2x
 (G.11) 

Using the boundary conditions Eqs.F.6 and F.7, we 
can obtain the value of the constants A and B. Substitut- 
ing the value of the constants A and B in the Eq.G.11 we 
obtain the Eq.F.10. Similarly we can solve the other dif- 
ferential Eqs.B.11, D.4-D.6, F.3 and F.5 using the reduc- 
tion of order method. 

APPENDIX H 

Scilab/Matlab Program to Find the  
Numerical Solution of Eqs.7-9 

function pdex1 
m = 2; 
x = linspace(0,1); 
t = linspace(0,100); 
sol = pdepe(m,@pdex1pde,@pdex1ic,@pdex1bc,x,t); 
u = sol(:,:,1); 

APPENDIX J surf(x,t,u)  
title('Numerical solution computed with 20 mesh 

points.') 
Nomenclature 

Symbols xlabel('Distance x') 
SPc

c
: Substrate concentration (mmol·dm−3)  ylabel('Time t') 

S : Phenyl acetate concentration (mmol·dm−3) figure 
: Substrateinhibition constant (mmol·dm−3) Kplot(x,u(end,:)) i

: Michaelis-Menten constant (mmol·dm−3) Ktitle('Solution at t = 2') m

OPEN ACCESS 

xlabel('Distance x') m

: Particle radial co-ordinate (None) 
V : Kinetic parameter (mK)  
rylabel('u(x,2)') 

pR
D

: Dimensionless substrate in the biofilm (None)  % -------------------------------------------------------------- 
e

,  
: Diffusion coefficient (dm2·s−1) 


function [c,f,s] = pdex1pde(x,t,u,DuDx) 

 : Saturation parameters (None) 
x

c = 1; 
: Dimensionless distance (None) f = DuDx; 

U : Dimensionless concentration (None) r=10; 
E : Reaction diffusion parameter (None) alpha=5; 

beta=2; 
s = -r*u/(1+alpha*u+beta*u*u); 

 


