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ABSTRACT 

The present work aims to achieve a fast and 
accurate analytical solution of the point kinetics 
equations applied to subcritical reactors such 
as ADS (Accelerator-Driven System), assuming 
a linear reactivity and external source variation. 
It was used a new set of point kinetics equations 
for subcritical systems based on the model 
proposed by Gandini & Salvatores. In this work, 
it was employed the integrating factor method. 
The analytical solution for the case of interest 
was obtained by using only an approximation 
which consists of disregarding the term of the 
second derivative for neutron density in relation 
to time when compared with the other terms of 
the equation. And also, it is proposed an ap- 
proximation for the upper incomplete gamma 
function found in the solution in order to make 
the computational processing faster. In addition, 
for purposes of validation and comparison a 
numerical solution was obtained by the finite 
differences method. Finally, it can be concluded 
that the obtained solution is accurate and has 
fast numerical processing time, especially when 
compared with the results of numerical solution 
by finite difference. One can also observe that 
the gamma approximation used achieve a high 
accuracy for the usual parameters. Thus we got 
satisfactory results when the solution is applied 
to practical situations, such as a reactor start- 
up. 
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1. INTRODUCTION 

During the operation of a nuclear reactor it’s essential 
to know the behavior of the nuclear core. The point ki- 
netics equations are a way to describe the time behavior 
of the neutron density and consequently the criticality in 
nuclear reactors. These quantities are essential to under- 
stand and predict the behavior of a nuclear reactor during 
its start-up, when the control rods are raised and the re- 
activity in the system increases. So, the analytical solu- 
tion of point kinetics equations with a group of delayed 
neutrons is extremely useful to predict neutron density 
variation during the nuclear reactor start-up. 

In particular, for subcritical reactors, the point kinetics 
equations are fundamental to continuously monitor the 
behavior of the reactivity for a possible variation of the 
intensity of external sources. And, studying subcritical 
reactors is very important due to the fact that they are 
very promising and innovative reactors, not only for 
power generation, but also for the transmutation of heavy 
elements with large half-life, reducing radioactive mate- 
rial’s inventory. With the development of a new genera- 
tion of subcritical reactors such as ADS, predicting po- 
wer and reactivity transients in a fast and accurate way 
becomes necessary in the event of a possible variation in 
the intensity of external sources. 

Considering that, this work aims to achieve an ana- 
lytical approximation to predict the behavior of neutron 
density in subcritical systems, such as ADS reactors. To 
achieve this it was adopted the new formulation of point 
kinetics equations for subcritical systems proposed by 
Gandini & Salvatores [1]. 
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Considering a single group of precursors, the mathe- 
matical formulation becomes: 
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subjected to the initial conditions: 
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2. MATHEMATICAL FORMULATION 

Differentiating Eq.1 in relation to time one can write: 
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Replacing Eq.2 in Eq.5 one obtains: 
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2.1. Type of External Source and Reactivity 

The goal of this work is to study the behavior of the 
neutron density in subcritical systems considering an 
insertion of reactivity in the system that varies in a linear 
manner in time according to the expression:  

  0t t                  (7) 

where 0  is the initial reactivity in the system   and 
is the linear reactivity insertion rate. 

In this work it will be also considered an external neu- 
tron source that linearly varies according to the expres- 
sion: 

  0Q t Q rt                (8) 

where 0  is the initial intensity of the source and r is 
the linear insertion rate for external neutrons. 

Q

The fact that both the external neutron source and the 
reactivity behave with linear variation is extremely rele- 

vant because not only can they behave exactly that way 
but also any kind of behavior can be approximated to a 
linear type in a small time interval. Thus the solution 
obtained in this work can be applied to any case as long 
as a small period of time is taken. 

2.2. Analytical Approximation 

For purposes of validation and comparison a numeri-
cal solution of point kinetics equations for subcritical 
systems was obtained by the finites differences method 
considering a group of delayed neutrons precursors as 
represented in Eqs.1 and 2. 

It was used the following expressions to implement 
the implicit temporal integration method: 
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In all validations the mesh point h = 10−5 s was used. 
Using the nuclear parameters shown in Table 1 and 

the numerical solution obtained and fitting an polynomial 
function of degree 5 on the graphic of neutron density by 
time it was observed that the term  in Eq.6 was 
much smaller in magnitude than the others terms in the 
equation, as can be seen in Figure 1. 

 N t

In Figure 1, it was used the following definitions from 
Eq.6: 
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So, it could be concluded that disregarding the term in 
Eq.6 in relation to all the others in the equation is a valid 
approximation [2]. 

2.3. Final Solution 

Applying the aforementioned approximation, Eq.6 can 
be written as the nonhomogeneous differential equation: 

   
   

 
 

d

d

N t t
N t

t t

r Q t

t

  
   

 
   

  
      

 


   

     (11) 

That can be rewritten as: 
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Figure 1. Comparison among the terms involving neutron den- 
sity in Eq.6 using the nuclear parameters in Table 1. 
 
where: 
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Using the integrating factor method, as shown in Ap- 
pendix A, it can be achieved the following expression for 
neutron density: 
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Imposing the initial conditions expressed by Eqs.3 and 
4, one can obtain that: 
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By defining the following constants: 
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one can achieve the following solution: 
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Applying the following corollary of Incomplete Gam- 
ma functions 
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on Eq.16, it can be grouped in a more convenient man- 
ner, expressed in Eq.17. 
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And also, the constant 3A  can be rewritten as: 

      

1
0

3
3

2

e

, e

N
A

k

k

 



 



    





 




         

 (18) 

2.4. An Approximation for Incomplete 
Gamma Function 

The incomplete gamma function found in the neutron 
density function, written by Eq.17, can be approximated 
with no significant accuracy loss. To achieve that, the 
following gamma function definition will be used [3]: 
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In a recent paper, Haglund, J. [4] showed a series ex- 
pansion for the lower incomplete gamma function. Using 
this series expansion in Eq.23, one can achieve: 
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It was observed that for the usual subcritical parame- 
ters taking 16 terms in this expansion give us a good ac-
curacy. 
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By using the gamma function approximation proposed 
by Nemes [5], one can achieve an approximation for the 
upper gamma function, as follows: 
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Again using the nuclear parameters shown in Table 1, 
it could be observed that the absolute deviation between  
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Table 1. Kinetics and others parameters. 

  0.0034  

  0.069198  

  51.06 10  

  93.0 10  
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Figure 2. Comparison among the calculation methods of neu- 
tron density. 
 
the real value of the incomplete gamma function and its 
value using the approximation expressed in Eq.22 was at 
most 0.689% at 0 s. 

3. RESULTS 

In Table 1, it is shown the nuclear parameters that 
were used to test the solution obtained in this paper. 

Figure 2 shows a comparison among the solutions 
obtained by the analytical method proposed in this article 
with and without the gamma function approximation and 
by the finite difference method. 

From Figure 2, it can be concluded that the analytical 
solution with the approximation proposed coincides with 
the numerical reference method. Further analysis shows 
that the absolute value of relative deviation between 

them doesn’t exceed 0.00165% in the first fifty seconds. 
This conclusion can be justified by the fact that the 
common values of Λ for subcritical reactors are smaller 
than for critical reactors such as PWRs, showing that 
disregarding the second derivative term from Eq.6 is a 
good approximation. 

4. CONCLUSION 

An analytical approximation was developed in order to 
predict the behavior of neutron density in subcritical 
systems with linear reactivity insertion and external 
source of neutrons variation. The mathematical formula- 
tion proposed was achieved by solving the point kinetics 
equations for subcritical systems with a single group of 
precursors and by adopting an approximation for the 
gamma function. The results obtained have been really 
accurate with small relative deviations when compared to 
the ones from the reference method, which was the nu- 
merical solution by finite differences. 
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APPENDIX A 

The following equation, Eq.12, can be solved by the 
integrating factor method [6]. 
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Using this method in the differential Eq.12 one can 
obtain: 
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Thus, by the integrating factor method used in Eq.A.1 
it can be provided solutions represented by: 

     

   

2
3

1
3

2

1
d

d d
e eu u

k t
N t I t k t

I t t

k u u
u k u

I t



 



         

 
    

 



 


   (A.3) 

Both integrals in Eq.A.3 are tabled [6] and produce 
the following expression for neutron density:  
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