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ABSTRACT 

A finite different scheme as well as least-square 
method is presented for the magneto-thermo 
analysis of an infinite functionally graded hollow 
cylinder. The radial displacement, mechanical 
stresses and temperature as well as the elec-
tromagnetic stress are investigated along the 
radial direction of the cylinder. Material proper-
ties are assumed to be graded in the radial di-
rection according to a novel exponential -law 
distribution in terms of the volume fractions of 
the metal and ceramic constituents. The gov-
erning second -order differential equations are 
derived from the equations of motion and the 
heat-conduction equation. The system of differ-
ential equations is solved numerically and some 
plots for displacement, radial stress, and tem-
perature are presented. 

Keywords: Infinite Cylinder;  
Electro-Magneto-Thermoelastic; Finite Difference 
Method 

1. INTRODUCTION 

Magneto-thermal deformations of a cylinder can occur 
when the cylinder is placed in a constant primary mag-
netic field or due to heat exchange with the external or 
internal environments, or they can appear as the result of 
the deformations themselves, when part of the mechani-
cal energy changes into heat [1-5]. Due to the complex-
ity of the governing equations and the mathematical dif-
ficulties associated with the solution, several simplifica-
tions have been used. Yang and Chen [6] discussed the 
transient response of one-dimensional quasi -static 
coupled thermo-elasticity problems of an infinitely long 
annular cylinder composed of two different materials. 
They applied the Laplace transform with respect to time 
and used the Fourier series and matrix operations to ob-
tain the solution. Jane and Lee [7] considered the same 

problem by using the Laplace transform and the finite 
difference method. The cylinder is composed of multi-
layers with different materials. There is no limit of 
number of annular layers of the cylinder in the computa-
tional procedures. Lee [8] presented axisymmetric 
quasi-static-coupled thermoelastic problems for time- 
dependent boundary condition. Laplace transform and 
finite difference methods are used to analyze problems.  

Using finite difference method, Awaji and Sivakuman 
[9] studied the transient thermal stresses of a FGM hol-
low circular cylinder, which is cooled by surrounding 
medium. A hybrid numerical method of the Laplace 
transformation and the finite difference is applied by 
Yang et al. [10] to solve the transient hygrothermal 
problem of an infinitely long annular cylinder, in which 
the temperature and moisture coupling at the inner and 
outer surfaces is taken into account in the boundary con-
ditions. Chen [11] evaluated the tress intensity factors in 
a cylinder with a circumferential crack by using the fi-
nite difference method. Jane and Lee [12] considered the 
thermoelastic transient response of multilayered annular 
cylinders of infinite lengths subjected to known tem-
peratures at traction -free inner and outer surfaces. A 
method based on the Laplace transformation and finite 
difference method has been developed to analyze the 
thermo-elasticity problem. 

The primary objective of this investigation is to 
generate displacement, stresses, temperature, and 
magnetic field in an infinite FGM hollow cylinder. 
The present FGM cylinder is placed in a constant 
primary magnetic field. It is made of an isotropic ma-
terial with material properties varying in the radial 
thickness direction only according to a novel power 
law form. The governing partial differential equations 
are obtained in conservation forms and solved nu-
merically using finite difference method. Numerical 
results for the variation of temperature, displacement 
and stresses are presented for a metal-ceramic FG 
cylinder. To make the study reasonably, temperature, 
displacement, and stresses are distributed along the 
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radial direction of the cylinder. 
 
2. MATHEMATICAL MODEL 

Let us consider a long cylinder of outer radius r = b, 
inner radius r = a, and made of an exponentially graded 
material. The cylindrical coordinates system ( , , )r z  is 
used with z-axis coinciding with the axis of the cylinder. 
The strain axis is considered to be symmetric about the 
z-axis. We have only the radial displacement ru  which 
is independent of   and z. In a generalized plane strain, 
we suppose that the planes perpendicular to the z-axis 
and ru  is a function of the radial direction r and the 
time t only. The cylinder is placed in a constant primary 
magnetic field 0H . The medium is assumed to be 
non-ferromagnetic and ferroelectric. Neglecting the 
Thompson effect, the simplified Maxwell’s equations of 
electro -dynamics for perfectly conducting elastic me-
dium are: 

, , 0, 0,
h

h j E h E
t

 
          
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in which H


 is the magnetic field, E


 the electric 
field, j


 the current density, u


 the mechanical dis-

placement, and h


 is the perturbed magnetic. 
The material properties of the FGM cylinder are as-

sumed to be function of the volume fraction of the con-
stituent materials. The functionally graded between the 
physical properties and the radial direction r for ceramic 
and metal FG cylinder is given by 
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     (3)  

where cP  and mP  are the corresponding properties of 
ceramic (outer surface) and metal (inner surface), re-
spectively. 

The equations of motion in the absence of the body 
force are 

, , ( ) ,ij j ij j ir u                 (4) 

where   is the material density of the cylinder and it is 
also considered to be a function of r. The symbol ,( ) j  
means differentiation with respect to jx . The mechani-
cal stress tensor ij  and Maxwell’s electromagnetic 
stress tensor ij  are given, respectively, by 

 
1( ) 2 ,

,

ij ii ij ij

ij i j j i k k ij

e T e

h H h H h H
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where ij  is Kronecker’s delta, 1T  the absolute tem-
perature,   and   Lamé’s coefficients,   the 

magnetic permeability, (3 2 )     the stress tem-
perature modulus, in which is the linear thermal ex-
pansion, and ije  is the stain tensor,  

 1
, ,2 .ij i j j ie u u 

                
(6) 

For the present problem, considering the radial vibra-
tion of the medium, the only non-zero displacement is 

( , )ru r t , so that 

, , 0.r r
rr zz

u u
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          (7) 

Applying an initial magnetic field vector 
 00,0,H H


 in cylindrical polar coordinate ( , , )r z  

to Eqs.1 and 2, the field components in the medium are 
then obtained as 
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The magneto -elasto-dynamic equation, Eq.4, in the 
radial direction of the FG hollow cylinder is given by 

2
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where 
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is defined as Lorentz’s force, and   
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The heat conduction equation in the presence of heat 
sources can be written in the form 

2
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(14) 

where 1  is the thermal diffusivity, 2  the thermal 
conductivity, and Q is the intensity of the applied heat 
source. 

Generally, this study assumes that  ,  ,  ,  , 

1 , 2 ,  and  of the FG cylinder change continu-
ously through the radial direction of the cylinder and 
obey the gradation relation given in Eq.3. 
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3. SOLUTION OF THE PROBLEM 

Introducing the following dimensionless variables 
may be simplifying the solving process:  
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(15) 
where 0T is the reference temperature. In what follows 
we assume that the intensity of the applied heat source is 
given by the following form 

e ,RQ
R

                (16) 

where   being a non -negative constant,   is 
dimensionless time and   is a constant. The effect of 
material properties variation of the FG cylinder can be 
taken into account in Eqs.9 and 14. The substitution of 
Eqs.10-12 into Eqs.9 and 14 with the aid of the dimen-
sionless variables given in Eq.15 produces the governing 
equations for the FG cylinder as follows:  
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Note that, m , m , m , 1m , 2m , m and m are 
Lamé’s constants, thermal modulus, thermal diffusivity, 
thermal conductivity, magnetic permeability, and density 
of the homogeneous metal material, respectively. 

The dimensionless stresses induced by the tempera-
ture T  and the electromagnetic stress are related to the 
dimensionless radial displacement U by 
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The elastic solution for the FG hollow cylinder is 
completed by the application of the initial and boundary 
conditions. The initial conditions can be expressed as 

0, 0 at 0.
U
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The boundary conditions at the inner and outer radii 
of the FG cylinder may be expressed as 
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4. NUMERICAL SCHEME 

A finite element scheme is used here to get the tem-
perature and radial displacement. The finite difference 
grids with spatial intervals h in the radial direction and k 
as the time step, and use the subscripts i and n to denote 
the ith discrete point in the R direction and the nth dis-
crete time. A mesh is defined by 
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The displacement and temperature may be given at 
any nodal location by  
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The equation of motion and the heat conduction equa-
tion, given in Eqs.17 and 18, may be expressed in the 
finite difference as 
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in which 
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5. NUMERICAL RESULTS 

The above finite element scheme is used here to get 
the temperature and radial displacement through the ra-
dial direction of the FGM hollow cylinder. The least 
square method is used also to get the appropriate stresses 
in the FGM hollow cylinder. The results are presented in 
the non -dimensional form: 
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All results of this article are for aluminum as inner 
metal surface and alumina as outer ceramic surface. 
Generally, the magnetic permeability 0p pK   (p = 
m or c) is given in terms of the permeability of space 
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Note that the properties of  ,  , and
 
  for metal 

or ceramic are graded through the radial direction ac-
cording to the following relations: 
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Results are presented in Figures 1-6 for temperature, 
radial displacement and redial stress according to the 
fixed constants 

6
0 00.25, 0.2, 20 K, 10 Oersted.A T H      

The sensitivity of the time parameter *  and the 

 

 
Figure 1. Variation of temperature T through the radial di-
rection of the FGM hollow cylinder at different times for 
 = 0.125. 

 

 
Figure 2. Variation of radial displacement U through the ra-
dial direction of the FGM hollow cylinder at different times 
for   = 0.125. 
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Figure 3. Variation of radial stress   through the radial di-
rection of the FGM hollow cylinder at different times for   
 = 0:125. 

 

 
Figure 4. Variation of temperature T through the radial direc-
tion of the FGM hollow cylinder at *  = 3.84 for different 
values of  . 

 
exponential factor   given in c (16) for the heat source, 
are discussed here. The values of *  and   will be 
chosen through the illustration figures. 

Figures 1-3 represent the variations of the dimen-
sionless temperature T, radial displacement u, and radial 
stress   through the radial direction of the FGM hollow 
cylinder. Three values of the time parameter *  are 

 
Figure 5. Variation of radial displacement U through the radial 
direction of the FGM hollow cylinder at * = 3.84 for differ-
ent values of  . 

 

 
Figure 6. Variation of radial stress   through the radial 
direction of the FGM hollow cylinder at *  = 3:84 for dif-
ferent values of  . 

 
used. Figure 1 shows that the temperature is sharply 
increasing to get its maximum at a neighborhood point 
of the inner metal surface. After that, it slightly de-
creases to reach a fixed value at the outer ceramic sur-
face. The temperature decreases as *  decreases. Fig-
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ure 2 shows the displacement distribution through the 
radial direction of the FGM cylinder. It is seen that the 
displacement decreases dramatically within a very small 
range of radial direction at first, and then it increases 
gradually to a local higher value. Once again, it de-
creases gradually to a minimum value near the outer 
surface. The displacement u decreases as *  increases. 
The distribution of radial stress   through the radial 
direction of the FGM cylinder is plotted in Figure 3 for 
different values of * . It is seen that   decreases 
dramatically within a very small range of radial direction 
at first, and then it decreases gradually to its minimum 
value at the ceramic outer surface of the cylinder. Also, 
  decreases as *  increases.  

The effects of the heat source intensity coefficient   
on the temperature, displacement and stress at fixed time 
parameter * 3.84   are plotted in Figures 4-6. Figure 
4 shows that for different  , the change tendencies of 
temperature appear in same obviously. The temperature 
increases as   decreases. Figures 5 and 6 show that 
the higher values of heat source intensity coefficient   
have only a little effect on u and  . It is seen that the 
radial displacement and radial stress under larger   
are evidently different from that under small  . 
 
6. CONCLUSIONS 

The main contribution in this paper is to describe the 
effects of time parameter and heat source intensity of 
exponentially graded material cylinder on temperature, 
displacement and stresses. The results are very sensitive 
to the change of time and heat source through the radial 
direction of the cylinder. The solution method in this 
article may be used as a useful reference to investigate 
the temperature, radial displacement, radial and circum-
ferential stresses, and electromagnetic stress in the cyl-
inder. The results carried out can be used to predict the 
electro-magneto-thermoelastic response at different 
times and for different heat source intensities according 
to the engineering requirements. 
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