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ABSTRACT 

A new continuum theory of the constitutive 
equation of co-rotational derivative type was 
developed by the author for anisotropic viscoe-
lastic fluid-liquid crystalline (LC) polymers (S.F. 
Han, 2008, 2010). This paper is a continuation of 
the recent publication [1] to study extru-
sion-exten- sional flow of the fluid. A new con-
cept of simple anisotropic fluid is introduced. 
On the basis of anisotropic simple fluid, stress 
behavior is described by velocity gradient ten-
sor F and spin tensor W instead of the velocity 
gradient tensor D in the classic Leslie-Ericksen 
continuum theory. A special form of the consti-
tutive equation of the co-rotational type is es-
tablished for the fluid. Using the special form of 
the constitutive equation in components a com-
putational analytical theory of the extru-
sion-extensional flow is developed for the LC 
polymer liquids-anisotropic viscoelastic fluid. 
Application of the constitutive theory to the flow 
is successful in predicting bifurcation of elon-
gational viscosity and contraction of extrudate 
for LC polymer liquids- anisotropic viscoelastic 
fluid. The contraction of extrudate of LC poly-
mer liquids may be associated with the stored 
elastic energy conversion into that necessary 
for bifurcation of elongational viscosity in ex-
trusion ex

 

tensional flow of the fluid. 

Keywords: Constitutive Equation of Co-Rotational 
Derivative Type; Simple Anisotropic Fluid; 
Liquid Crystalline Polymer; Extrusion-Extensional 
Flow; Bifurcation of Elongational Viscosity;  
Contraction of Extrudate of LC Polymer Liquids 

1. INTRODUCTION 

The liquid crystalline (LC) is a fundamental material 
in the hi-tech industries. The rheological behavior of LC 

polymer melt and solutions is considerably different 
from that of the common Polymers [1-3]. The extrusion 
of thermotropic LC polymer melts has been shown to be 
very effective in producing a high degree of macroscopic 
orientation material, as Keclar (p-phenylence terephtha-
lamide). The PE melt extruded with the same slit die 
shows substantial extrudate swell. However LC polymer 
shows different contraction of the extrudate and a slight 
decrease with increasing shear rate, which is consistent 
with the PE melt results [4-6]. Special behavior of the 
first and second normal stresses is observed by Baek, 
Larson, Hudson, Huang by experimental investigation 
with HPC and PBLG [7-9]. The experimental results 
show regions of both positive and negative of the first 
and second normal stress differences, that is the normal 
stresses 1 and 2 change sign two times with variation of 
shear rates. The especial behavior of LC polymer is due 
to the anisotropy of the material. 

The classic continuum theory for LC material was 
developed by Ericksen and Leslie [10-15] which de-
scribes the main features of flow of nematic liquid crys-
tal of low molecular weight or the flow at low shear 
rates. In research on continuum theory of anisotropic 
fluids, Green has given attempts to extend basic concept 
of simple fluid for anisotropic fluid case [16-17]. Ac-
cording to Green a simple anisotropic fluid is defined as 
one for which the stress tensor at a particular particle at 
time is dependent on the whole history of the deforma-
tion gradients F and the whole history of rotation tensor 
R at the same time. The constitutive equation can be 
reduced to that which contains only the whole history of 
the deformation gradients F, with no history of rotation 
tensor R in it. The convected constitutive equation of 
Oldroyd type is well used for the isotropic polymer solu-
tions or melts in Non-Newtonian fluid mechanics, but 
rarely for the case of anisotropic LC polymer fluid. The 
first attempts were given by Volkov and Kulichikhin for 
LC polymer fluid [18,19]. Using the Maxwell linear 
equation (1867) for anisotropic liquid crystals and in-
troducing a convected Maxwell model with relaxation 
and viscosity tensor Vokov and Kulichikhin developed a 
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more simple constitutive equation with non-symmetric 
shear viscosity. As pointed out by the authors that the 
constitutive equation is available for the case of small 
recoverable strains in comparison with the total strains 
[19]. 

As pointed out by Larson [20], the nematic LC poly-
mer shows director tumbling in shear flow. The experi-
ments have confirmed the tumbling for nematic polymer 
solutions, but relatively rare in small-molecular nematics. 
The research of Vokov and Kulichikhin have also con-
firmed that it needs further study the non-symmetry of 
the shear stress components in shear flow [19] which 
may lead to director tumbling in it. 

The anisotropic behaviour of LC polymer liquids can 
be studied by the continuum theory. Using convected 
co-rotational time derivative, we developed a new con-
cept continuum theory of the constitutive equation for 
LC polymer [1-3,21-24]. In the constitutive equation 
theory a new concept of simple anisotropic fluid was 
introduced. Extending co-rotational Oldroyd fluid B [1,2] 
the components of the stress tensor ij  and its co-rota- 
tional derivative in it are assumed to be a tensor function 
of in , i , ij

S

N A and ijW instead of velocity gradient tensor D 
in the classic Leslie-Ericksen continuum theory. Using 
the tensor analysis approach [10-15] and analyzing the 
physical nature of the fluid, a general form of constitu-
tive equation is constructed for the fluid. The developed 
theory is successful in predicting special behavior of the 
first and second normal stress differences which are in 
agreement with the experiments [7-9].  

This paper uses the new concept constitutive equation 
[1] extrusion-extensional flows of the anisotropic vis-
coelastic fluids are studied, which is an important appli-
cation of the developed constitutive theory. A new con-
cept of extrusion-extensional flow is introduced to de-
scribe the flow near the die exit of LC polymer melts in 
extrusion process. This concept is more general than 
pure extensional flow, which could not exist near the die 
exit. Application of the constitutive theory to the extru-
sion-extensional flow is successful in predicting bifurca-
tion of elongational viscosity and contraction of extru-
date for LC polymer liquids–anisotropic viscoelastic fluid. 

2. PRINCIPLES OF NEW CONCEPT  
CONSTITUTIVE THEORY 

2.1. New Concept of Anisotropic Simple  
Fluid 

To start research on extrusion-extensional flow it is 
necessary to discuss the main principles of new contin-
uum theory of the constitutive equation of co-rotational 
derivative type for anisotropic viscoelastic fluid [1]. The 
constitutive equation will be rewritten in an available 

form for research on the flow. The “Simple fluid” is a 
fundamental concept which is based on the theory for 
modern non-Newtonian fluid mechanics; it is generally 
valid for isotropic fluid. The “principle of objectivity of 
material properties” introduced by Noll (1958) is well 
used to construct constitutive equation in non-Newtonian 
fluid mechanics and rheology. The simple fluid in sense 
of Noll is a great significance in construction of consti-
tutive equation theory for isotropic non-Newtonian flu-
ids. But as pointed by out Tanner, it is easy to construct 
physical systems where this principle does not hold [25]. 
For example it does not hold for a dilute suspension of 
spheres when the microscale Reynolds number is not 
negligible. Zahorski noted [26] that the requirement of 
invariance with respect to the reference frame in consid-
erations involving some fields may prove to be too re-
strictive. The principle may also be too restrictive for 
anisotropic fluids! Therefore, the concept of simple fluid 
should be improved further for the special case-anisot- 
ropic viscoelastic fluid.  

A concept of superposed rigid body rotations was in-
troduced by Green [16,17] which leads to the following 
conclusion that the rotation tensor does not affect stress, 
apart from orientation, i.e. invariance of the equations 
with respect to superposed rigid rotations. The conclu-
sions of Green are only valid for the nematic liquid 
crystal of low molecular weight or the flow at low shear 
rates with any orientation. The nematic liquid crystalline 
polymer shows director tumbling in shear flow which is 
confirmed by experiments for nematic polymer solutions 
[20]. Using the Maxwell linear equation (1867) for ani-
sotropic liquid crystals, non-symmetric shear stresses in 
shear flow were founded by Vokov and Kulichikhin for 
LC polymer liquids [18,19] which may be a cause of 
rotation motion in the flow. The new concept of simple 
anisotropic fluid was defined for the liquid crystalline 
polymers [1], which is a basic point of investigation. Let 
the observer is attached to the rotating particle of fluid, 
i.e. in co-rotational coordinate system. The simple ani-
sotropic fluid is understood as one for which the stress 
behavior is assumed to be a functional of the whole his-
tory of the deformation gradients F and the whole his-
tory of spin tensor W instead of rotation tensor R in the 
Green theory.The relationship between the spin tensor 

 s tW measured with respect to the fixed reference 
frame and the spin tensor  measured with respect 
to the co-rotational reference frame is given as 

 c tW

        T T
s ct t t t W W Q Q t         (1) 

It was easily proved that the spin tensor  c tW  is 
also anti-symmetric 

   T 0cc
t t W W                (2) 
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t

It was proved  

       T
c ct t t W Q W Q           (3) 

The new spin tensor  measured with respect to 
the co-rotational reference frame is objective. Instead of 
rotation tensor  in the Green Theory, a spin tensor 

 c tW

 tR

sW

W

 in constitutive equation measured with respect to 
fixed coordinates is expressed by a sum of spin tensor 

c
 measured with respect to co-rotational coordinates 

and co-rotational tensor term as given by (1). The simple 
anisotropic fluid is defined as one for which the stress 
tensor at a particular particle is a functional of the whole 
history of the deformation gradient F and the whole his-
tory of spin tensor W measured with respect to the co- 
rotational coordinates.  

    
0
£ ,T s  


  F W s

A

          (4) 

where W is defined by (3). 

2.2. General Constitutive Theory 

In construction of continuum theory of constitutive 
equation for the LC polymer-anisotropic viscoelastic 
fluids, the following principal concepts are introduced 
[1,3]: 

1) A concept of anisotropic simple fluid is introduced. 
According the new definition the stress is dependent on 
the whole history of deformation gradient and the whole 
history of spin tensor measured with respect to co-rota- 
tional coordinates. 

2) The constitutive equation contains both contribu-
tions due to the orientational motion of director and hy-
drodynamic motions of fluid, to describe anisotropic 
effects of LC polymer [1,3,21-24]. The stress tensor is 
considered as a functional of the deformation tensors and 
tensors composed of the director vector and its deriva-
tive. According to the statistic physics, the macroscopic 
magnitudes are considered as an average of the micro-
scopic values.  

3) Because the nematic LC polymer solution is also 
viscoelastic fluid, the constitutive equation of co-rota- 
tional Oldroyd fluid B is a basic point in constructing the 
equation theory for anisotropic viscoelastic fluid. Con-
stitutive equation for anisotropic viscoelastic fluid can 
be constructed by generalizing co-rotational Oldroyd 
fluid B. 

The Oldroyd fluid B of upper-convected derivative 
type is well used for isotropic non-Newtonian fluid me-
chanics. The Oldroyd fluid B with upper-convected de-
rivative is extended to the case of co-rotational time de-
rivative developed by S.F. Han [21-24] 

0 0 0

o o

ijijij ijS S A                (5) 

where: 0 - isotropic relaxation time ; 0 - isotropic limit-
ing viscosity; ij - components of the extra-stress ten-
sor; ij

S
A - components of the first Rivlin-Ericksen tensor; 

the top circle “o” denotes the contravariant components 
of co-rotational time derivative defined as 

,

ij
ij m ij i kj j ki

m k k

S
S v S S

t
 

   




S         (6) 

For anisotropic fluid, a generalized Maxwell equation 
is given as [19] 

d

d
kl

ijkl ij ijkl kl

S
S

t
                 (7) 

where the relashinship between the viscosity tensor 

ijkl and the relaxation time tensor ijkl is defined by 

ijkl ijkl ijklG                 (8) 

Eq.7 describes the linear anisotropic viscoelastic fluid 
behavior. In the Leslie-Ericksen continuum theory [10- 
14], the hydrodynamic components of the stress tensor 

 are assumed to be a tensor function of i , i  and 

ij , the full deformation history is described only by the 
symmetric part of the velocity gradient , i.e. the rate 
tensor ij  are symmetric. This is a limitation of the 
Leslie-Ericksen theory. According to new definition of 
anisotropic simple fluid instead of velocity gradient ten-
sor  in the classic theory, the stress tensor is de-
scribed by 1st Rivlin-Ericksen tensor 

ijS
D

n N

D
D

D
A  and spin tensor 

 for the solutions and the liquids. Extending the gen-
eral principle in constructing constitutive equation by 
Truesdell [27] and Ericksen [11] and generalizing con-
stitutive equation of co-rotational Oldroyd fluid B (5) 
and generalized Maxwell equation, the stress compo-
nents and those co-rotational derivative are assumed to 
be of functional of i , i , ij

W

n N A  and ij , a general 
form of the constitutive equation of the fluid is given as  

W

0 , , , ,
o o

ij ijkl ij ij ij ij ij i i jS S A A n N             (9) 

where ij  is tensor functional, the ,  s j   are mate-
rial constants, ijA - components of the first Rivlin- 
Ericksen tensor, ij - components of spin tensor , W

i ik kN n n  . 
For anisotropic viscoelastic fluid-LC polymer melt and 

solution the stress tensor is un-symmetric. The anisotropy 
in elasticity of LC polymers leads to an un-symmetry of 
the stress tensor. The rotation of the director vector is a 
source of dissipation in the nematic liquid even in the 
absence of flow [20]. The stress relationship derived 
from the Ossen integral equation shows that for nematic 
fluid the orientational motion of the director vector cha-
racterized by the director surface body stress and intrin-
sic director body force, leads to un-symmetry in stress 
tensor.  
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2.3. Symmetric and Un-Symmetric Stress 

The first Rivlin-Ericksen tensor ijA  expresses de-
formation history due to the normal-symmetric part of 
the deformation velocity gradient in the fluid, the spin 
tensor ij  expresses deformation history due to the 
un-symmetric part of deformation velocity gradient in 
the fluid. However the un-symmetry of the stress tensor 
is determined by the un-symmetry of the shear stress 
components. It does not have principal influence on the 
normal stress differences which is of completely sym-
metric. The stress tensor can be split into two parts: 
symmetric and un-symmetric   

W

n
ij ij ijS S S  s                (10) 

where “n” denotes normal-symmetric part, “s” denotes 
shear un-symmetric part. The tensor functional ij in 
Eq.9 is split into symmetric and un-symmetric too. 

For the normal-symmetric part of the stress tensor a 
general form of the constitutive equation is proposed as 

0

1 2

, , , ,

                      

o o o
n n
ij ijkl kl ij ij ij ij i i j

o o

jk ki ik kj

S S A A A n N

A A

 

   

      

 
o o

  (11) 

The special term 1 2jk ki ik kjA A    of high order in 
Eq.11 is introduced to describe the special change of the 
normal stress differences which is considered as a result 
of director tumbling effect by Larson et al. [20].  

For the shear un-symmetric part of the stress tensor 
the general form of the constitutive equation is proposed 
as 

, , , ,

,  1, 2,3

o
s s s
ij kl ijk ij ij i i jS S n N

i j k

       
 

     (12) 

In Eqs.11 and 12 the relaxation time tensor compo-
nents n

ijkl and s
kl are introduced for normal-symmetric 

and shear un-symmetric stresses respectively. 

2.3.1. Normal Symmetric Part 
The constitutive Eq.11 can be reduced to the follow-

ing form [1]  

0 1 2

1 2 3                      

o o o o
n

ij ijkl kl ij ij jk ki ik kj

i j k s ks i k kj j k ik

S S A A A A

n n n n A n n A n n A

      

  

    

  
 

(13) 

2.3.2. Shear Un-Symmetric Part 
For the shear un-symmetric part, the partial Eq.12 can 

be reduced to the following form [1,2] 

1 2

3 4                      

o
s s s
ij kl ijk j s is i s js

ij i j k s ks

S S n n n n

n n n n

    

   

  

 
      (14) 

where 1 7 48 2 9 10 3 13 4 1,  ,  ,                 . 
In Eqs.13-14 ijkl - anisotropic relaxation times, di-

mension of which is [s];  , 1 2 3, ,   - anisotropic vis-
cosities being influence of the orientational motion on 
the viscosity; 0  - anisotropic retardation time;  ,  , 

1 , 2 3 3,  , 1 2,  ,  4,          - [Pas] ,  - [Pas2].  

2.4. Constitutive Equation for  
Axial-Symmetric Case 

Now axial-symmetric flow is studied. This is two di-
mensional problems. The cylindrical coordinate system 
 , ,z r   is used. For the 2D problem the velocity field 
and the director field are given as 

  ,0, ,  ,0,r zV u w n n n             (15) 

For the velocity field Eq.15 co-rotational time deriva-
tive components of extra stress components are calcu-
lated. For velocity field Eq.15 and the normal- symmet-
ric part of the stress the constitutive Eq.13 can be re-
duced to equations in stress components, where the 
property of symmetry for the relaxation time tensor 

ijlm  Eq.8 was used. The stress process is assumed to be 
time-independent. Using the definition of co-rotational 
derivative, the constitutive equations in components can 
be reduced. The constitutive Eq.13 in components is 
finally reduced to the following type: 

   

 
   

1 1

2

0 1 2

2 2 2
1

2 3

2

2 2

    2

    

rr rz rz k rz

rz rz rz rr zz

r r rr z zz r z rz

r r rr z rz

S S

u A A A
r

n n A n A n n A

n n A n A

   

     



 

 


    


  

  

 (16) 

   

 
   

1 1

2

0 1 2

2 2 2
1

2 3

2

2 2

    2

    

zz rz rz k rz

rz rz rz rr zz

z r rr z zz r z rz

z r rz z zz

S S

w A A A
r

n n A n A n n A

n n A n A

   

     



 

 


    


  

  

  (17) 

 

 
 

3 6

2
0

2 2
1

2 2
1

2

4

    2

    2

rz rz rz rz

rz rr zz rz rz

r z r rr z zz r z rz

r z r rr z zz r z rz

S S

u w
A A A

z r

n n n A n A n n A

n n n A n A n n A

    

    







 

         

  

  

   (18) 

For the constitutive equation the following eight in-
dependent material functions are introduced 

 1 3 6 0 0 2 1 2

1
,  ,  ,  ,  ,  ,  ,  

2k             

Eqs.16-18 are generally available for the axial-sym- 
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

metric (2D) problem of anisotropic viscoelastic fluid flow. 

3. BIFURCATION IN  
EXTRUSION-EXTENSIONAL FLOW 

3.1. Kinematics of Exrusion-Extensional  
Flow 

The process of production of high degree of macro-
scopic orientation fiber by LC polymer melt, as Keclar 
(p-phenylence terephthalamide) is an anisotropic-vis- 
coelastic fluid flow [Figure 1]. The polymer melt mo-
tion in extrusion process near the die exit of fiber spin-
ning is a viscometric or extrusion-extensional flow, i.e. a 
shear flow dominating extension, or an extensional flow 
with an additional shear flow element. The axial-sym- 
metric case is considered. The cylindrical coordinate 
system  , ,r z   is used. For symmetric case the veloc-
ity and director vector field are given as 

   , ,  , ,  0u u r z w w r z v           (19) 

 , ,0 ,  0.            (20) r zn n n



 


As a first approximation the velocity field is assumed 
to be of 

   dd
,  

d d

V zw
k z k

z z
   

where the u, w are the velocity components in radial and 
axial directions, V(z) denotes the velocity field which is 
uniform across the fiber section. According to the equa-
tion of continuity the velocity component u can be ob-
tained from 

   1 1
,  

2 2

u u
k z k z

r r


   


 

Thus 

   1
,  d

2
u k z r w k z    z

0

0







          (21) 

The first Rivlin-Ericksen tensor A and spin tensor W 
are reduced to 

0 0

0 0 ,  0 0

0 2 0 0

rz rz

rz rz

k A

k

A k





  
      
    

A W  

where 

   d d
,  

2 d 4 d 2rz rz

k z k zr r
A

z z

      
  

Neglecting gravity, surface tension and air resistance 
at the surface of the filament. The boudary condition and  

 

Figure 1. Sketch of fiber spinning process of polymer melt. 
 
the stress condition at the surface are given as 

   , , , ,
r a

a
u U a x t w a z t

t z


  

 
a

,     (22) 

cos cos 0,  cos cos 0rr rz rz zzP P P P       , (23) 

where 

2 2

1
cos ,  cos

1 1

a

z

a a

z z

 


  

            

.   (24) 

3.2. Bifurcation of Elongational Viscocity 

The elongational viscosity is specially interested. The 
elongational viscosity of extrusion-extensional flow of 
the LC polymer fluid will be studied. For axial-symmetric 
problem Eq.19 the equation of motion is reduced to 

rrrr rz
S SS Su u u p

u w
t r z r r z r


                  

 

(25) 
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 1 rz zz
rS Sw w w p

u w
t r z z r r


                  z

 (26) 

For extrusion process of LC polymer melt a condition 
of no director tumbling can be proposed, 1 2 0   . 
The constitutive Eqs.16-18 can be reduced to the fol-
lowing form 
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(29) 

Solving Eqs.27-29 by the computational symbolic 
manipulation, such as Maple, general analytical expres-
sions are obtained by the constitutive equation for the 
shear stresses and the normal stress. Three special cases 
will be interested. 

Case 1: Director vector is parallel to stretching direc-
tion sin 0,  cos 1    The analytical expressions of 
shear stress and normal stress differences are calculated 
by Maple. The elongational viscosity is difined as 
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(30) 

Replacing extension rate in axial direction k in Eq.30 
by that in radial direction rk   , Eq.30 is reduced to 
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   

 
   

2
0 3 1 0 1 2 3 3

2
1 6 3 1 3

2
0 3 0 1 0 3

2
1 6 3 1 3

3 1 2 1

1

2 2
        

1

E
k k

rk k k

          


        

        
        

       
   

     
   

 

 

  
 



 

(31) 

It can be seen from Figures 2-6, that all curves of 
elongational viscocity vs radial extension rate have a 
same point of intersection with curve 03e  .  

 

Figure 2. Elongational viscosity vs radial extension rate  
with variation of shear rate 

k
  (no orientation case) 03e   — 

Co-rotational Maxwell model [2,21]. 
 

For simplicity it is asummed  

6 1 0 3,  0k         

The Eq.30 is reduced to 
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(32) 

Let at point of intersection ic
e e  , one can obtain 

from (31) 
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

 


(33) 

For all curves of elongational viscocity vs extension 
rate the sufficient and necessary condition of intersection 
at a same point is that the coordinates of the point are 
independent on shear rate. Let the constants and the co-
effcients of 2  at both sides of Eq.33 are equal each 
other one can obtain the coordinates of intersection point 

0 1 2 33ic
e                 (34) 

and 
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thus 
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    (35) 

Case 2: Director is vertical to stretching direction 
0cos,1sin   . For this case the analytical expres-

sions of shear stress and normal stresses diffeence are cal- 
culated by Maple. The elongational viscosity is given as 
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(36) 

Case 3: The angle between director and stretching di- 

rection is π 4 , 
2

1
cos,

2

1
sin   . 

The elongational viscosity is given as 
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(37) 

Case 4: No orientational motion  

1 2 3 6 1 30,  ,  0           

The elongational viscosity is given as 
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(38) 

For Figure 2 

0 0 1 2 342,  0.2,  0.0,  0.0,  0.0,          

1 3 60.42,  0.0,  0.42,  0.05k        

For Figures 3 to 6 

0 0 1 2 342,  0.2,  1.5,  4.0,  10,          

1 3 60.42,  0.05,  0.4,  0.05k        

The first Rivlin-Ericksen tensor for the extrusion- 
extensional may be split into two parts, the first part in it  

 

Figure 3. Elongational viscosity vs radial extension rate  
with variation of shear rate 

k
  (Director parallel to stretching 

direction) 03e  — Co-rotational Maxwell model [2,21]. 
 

 

Figure 4. Elongational viscosity vs radial extension rate  
with variation of shear rate 

k
  (Director vertical to stretching 

direction) 03e  — Co-rotational Maxwell model [2,21]. 
 
represents pure extensional flow, and the second part-
shear flow. According to the previous investigation [1] 
the additional normal stress differences are caused by 
shear-unsymmetric part of the constitutive Eq.14. The 
additional normal stress differences do not contain elon-
gational parameters and for the extrusion extensional 
flow no principle influence on behavior of total normal 
stress differences will be given.  

4. COMPUTATIONAL ANALYTICAL  
APPROACH TO  
EXTRUSION-EXTENSIONAL FLOW 

The computational analytical apprach is used to study  
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Figure 5. Elongational viscosity vs radial extension rate  
with variation of shear rate 

k
  (Angle between director and 

stretching direction — π 4 ). 
 

 

Figure 6. Elongational viscosity vs radial extension rate  
with variation of director vector and shear rate 

k
 , 03e  — 

Co-rotational Maxwell model. 
 
the extrusion extensional flow [2]. In research the com-
putater software such as Maple is used for symbolic 
calculation. The extrusion process is assumed to be iso-
thermal. The velocity field of the extrusion-extensional 
flow is assumed to be of  

   , ,  ,  0r zv u r z v w z v          (39) 

For the velocity field Eq.39 the equation of motion 
Eq.25 and 26 are reduced to 
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w
t z z r r
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      (40) 

where: 

zz rP p S z    

Multiplying obe sides of Eq.40 by  and inte-
grating it with respect to  from 0 to radius of filament 
one can obtain 
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Using the parameter integrating formular from ma-
thematics  
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the first integral at right side of Eq.41 can be splitted 
into two terms , first one of which can be reduced to 
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Using boundary condition the second term at right 
side in Eq.41 can be integrated which is given as 
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d
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Eq.41 is finally reduced to  
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   (43) 

In the process of extruding on molten polymer, the ra-
dius of filament is most less than its length, a L , an 
approximate condition is satisfied at boundary of fila-
ment  

2

1,  1
a a

z z

      
  

Eq.24 is reduced to 
cos 1,  cos 1    

According to above geometric analysis the boundary 
condition Eq.23 is approximately simplified to 

   d
0

drz zz

a
S a P a

z
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Using Eq.44 the Eq.43 is reduced to 
2
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2π d 2π d
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w
r r P r r

r z
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Introducing an averaging filament section, the above 
equation is then reduced as 

2 d d

d d
2
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w
wa a P

z z
            (45) 
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where the averaging filament section is given as 
2 2 _

2
0 0

d 1 d 1
d ,  d

d dπ π

a a

zz zz

w w
r r P P r r

z za a
  2

,    (46) 

Neglecting inetia in Eq.45, Eq.41 is finally simplified 
to 

2π constantzza P C             (47) 

The continuity equation may be written as  
2πQ a w               (48) 

where w  - average filement cross section velocity, Q - 
mass flux,   - melt dencity. Solving Eq.47 and Eq.48 
yields 

1zz

C w
P

Q


  C w ,           (49) 

where 

1

C
C

Q


 .                (50) 

Due to condition of stress equilibrium, the normal 
strss at surface of filament is zero 

0rr rrP p S     

It yields , the normal stress rrp S zzP  is given as 

zz zz zzP p S S S     rr           (51) 

The extrusion extensional flow with orientation of di-
rector will be studied.  

Case 1: Direcor vector is parallel to stretching direc-
tion: sin 0,  cos 1   . Assuming 3 0k   , the 
normal stress difference may be rewritten as 
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(52) 
Substitution of Eq.52 into Eq. 49 yields an ordinary 

differential equation, then multiplying it by  and 
integrating it with respect to

2πr
r from  to 0r  r a  

yields 
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(53) 

The motion is assumed to be time independent. Using 
velocity profile Eq.21, the boundary condition Eq.22 
can be simplified as 
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 , the above equation is reduced to  

the form 
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Integrating Eq.54 yields 
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Substitution of Eq.55 into Eq.53 yields  
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(56) 
Assuming the following dimensionless variables  
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and considering the following character 

    20 2
1 2 0 2 2

0

,  ,  1.
C

C C R V C
R V R

         
   

Eq.56 can be reduced to the following dimensionless 
equation 

   

 

6 3 1 3

1 2 3 1̀

3 2 1
2

d
12 8 4

d

k

We
We C w FaWek Fa

w

k
k C w

   

  


      

            

   

     

.(57) 

Finally, it is derived from Eq.57 

  
   

1̀ 1 2 3

3 6 3 1̀

d

d

8 3 2

3 2 1 k

k

w C w k

We FaWek Fa We C w



  

   



     
      



    

     

 

(58) 
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d

d

w
k




                    (59) 

Using computer software Maple the simultaneous Eqs. 
58 and 59 are solved by computer software Maple. 

Case 2: Direcor vector is vertical to stretching direc-
tion: sin 1,  cos 0   . Using the normal stress dif-
ference expression for this case similar simultaneous 
equations may be obtained. 

For Figures 7 to 9 

1 2 30.8,  1.0,  0.5,  0.25Fa         

3 6 10.1,  1.5,  0.01,  0.20k C         

5. DISCUSSIONS AND CONCLUSIONS 

New contribution is given in continuum theory ap-
proach to constitutive equation of co-rotational deriva-
tive type for the anisotropic viscoelastic fluid－liquid 
crystalline polymers. A new concept of simple anisot-
ropic fluid is introduced for anisotropic fluid. The first 
and second normal stress differences are successfully 
predicted by the new concept constitutive theory [1] 
which is tendentiously in agreement with experimental 
results of Baek, Larson et al. [7-9] as the experiments 
were completed with different conditions. The constitu-
tive theory is verified by the experiments.  

Using the constitutive equation with new conception 
the extrusion-extensional flows of the anisotropic vis-
coelastic fluids are studied, which is an application of 
the constitutive theory. Elongational viscosity vs radial 
extension rate  with variation of shear rate rk   is  
 

 

Figure 7. Dimensionless axial velocity gradient vs dimen-
sionless distance (with variation of Weissenberg number , 
director parallel to stretching direction). 

We

 

Figure 8. Dimensionless axial velocity vs dimensionless dis-
tance with variation of Weissenberg number We , director 
parallel to stretching direction). 
 

 

Figure 9. Dimensionless fiber cross section vs dimensionless 
distance (with variation of Weissenberg number , director 
parallel to stretching direction). 

We

 
shown by Figure 2 when no orientation is considered. 

Figure 3 and Figure 4 show elongational viscosity vs 
radial extension rate with variation of shear rate when 
the directors are parallel and vertical to stretching direc-
tion respectively. Figure 5 is a plot of elongational vis-
cosity vs radial extension rate with variation of shear 
rate where the angle between director and stretching 
direction is π 4 . Elongational viscosity vs extension 
rate  with variation of director vector and shear rate 
is shown by Figure 6. For the extrusion-extensional flow, 
Figure 7 to Figure 9 show axial dimensionless exten- 

k
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sion velocity gradient 
d

d

w




, extension velocity  and  w

fiber diameter  vs dimensionless distance a   respec-
tively with variation of Weissenberg number .  We

First conclusion can be drawn by Figure 2 to Figure 
6. According to bifurcation theory a system has bifurca-
tion at parameter   when the system with parameters 
is changed suddenly and its structure become unstable. 
The Figures 2 to 5 show the curves of elongational vis-
cosity e  vs radial extension rate  with variation of 
shear rate 

k
  intersect at the same point on the phase 

plane  ,e k . As shown by Figure 2 to Figure 6, the 
intersection point or bifurcation point is located at line 

0e 3   for no orientation case, above the line for di-
rectors parallel and vertical to stretching direction, and 
below the line for angle between director and stretching 
direction π 4 . This phenomenon is so called the bifur-
cation in elogational viscosity of LC polymer liquids 
which is most interesting for modern non-linear science. 
Shear rate   and director angle   are the bifurcation 
parameters.  

Second conclusion can be drawn by Figure 7 to Fig-
ure 9. Present theory is further verified by the following 
comparison with the experiments of Mantia et al. [4,5]. 
In general case die swell is observed in many plastics 
processes involving extrusion of polymer melt through 
die into surroundings. On the contrary a contraction of 
extrudate of LC polymer melt is observed by the ex-
perimental results of Mantia et al., which is a special 
character of the anisotropic material. As shown by Fig-
ure 9, a contraction of the extrudate and a slight de-
crease with increasing the dimensionless distance are 
predicted by the present continuum theory, which is ten-
dentiously in agreement with the experiments. This 
phenomenon is called the contraction of extrudate, 
anti-die swell. In comparison with the results of 
co-rotational Maxwell model a remarkable change in 
elongational viscosity of LC polymer liquids is observed 
in Figures 3-6, when the orientation of director vector is 
considered. The contraction of extrudate of LC polymer 
melt may be associated with the stored elastic energy 
conversion into that necessary for bifurcation of elonga-
tional viscosity in extrusion process. 

The next conclusion is verified by the present investi-
gation. As pointed by Tanner and Zahorski [25,26], the 
principle of material objectivity should be considered as 
relative one. Generally, the co-rotational process of LC 
polymer liquids is a slow one. For the anisotropic vis-
coelastic liquids we introduce a new concept of quasi or 
pseudo-objectivity. When the co-rotational process of 
LC polymer liquids is relatively slow, the spin tensor 

 measured with respect to a fixed coordinate sys-

tem can be considered as a quasi-objective, or pseudo- 
objective. Consequentially for the the anisotropic fluid 
the constitutive Eq.4 can be considered as quasi-objec- 
tive, or pseudo-objective if the spin tensor W  meas-
ured with respect to a fixed coordinate system is used in 
the investigation. The constitutive equation can be ap-
plied to address a series of new anisotropic non-New- 
tonian fluid problems. 

 sW t

Application of the constitutive theory to the extru-
sion-extensional flow is successful in predicting bifurca-
tion and contraction of extrudate of LC polymer liquids. 
The present continuum theory of the constitutive equa-
tion is reasonable and available to predict macroscopic 
rheological behaviour for this kind of fluids. 
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