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ABSTRACT 

New high throughput DNA technologies resul- 
ted in a disproportion between the high number 
of scored markers for the mapping populations 
and relatively small sizes of the genotyped pop- 
ulations. Correspondingly, the number of mark-
ers may, by orders of magnitude, exceed the 
threshold of recombination resolution achieva- 
ble for a given population size. Hence, only a 
small part of markers can be genuinely ordered 
in the map. The question is how to choose the 
most informative markers for building such a 
reliable “skeleton” map. We believe that our ap- 
proach provides a solution to this difficult pro- 
blem due to: 1) powerful tools of discrete opti-
mization for multilocus ordering; 2) a verifica-
tion procedure, which is impossible without fast 
and high-quality optimization, to control the map 
quality based on re-sampling techniques; 3) an 
interactive algorithm of marker clustering in co- 
mplicated situations caused by significant de-
viation of recombination rates between markers 
of non-homologous chromosomes from the ex- 
pected 50% (referred to as quasi-linkage or pse- 
udo-linkage); and 4) an algorithm for detection 
and removing excessive markers to increase 
the stability of multilocus ordering. 

Keywords: Pseudo-Linkage; Skeleton Map; Map 
Verification; Map Stability; Traveling Salesperson 
Problem; Guided Evolution Strategy 

1. INTRODUCTION 

Genetic maps are an important tool in genomics and in 
numerous practical applications such as breeding, medi-
cal genetics, and gene cloning. Unfortunately, the avail-
able algorithms and software tools become less suitable 
with an increasing number of available markers. The 

objective of our study is to develop efficient methodol-
ogy for building multilocus genetic maps, providing the 
control of the quality of maps by detecting and removing 
the sources of map instability. Two major problems 
should be addressed in multilocus genetic mapping: 1) 
markers that belong to non-homologous chromosomes 
should not be assigned to the same linkage group; and 2) 
markers from the same chromosome should be placed on 
the genetic map in the same order as the corresponding 
DNA sequences that reside in the chromosome. 

In situations with significant deviations of the recom-
bination rates between non-synthetic markers from the 
expected level (50%), the problem of correct clustering 
cannot be solved by an arbitrary choice of a certain 
(constant) threshold value of recombination or LOD, 
albeit this is exactly how this problem is treated in many 
mapping packages [1,2]. Indeed, in experiments with the 
foregoing characteristics, the recombination values be-
tween groups of markers from different chromosomes 
may sometimes be smaller than the values between ad-
jacent markers within a chromosome. This phenomenon, 
referred to as “quasi-linkage” (or “pseudo-linkage”) can 
result from a combination of statistical and biological 
reasons and scoring errors. The statistical reasonsof 
pseudo-linkage are mainly caused by the sample size and 
number of chromosomes (n) in the genome: increased n 
is associated with higher chances to detect “significant” 
deviations from independent segregation. But the major 
source of pseudo-linkage is biology. Literature on this 
phenomenon in many species can be found in: [3-5] and 
references therein.  

Mapping algorithms tend to ignore pseudo-linkage. 
Consequently, some non-syntenic loci may appear in the 
same “linkage group”, which could result in contradic-
tions between mapping results for different mapping 
populations and between genetic and physical maps. 
Thus, up to 12% of cattle markers were assigned to 
wrong chromosomes and contradict the physical maps 
(H. Lewin, personal communication). In fish genetics, 
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pseudo-linkage is also a known phenomenon (see for 
review: [6]). To address this problem, we suggest a mod- 
ified approach of clustering markers into linkage groups. 
In our scheme, clustering is conducted concurrently with 
multilocus ordering that also includes verification of the 
order and removing unreliable markers. Instead of using 
one threshold recombination rate (or LOD value), we 
employ a series of increasing recombination thresholds 
(or decreasing LODs). At the first, most stringent thre- 
shold, we have a minimum of danger of mixing markers 
from different chromosomes into one linkage group, but 
the result is a high number of linkage groups. By relax-
ing the stringency at the next steps, we allow end-to-end 
merging of the ordered linkage groups, excluding those 
that display the strongest affinity to each other by their 
interior parts.  

In many practical cases, high-density mapping is as-
sociated with another difficult problem: a disproportion 
between a high number of scored markers and a rela-
tively small population size. The number of markers may, 
by orders of magnitude, exceed the resolution of recom-
bination for the given population size, so that only a mi-
nority of markers can be actually ordered. The question 
is how to choose the most informative markers to build a 
reliable “skeleton” map. If we consider a situation with, 
for example, k ~ 1000 markers, then for a sample size of 
N ~ 100, the minimum distance between markers that 
can be resolved in the map should be  1 cM; hence, the 
map length for a chromosome should be  1000 cM, 
which is unrealistic for the vast majority of organisms. 
How can the appearance of such 1000 cM maps be ex-
plained? We believe that the root is in the wrong as-
sumption that all markers are different (resolvable by 
recombination). In fact, for small sample sizes, many 
markers comprise groups of absolutely linked markers 
and should be replaced by their “delegates”. But even 
with this simplification, the number of resulting markers 
that differ may remain quite large, with the map length 
by far exceeding the expectations based on the estimates 
of chiasma frequencies at meiosis [7,8]. Clearly, marker 
scoring errors generate “false recombinants”: with per-
fect scoring most of these recombinants would not have 
appeared, but after excluding absolutely linked excessive 
markers (replacing them by delegates), it would be pos-
sible to build an “ideal” skeletonap. Another possible 
complicating factor is negative interference [4,5,9,10] 
violating the simple principle that “the entire entity is 
supposed to be larger than its parts” [11].  

Besides close linkage combined with a limited (small) 
sample size, the necessity for the selection of representa-
tive markers for the skeleton map derives from the vary-
ing information content of markers (co-dominant versus 
dominant, missing data, distorted segregation, and scor-

ing errors), “absolute” linkage between repulsion-phase 
dominant markers, and negative interference [5]. These 
(or some of these) criteria are employed by other authors 
also. Thus, before the analysis, the authors also chose 
bin markers, whereas after the analysis a decision is 
made about excluding double recombinants and recov-
ering missing data (usually, by assuming no recombina-
tion). The problem with the last correction aimed to re-
duce the map length, is that it does not affect the order of 
the markers. This after-ordering correction deals with 
maps that might have been affected by errors of marker 
scoring. This could cause erroneous ordering or, even 
worse, bringing together markers from non-homologous 
chromosomes. 

Our objective is to get an approximation as close as 
possible to the true multilocus order despite the forego-
ing complications. A specific feature of our approach is 
that the choice of candidates for the skeleton map is a 
part of the core ordering-verification procedure focused 
on detecting and removing markers causing local map 
instability and non-monotonic changes of recombination 
(i.e., deviation from the expected increase of rf between 
a marker and its subsequent neighbors). The verification 
process is based on multiple re-sampling runs from the 
scored mapping population using the so-called jackknife 
approach [12,13], namely, from the initial set of N 
genotypes, we sampled a subset of αN genotypes (e.g., 
with α = 0.8-0.9) scored for the same markers. The ob-
tained sub-sample is employed to order the map. This 
process is applied repeatedly (e.g., 100 times), resulting 
in corresponding map orders. The neighborhoods that do 
not change upon these jackknife runs can be referred to 
as stable.  

Clearly, such a formulation calls for massive repeated 
application of multilocus ordering procedures that may 
be computationally very challenging in case of moderate 
to high-density maps. Several genomic problems, in-
cluding multilocus genetic mapping, in building physical 
maps (contig assembling for overlapping clones and 
radiation hybrid mappings), assembling ESTs, and others, 
can be formulated as multipoint one-dimensional order-
ing. Despite variation among possible optimization cri-
teria, the one-dimensional genetic or genomic ordering 
problems are quite similar to the well known challenging 
Traveling Salesperson Problem (TSP). A powerful algo-
rithm developed for a wide class of TSP-like Vehicle 
Routing Problems and referred to as the Guided Evolu-
tion Strategy (GES) [14] was successfully adapted to 
genetic mapping [15]. High performance and high preci-
sion of GES algorithms make them very suitable to ad-
dress computation challenging multipoint ordering prob- 
lems, especially in the context of our methodology re-
quiring a verification analysis to ensure stability of the 
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constructed maps. The mapping of 3000 loci of a dataset 
generated in a maize project at the Center for Plant Ge-
nomics, Iowa State University, can be used as an exam-
ple of practical efficiency of this approach [16]. 

2. METHODS, ALGORITHMS, AND  
EMPLOYED DATASETS 

2.1. General Scheme 

The core procedure of our approach includes the fol-
lowing stages (Figure 1): 

Using marker orders rather than marker cM positions 
as the main map characteristic, with minimum total map 
length as an optimization criterion. Although map length 
is employed by many other authors, the stability of or-
dering rather than the confidence intervals of the marker 
positions or posterior marker positions [17,18] as a crite-
rion of the map quality, is central to our method. To eva- 
luate the stability of ordering, we employ re-sampling 
procedures [11,19]. 

The previously mentioned formulation was possible to 
implement as a mapping algorithm for many markers 
(i.e., hundreds per chromosome) because of a novel, hig- 
hly efficient method of discrete optimization developed 
in our lab [14]. A procedure for detecting and removing 
problematic markers causing local “map expansion” us- 
ing the instability of local neighborhoods across re-sam- 
pling runs and the deviation from the expected mono-
tonic change of recombination rates as criteria. A step-
wise procedure of merging clusters of linked markers 
based on the end-to-end principle in order to reduce the 
danger of combining markers of non-homologous chro-
mosomes in one map. This danger may derive from 
sampling deviations of corresponding recombination 
rates from the expected 50% or from the pseudo-linkage 
phenomenon [4,5,20]. 

2.2. Clustering 

The first step is calculating pairwise recombination frac- 

tions (rf ) for all pairs of markers using the maximum 
likelihood estimation procedure. Then, the number of 
clusters (linkage groups, LG) can be evaluated as a func-
tion of the threshold (maximal) value rf0, allowing the 
preliminary assignment of a marker to a certain LG, 
namely, marker mi may be assigned to an LGj if recom-
bination between mi and at least one marker from LGj is 
lower than the threshold rf0 and is the lowest compared 
to the distances to any other LG. Based on the obtained 
information, it is necessary to choose a sufficiently small 
value of rf0 to exclude the possibility of getting in one 
LG markers from non-homologous chromosomes due to 
pseudo-linkage (see [4,5,21,22]). But choosing an rf0 that 
is too small will result in a large number of clusters 
(linkage groups) that will considerably exceed the hap-
loid number of the species. Therefore, the next steps 
should include controlled merging of some of the clus-
ters by a gradual relaxing of the conditions on pseudo- 
linkage (by increasing rf ). The specific feature of our 
approach is that the building and ordering of the LGs are 
considered as interacting procedures (see Figure 1). If 
some markers of two LGs appeared closer than the re-
laxed rf, it would be reasonable to permit merging if the 
closest markers of the two candidate LGs are terminal or 
sub-terminal (“end-to-end” merging). Merging should be 
forbidden if the closest markers reside in the interior part 
of one or both candidates. 

To illustrate how this scheme works, we simulated an 
example with two chromosomes (A and B) with pseudo- 
linkage. The maximum deviation from independent seg-
regations of markers ai (chromosome A) and bj (chro-
mosome B) was for markers with i = 5 and j = 13 (the 
simulated value was rfa5-b13 = 0.2, whereas the value that 
“occurred” was 0.19). The recombination values for 
consecutive adjacent markers were 0.1, excluding r11-12 = 
0.285 on chromosome A and r8-9 = 0.33 on chromosome 
B. What happens when two different threshold values of 
recombination are chosen, e.g., rf0 = 0.3 (a usual choice 
in many publications) and rf0 = 0.15? With rf0 = 0.3, all 
markers of chromosome A and the 12 last markers of 

 

 

Figure 1. Stepwise clustering of markers in linkage groups coordinated with multilocus ordering. 
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chromosome B should be combined in one linkage group; 
the remainder of the markers of chromosome B com-
prised the second linkage group. The results obtained 
after ordering these groups followed by detecting and 
removing markers violating monotonic change of rf 
along the map are shown in Figure 2(a). Now, we start 
with a more stringent threshold, rf0=0.15. This choice 
resulted in four linkage groups (Figure 2(b)); upon re-
laxation of the threshold (0.15  0.30) linkage groups 
of the non-homologous chromosome would tend to 
merge, but not in the end-to-end manner (their internal 

 

parts proved to be the closest, rfa5-b13 = 0.19). Thus, this 
merging was not allowed. The next step of relaxation (rf0 
= 0.35) with the previously mentioned rule (allowing 
only end-to-end merging) resulted in the correct recov-
ery of the simulated chromosomes. The presented cycle 
can be repeated several times until further merging will 
cause an appearance of LGs with large internal gaps. 
Clearly, this procedure can be simplified if anchor 
markers are available. However, the choice and usage of 
anchors based on literature should be cautious because 
of the possibility of a relatively high level of errors in 
some published maps. 

 

(a) (b)

Chr 1 Chr 2 Chr 1 Chr 2  

Figure 2. Reducing the chances of wrong clustering by stepwise relaxation of the threshold recombination: 
(a) Wrong clustering of markers, caused by a high threshold value of recopmbination in situations of pseudo- 
linkage; (b) Preventing wrong clustering by using stringent threshold recombination. 
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2.3. Multilocus Ordering 

As noted above, the number of scored markers may, by 
orders of magnitude, exceed the number of those practi-
cally resolvable by recombination markers for the given 
population size. Only a small portion of markers (here 
referred to as delegate markers) can be included in the 
skeleton map, with the remaining markers being at-
tached to the delegates. Besides the non-resolvable 
linkage caused by small sample size, the necessity for 
selection of representative markers for the skeleton map 
derives from non-random (clustered) recombination dis-
tribution in the genome [4], varying information content 
of the markers (co-dominant versus dominant, missing 
data, distorted segregation, and scoring errors), biased 
recombination estimates between repulsion-phase 
dominant markers [19], and negative interference [5,10]. 
Using our approach (implemented in MultiPoint package, 
http://www.multiqtl.com), one may start from a linkage 
group with hundreds of markers and conduct several 
analytical steps in order to build a reliable map: 
 multilocus ordering;  
 binding together closely linked markers followed 

by selection of delegates (bin markers) with the 
highest information content and replacing the gro- 
ups of tightly linked markers by their “delegates”; 
repeated ordering and re-sampling verification of 
the reduced LG to detect regions of map instabil-
ity; 

 removing the markers causing unstable neighbor-
hoods and violating monotonic change of recom-
bination, followed by repeated ordering to obtain 
the skeleton map; 

 attaching the removed markers to their best inter-
vals on the skeleton map. 

Our mapping algorithm is based on the reduction of 
the multilocus ordering problem to TSP or TSP-like for- 
mulation. Its main features were described earlier [11, 
19]. Here we present only recent modifications and ex-
tensions of our ordering algorithm. One of the possibili-
ties in addressing the mapping problem is to recover the 
marker order from a known matrix dij of pair-wise 
marker distances based on estimates of the recombina-
tion rate. An important fact is that in genetic ordering 
problems the distances between the markers cannot be 
measured directly. For this reason, even an exact TSP 
solution does not guarantee that the obtained map will be 
robust to a small variation of the data, hence the impor-
tance of stability testing. Special formulations of the 
problem may include various restrictions (e.g., on a pre-
defined order of anchor markers), implying a reduction 
of genetic mapping to a more complex constrained dis-
crete optimization problem. 

In order to improve the efficiency of our multilocus 

ordering algorithms, we developed a new metaheuristic 
approach, referred to as the Guided Evolution Strategy 
(GES) that combines the strengths of the Guided Local 
Search (GLS – [33]) and Evolution Strategies [19] in the 
framework of one iterative two-stage procedure. GES 
combines the ES and GLS metaheuristics, and these two 
stages are iteratively repeated until no more improve-
ments can be found in the local search. Our experiments 
on 302 large-scale benchmark vehicle routing problems 
with constraints demonstrated that the proposed algo-
rithm is fast, cost-effective, and highly competitive, pro- 
ducing the best known solutions to 82% of the con-
strained benchmark problems [14]. We adapted this GES 
approach to TSP-like problems of genetic mapping, in-
cluding the Fast2Opt local search procedure and new 
variable (adaptive) neighborhood size. The new map-
ping-oriented algorithm works with small neighborhoods 
(25-50 neighbor markers) that allows significantly ac-
celerate the performance on large-scale problems. The 
algorithm was tested on standard TSPlib problems with 
50-2392 points. All known best solutions were achieved 
for these problems. 

2.4. Map Verification 

The objective of the verification procedure is detecting 
regions with unstable neighborhoods relative to the initial 
ordering (in the following example, explaining the method, 
we used 10 markers numbered from 1 to 10). This can be 
achieved by repeated re-sampling of the initial dataset 
(jackknife, bootstrap) followed by multilocus ordering for 
each such derivative sample (Figure 3(a)). Then, the 
identification of unstable regions can be conducted based 
on the frequency distribution of the right-side and left-side 
neighbors (Figures 3(b)-3(d)). The identification of such 
regions can be conducted by summing up corresponding 
neighborhood matrices (Figures 3(b)-3(c)) and calcu-
lating the neighborhood frequencies (Figure 3(d)). The 
higher the deviation from 1 (i.e., from the “diagonal” 
pattern) the less certain is local order. In the example, we 
show only two re-sampling runs. Based on this small- 
size re-sampling, we can indicate certain local neighbor- 
hoods, i.e., for marker pairs 1-2, 4-5, 7-8, and 9-10. In 
actual analysis the number of runs should be at least a 
few dozen or hundreds. 

Clearly, the unstable neighborhoods result from fluc-
tuations in the estimates of recombination rates across 
the repeated samples; the range of fluctuations depends 
on the sample size and the proportion of individuals 
taken at each jackknife run. In our framework, jackknife 
analysis is a modeling tool to quantify the diversity of 
map versions for the treated chromosome representing 
the sampling (stochastic) nature of the map. The results 
of such an evaluation can facilitate further decision 

http://www.multiqtl.com/�


Y. Ronin et al. / Natural Science 2 (2010) 576-589 

Copyright © 2010 SciRes.                                                                    OPEN ACCESS 

581581

 

 

Figure 3. Graphical display of the verification process: (a) multilocus orders for each jackknife (the 
example includes only two jackknives); (b) and (c) neighborhood matrices for each jackknife run; (d) 
matrix of neighbourhood frequencies averaged over all runs. 

 
making about problematic markers. These markers can 
be removed from the map and then the map must be re-
built (Figure 3). 

2.4.1. Improving Map Stability and Building 
Skeleton Map 

After revealing the regions of map instability, we need to 
make a decision about the marker (or markers) responsi-
ble for local instability. For each region, there could be 
more than one candidate for removal from the dataset 
with the objective to stabilize the order. Our choice sho- 
uld depend on quality of the markers (anchor markers or 
genes vs. other markers; co-dominant vs. dominant; con- 
cordantly c-segregating with the neighbors or displaying 
unique segregation; fully scored or with many missing 
data, etc.). Taking these criteria into account, we can 
check the effect of removing any of the candidates using 
the trial-and-error approach, namely, after the removal 
of a candidate marker, we can re-build the map and 
again test its stability based on jackknife re-sampling. 
This computing of intensive methodology is affordable 
within the framework of our approach due to the very 
high performance of our multilocus ordering heuristic 
algorithm. As a result, we will come up with a stabilized 
(skeleton) map. 

Clearly, the skeleton map will include the most reli-
able (informative) markers. Likewise, any group of tig- 
htly linked markers un-resolved by recombination, due 
to tight linkage and small sample size, will be repre-
sented by one delegate marker, which is also selected on 
the basis of scoring quality or biological priority (say, 
gene vs. anonymous marker). The three main reasons for 
map instability can be mentioned here: 1) tightly linked 
markers (with one-two recombinants in the sample) that 
may produce varying local orders upon jackknife runs; 2) 
islands of moderately linked well ordered markers sepa-
rated from other neighbors by relatively large gaps that 

will appear in opposite orientation of the entire island 
(propeller effect); and 3) regions with non-mon- otonic 
change in recombination due to an excess of double re-
combinants caused by scoring errors, negative interfer-
ence, or gene conversion) [5,10,20,23,24]. 

2.4.2. Criteria for Comparing Different Map  
Versions 

To characterize the efficiency and advantages of the pro- 
posed methodology compared to other methods, we need 
to define some criteria used in comparisons. These in-
clude: 

Map length and number of markers presented in the 
resulting stable map: Even with correctly unraveled mar- 
ker order, the evaluated map length may be higher than 
the actual one, due to a certain amount of scoring errors. 
But deviation from the correct order will result in map 
length inflation even without marker scoring errors. 

Controlling monotony: Some of the scoring errors 
may generate situations in violation of the principle that 
“the entire entity is supposed to be larger than its parts” 
[11]. Normally, for three markers ordered as a-b-c, one 
would expect: rac > rab & rac > rbc. A violation of this 
condition indicates that something may be wrong with 
the local ordering. Alternatively, a violation may be 
caused by negative interference or gene conversion. 

Stability of local neighborhoods: With increased pro-
portions of scoring errors, the ordering may become very 
sensitive even to a small sampling variation upon jack-
knife re-sampling. To quantify such instability, we em-
ploy a simple measure: 


i

in 2)/1(  , 

where 2
i  is variance of ith marker neighborhood: 

 
j

iji jip 22 )(5.0 , 
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and pij is the proportion of jackknife runs where markers 
i and j were adjacent neighbors. The enumeration of 
markers is according to the multilocus order obtained on 
the entire sample or based on an external order (e.g., 
from the literature). Stable order will give  = 1. 

Concordance of segregation distortion within local 
neighborhoods: Segregation distortion is a known phen- 
omenon caused by various factors [4]. Upon correct or-
dering, one would expect a certain correspondence be-
tween segregation ratios of neighbor markers (segi and 
segi+1), namely, a correct order should give smaller val-
ues of the following criterion Si compared to a wrong 
order. If the frequency of one of the two classes at a 
marker locus in an RIL (dihaploid, or backcross) popula-
tion or one of the homozygotes in F2 is p1, then the 
normalized change of segregation ratio from marker i to 
i + 1 can be calculated as: 

1,/100  jiii DdsegS  

with dsegi = |p2i - p2i+1|, where p2i and p2i+1 are the fre-
quencies of the second marker class for loci i and i + 1 
normalized by p1i and p1i+1, and Di,i+1 is the distance (in 
cM) between the markers; for F2: 

},max{ 133122   iiiii ppppdseg  

where p2i and p3i are the normalized frequencies of the 
heterozygote and the second homozygote. 

2.4.3. Using Real Mapping Data for Illustration 
To illustrate the efficiency of the proposed mapping stra- 
tegy on real data we selected a few examples of diverse 
organisms: wheat, barley, oat, maize, Arabidopsis, mo- 
use, rat, and trout using the data available on the web. 
The published results for the same datasets were em-
ployed for comparisons with our map versions. 

3. RESULTS 

An empirical assessment of the proposed analytical fra- 
mework, in comparison with other procedures, can be 
conducted using both Monte-Carlo simulations and real 
data. The validation of the basic properties of our algo-
rithms was provided in our earlier publications using 
simulated data [11,19]. Here we demonstrate the advan-
tages of the extended analytical scheme using genome 
mapping data on several eukaryotic species: wheat, bar-
ley, oat, maize, Arabidopsis, mouse, rat, and trout. Ob-
viously, our intention is just to illustrate the proposed 
approach rather than to revise the published maps. We 
believe that a revision of a map, if needed, should be 
conducted by the research groups generating the data. 

Among the illustrations provided below, the example 
on wheat is presented in more detail. The results on the 
other examples are summarized in Table 1, using the 

case on maize to explain how we compare the published 
and de novo constructed maps. One more example, for 
the mouse, is summarized in a separate table (Table 2) 
due to the fact that besides chromosome 16, our results 
for all other chromosomes corresponded well with the 
published map. Like with the mouse, our map version 
corresponded well with the published version using a 
dataset on Arabidopsis. A slight difference was detected 
for chromosome 5 only due to the presence of two 
markers with high levels of missing data, which caused 
problems in the published map and were excluded from 
our version (see Table 1). 

3.1. Wheat Chromosome 1B 

Wheat data from the GrainGenes website (http://wheat. 
pw.usda.gov/GG2/quickquery.shtml) on chromosome 
1B for the RIL mapping population Synthetic  Opata 
with 81 markers were employed (72 markers remained 
after deleting absolutely linked markers). The first step 
was to check the marker ordering presented on the web. 
Using the re-calculated pair-wise rf values transformed 
“back” to F1 level, the length of the map (with Kosambi 
mapping function) was estimated as L = 444 cM. Based 
on re-sampling analysis, the neighborhood stability of 
this map was tested and found to be relatively low (Fig-
ure 4(a)-4(c)). 

A more stable ordering, at least for a sub-set of mark-
ers (comprising a skeleton map), can be achieved by re- 
moving the markers causing the observed instability and 
deviation from the (expected) monotonic growth of re-
combination rates along the map around each of the 
markers [11]. After such “cleaning”, a skeleton map with 
26 markers was obtained (Figure 5(a)). The first and the 
last markers proved to be the same, as they were in the 
initial map (Figure 5(b)); the map length was reduced 
from 444 cM to 138 cM (!), and this was achieved 
without deleting “double recombinants” and replacing 
missing scores by those that yield non-recombinants. 
The improved quality of our map was accomplished by 
detecting and removing problematic markers, mainly 
with high missing levels. Historically, these markers 
were placed onto the map as “second wave” and “third 
wave” markers that were characterized much later than 
the first groups of markers and for a much smaller sub- 
sample of the initial mapping population. Unlike the 
total set with 72 markers, the order of our skeleton map 
with a subset of 26 markers (see Figure 5(a)) corre-
sponded well with the published map: the relative or-
dering of the markers in Figure 5(b) has only one minor 
“inversion” (between markers Xbcd442 (#66) and 
Xbcd441 (#64). 

3.2. Maize Chromosome 1(IRIL5) 

We employed data on IBM302 intercross recombinant 
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Figure 4. Stability testing of wheat Synthetic  Opata standard map of 1B chromosome by using jack-
knife re-sampling. The published order was chosen as a reference (diagonal). The stable order should be 
the one where for each marker its left-side and right-side neighbors do not vary across the repeated runs 
(1-1 pair along the diagonal). Notes: the numbers in brackets near the marker names indicate the marker 
order in the map presented on the website. (a)-(c) represent the three (overlapping) parts of the map; 
analysis was conducted using MultiPoint software package (http://www.multiqtl.com).  

http://www.multiqtl.com/�
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Figure 5. Stabilizing the map by deriving the skeleton map. The graph represents our trial to stabilize 
the wheat 1B map by detecting and removing the markers that caused the local instability of the 
neighborhoods. (a) and (b) represent the new (stabilized) and the original (web) versions, respectively. 
The order of skeleton markers (which proved to be the “first wave” markers) in our version of the map 
displays a remarkable similarity to the order on the website map, excluding one locality. 

 
inbred line (IRIL) mapping population (http://www. 
maizegdb.org/cgi-bin/displaymaprecord.cgi?id=870745). 
To demonstrate the differences between the web version 
and our version of the maps the results on maize chro-

mosome 1 are presented (Table 1). The length of our 
version of skeleton map (LMP = 357 cM) is half of that 
built with MapMaker (LMM = 696 cM), probably reflect-
ing a better ordering and less discrepancy from the cy-

http://www.maizegdb.org/cgi-bin/displaymaprecord.cgi?id=870745�
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togenetic map (see [7,8]). Note that the distal markers in 
the two maps coincide. The average interval size be-
tween the neighbor markers was 696:341 = 2.05 for MM 
and 357:182 = 1.96 for MP. 

Several examples demonstrating the problems that are 
typical of many published maps and are easily resolvable, 
via detecting and removing unreliable markers, are pre-

sented in the examples in Table 1 for the selected or-
ganisms, including maize. Thus, disconcordant segrega-
tions of maize markers 202-203-204 in the MM map 
(reflected in large values of 100dseg/D) indicate that 
marker 203 was erroneously placed between 202 and 
204. Indeed, segregation ratios for the consequent mark-
ers 202, 203, 204 in MM map are 0.78, 0.2, and 0.75,  

 
Table 1. Examples of comparing the quality characteristics of the revised multilocus maps with those of the original maps. 

D(ac)/D(ab or bc) 100dseg/D 
Map L, cM 

Number of markers Chr or LG Species 

MM 
D(6,8)/D(6,7) = 0.65 
D(6,8)/D(7,8) = 0.89 
D(8,10)/D(9,10) = 0.5 

MM                      MP
( 8,9)3.4          (8,10)1.2
(9,10)1.6 

MM          MP
83.3           52
10             7

MM   MP 
1.75   1.01 

MN2 Oat 

JM 
D(17,19)/D(17,18) = 0.67 

JM                      MP 
(17,18)5.0        (17,19)0.4
(18,19)8.0 

JM           MP
317          241
33            28

JM    MP 
2.51   1.05 Chr1H Barley 

JM 
D(15,18)/D(15,16) = 0.55 
D(15,18)/D(16,17) = 0.71 

JM                       MP
(15,16)20       (15,18)0.01
(16,18)5.9 

JM           MP
445          138
72            26

JM    MP 
4.05   1.04 Chr1B Wheat 

MM 
D(202,204)/D(202,203) = 0.45
D(202,204)/D(203,204) = 0.65
 
D(304,308)/D(304,305) = 0.28
D(304,308)/D(305,306) = 0.43
D(304,308)/D(306,307) = 0.52
D(304,308)/D(307,308) = 0.66

MM                      MP
(202,203)9.5    (202,204)1.2
(203,204)12.7 
 
(306,307)33    (304,308)5.5
(307,308)43 

MM          MP
696          357
341          182

MM   MP 
1.87   1.00 

Lg1 Maize 

JM 
D(9,11)/D(10,11) = 0.8 
 
D(23,25)/D(23,24) = 0.2 
D(23,25)/D(24,25) = 0.4 

JM                       MP
(9,10)37          (9,11)1.2
(10,11)6 

JM           MP
108           85
22(29)         17

JM    MP 
1.46   1.01 

Chr10 Rat 

MM 
D(8,12)/D(9,10) = 0.36 

MM                      MP
(10,11)9.4         (8,12)0.5

MM          MP
136           88
25            16

MM   MP 
1.95   1.06 ОА-1 Trout 

JM 
D(3,5)/D(4,5) = 0.52 
 
 
D(20,22)/D(20,21) = 0.28 

JM                       MP
(3,4) 46           (3.5) 5.8
(4,5) 25.5 
 
(20,21) 2.4       (20,22)0.7
(21,22) 10.4 

JM           MP
127.6       112.3
49            45

JM    MP 
1.0     1.0 

Chr5 
(Ler/Cvi) 

Arabidopsis 

Notes:  - score for neighbourhood instability (averaged for the chromosome); Map L - length of the linkage map; 100 dseg/D - relative score 
for concordance of segregation ratios (analogue of derivative for change of segregation ratios along the map); D(ac)/D(ab or bc) - ratio of the 
recombination distance (cM) between flanking markers of a segment to the length of one of its parts (ratio < 1 indicates wrong marker scoring, 
or wrong mapping of the internal marker, or strong negative interference); ММ, JM, MP denote that the map was constructed with Mapmaker, 
Joinmap, or MultiPoint, respectively. 
Coding marker names (bold denotes markers included to the skeleton map): 
Oat: 6 – p40m51n6, 7 – bcd1230, 8 – p48m58n4, 9 – bcd1414, 10 – p48m88n4; 
http://grain.jouy.inra.fr/cgi-bin/graingenes/report.cgi?class=mapdata;name=Oat%2C%20MxN%2C%20genetic%202005;show=locus;show=ma
p;print= 
Barley: 17-E35M58-468, 18-E37M32-209, 19-E39M48-281; 
http://wheat.pw.usda.gov/cgi-bin/cmap/map_set_info?map_set_aid=Barley_Cebada_Capa_x_SusPtrit 
Wheat:  15-XksuE19, 16-Xbcd340, 17-Xrz166, 18-Xbcd1124; 
http://wheat.pw.usda.gov/GG2/quickquery.shtml 
Maize: 202-umc2237, 203-umc2239, 204-umc2238, 303-phi265454, 304-AY110426,  305-ufg14, 306-mmp195g, 307-npi238; 
http://www.maizegdb.org/cgi-bin/displaymaprecord.cgi?id=870745 
Rat: 9-D10Wox26, 10-D10Mgh11, 11-D10Wox9, 23-D10Wox19, 24-D10Wox22, 25-D10Mit7; 
http://www.well.ox.ac.uk/~bihoreau/woxtable.html#Chromosome%201 
Trout:  8 – Eacaacg176o, 9 – Eaacctg201o, 10 – Eaagacc531o, 11 – Eacgatc250c, 12 – Eaccagt121a;  
http://www.wsu.edu/%7Ethorglab/OAmap/OA2002update.xls 
Arabidopsis: 3-A.292L, 4-nga158, 5-BH.144L, 20-CH121L_Col, 21-nga139,  22 – DF.154.C; 
ftp://ftp.arabidopsis.org/home/tair/Maps/Ler_Cvi_RIdata 

http://grain.jouy.inra.fr/cgi-bin/graingenes/report.cgi?class=mapdata;name=Oat%2C%20MxN%2C%20genetic%202005;show=locus;show=map;print=�
http://grain.jouy.inra.fr/cgi-bin/graingenes/report.cgi?class=mapdata;name=Oat%2C%20MxN%2C%20genetic%202005;show=locus;show=map;print=�
http://wheat.pw.usda.gov/cgi-bin/cmap/map_set_info?map_set_aid=Barley_Cebada_Capa_x_SusPtrit�
http://wheat.pw.usda.gov/GG2/quickquery.shtml�
http://www.maizegdb.org/cgi-bin/displaymaprecord.cgi?id=870745�
http://www.well.ox.ac.uk/~bihoreau/woxtable.html#Chromosome%201�
http://www.wsu.edu/~thorglab/OAmap/OA2002update.xls�
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respectively. In МР map, marker 203 is removed. Re-
moving a marker in a correct map usually results in an 
increased distance between the remaining markers. That 
was not the case in this example: D(202,203) = 6.13, 
D(203,204) = 4.31, and D(202,204) = 2.80. Thus, the 
presence of 203 expands the local region more than 
3-fold. An even higher discrepancy in segregation ratios 
was detected in the neighborhood flanked by markers 
304 and 308. Here three markers are problematic: 305, 
306, and 307. If all five markers, from 304 till 308, are 
retained, the total length of the segment is equal to the 
sum of distances D(304,305) = 8.2, D(305,306) = 5.4, 
D(306,307) = 4.4, and D(307,308) = 3.5, which is 21.5. 
In our version of the map markers 305, 306, and 307 are 
deleted, and the length of the segment becomes D(304, 
308) = 2.3, i.e., only ~1/10 of the original size of the 
interval flanked by 304 and 308. An additional argument 
in favor of our analysis is that unlike the removed mark-
ers, markers included on our skeleton map appear in the 
same order as in the original web map, excluding a few 
local discrepancies, namely, the revised local orders 2-1- 
4, 28-32-31-33, 47-49-48-50, 101-109-105-111, 289-295 
-293-292-296, and 324-331-329-334 (the numbers refl- 
ect the consequent relative positions of marker loci from 
1 to 341 in the original map). 

3.3. Mouse 

We employed data on the mapping population (C57BL/ 
6JxM.spretus)F1xC57BL/6J http://www.informatics.jax. 
org/searches/crossdata_form.shtml). The skeleton maps 
that we constructed for chromosomes 1-19 and X corres- 
ponded completely with the maps presented on the web-
site. The only difference was for chromosome 16: the 
web map seems to have a serious local mistake, unless 
the authors used some additional information. Still, kee- 
ping in mind the high quality of the data, it may be in-
structive to compare our results with the original maps. 
For comparison, we excluded absolutely linked markers 

from the original maps. The results are shown in Table 2. 
For chromosome 5, the difference between our map and 
the web version is small and was caused by two markers 
(Zp3 and Ccnb1-rs1) that violated the rule that the entity 
cannot be smaller than its parts [11]. The two versions of 
the map proved identical until the marker Gusb. In the 
web version, the interval Gusb-Zp3 was larger than the 
flanking interval Gusb-Gnb2; thus, deleting Zp3 seems a 
reasonable suggestion. Similarly, interval D5Fcr8-Brca2 
is shorter than its part Ccnb1-rs1-Brca2; thus Ccnb1-rs1 
was also deleted. For chromosome 16, the considerable 
difference between the two versions, is caused by the 
erroneous placement of marker D16Fcr1 at the upper di- 
stal point of the map, despite its tight linkage with Csta. 

4. DISCUSSION 

Building correct multilocus maps is usually considered a 
pre-requisite for diverse genomic/genetic applications, 
e.g., positional cloning, anchoring contigs in physical 
mapping, and marker-assisted selection. Dodds and co- 
authors [25] surprisingly found that map errors do not 
seem to have too much influence on QTL mapping re-
sults. Although this may be the case in some situations, 
in many other situations, map errors may lead to dra-
matic negative impacts. Purportedly, if the objective of 
QTL mapping was map-based cloning, then a lot of ef-
fort might be made with no results if the map order in 
the region of residence of the targeted QTL was wrong. 
This may happen even if the assignment of the QTL to 
the chromosome was correct. Moreover, with some typ- 
es of erroneous ordering, one could detect two QTLs in a 
chromosome that carried only one QTL for the consid-
ered trait, whereas under the correct ordering of markers 
only one QTL will be detected. Obviously, wrong or-
dering, even on a local scale, may also reduce the effi-
ciency of using marker positions on the map to facilitate 
physical mapping. 

 
Table 2. Comparing two versions of mouse maps. 

Chromosome 

16 9 8 7 6 5 4 3 2 1 
Method Parameter 

24 

20 

51 

41 

41 

104 

38 

35 

100 

41 

37 

123 

40 

34 

110 

40 

38 

102 

48 

42 

106 

42 

40 

89 

57 

54 

176 

57 

48 

110 

MMQTX 

MP 

nmar 

 

Nmar 

2.165 

1.003 

1.020 

1.020 

1.044 

1.023 

1.050 

1.058 

1.056 

1.018 

1.168 

1.073 

1.110 

1.044 

1.038 

1.009 

1.088 

1.032 

1.071 

1.024 

MMQTX 

MP 
 

67.3 

46.3 

72.7 

72.7 

66.7 

63.3 

63.8 

61.3 

60.5 

55.7 

80.0 

74.2 

77.6 

71.7 

85.9 

84.2 

88.4 

84.8 

91.4 

83.4 

MMQTX 

MP 
Lchr, cM 

Nmar – numebr of markers in the intial map version, nmar – number of delegate markers 

MMQTX – Map Manager QTX 
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Here we propose an analytical scheme for building 

multilocus genetic maps that allows reasonable map qua- 
lity even in complicated situations with very large num-
ber of markers, disproportionately small sample sizes, 
and a high level of reading errors. A high ratio of scored 
markers to population size has become typical in recent 
years due to the ever-increasing availability of high thr- 
oughput genomic technologies. This new situation has 
encountered a psychological barrier inherited from the 
previous generation of the mapping community, when 
the number of markers was very small, justifying an 
intention to put each marker onto the map, even if its 
position is poorly resolved from the neighbor(s) or if its 
quality is problematic. Even now, when the number of 
potential markers becomes rather high (and sometimes 
huge), there is still a tendency to follow this approach. 
Some authors suggest selecting a part of the markers as 
map bins and order the vast majority of the remaining 
markers relative to the bins. This is a more realistic task, 
but still the number of markers may by far exceed the 
map resolution caused by small sample sizes (see Intro-
duction section). Consequently, the resulting maps, carr- 
ying large number of markers, may be locally unreliable.  

Our approach of testing map stability includes a veri-
fication procedure based on jackknife re-sampling [11]. 
Its major difference from the usual way of addressing 
this problem is that, as a measure of map stability, we 
consider the marker local orders [11,19] rather than the 
length of confidence intervals of marker map positions 
[17]. This approach gives flexibility in detecting and 
removing markers causing map instability that would be 
less natural to implement if the cM position on the map 
is the measure. Moreover, it is a well known fact that 
recombination rates may display very high variability 
between different mapping populations of the same org- 
anism, due to the effects of genotype, age, and environ-
ment [4,20]. This variability may cause serious problems 
in combining data from different mapping populations to 
build consensus maps [9,26]. If marker order is the basis 
of map comparisons, this problem just does not exist.  

At each of the re-sampling iterations, the multilocus 
mapping problem is solved using TSP-like formulation. 
Several well known heuristic algorithms can be applied: 
Tabu Search, Simulated Annealing, Guided Local Sear- 
ch, Genetic Algorithm (with EAX crossover), Evolution 
Strategy, Guided Evolution Strategy, Ant Colony Be-
havior (ACB), and Artificial Neural Networks (ANN) 
(for detailed references see [15]). Currently, the most 
advanced software for solving unconstrained TSP is the 
Concorde package (http://www.tsp.gatech.edu/index.ht- 
ml). Concorde TSP software was applied for solving 
genomic problems (e.g., [27,28]. The Concorde solver 
uses the cutting-plane algorithm [29,30], which is an 

alternative to branch and bound to solve integer pro-
gramming using the specific (one-dimensional) structure 
of the problem. This allows generating very good cuts 
helping to accelerate the optimization process, but only 
if the problem does not contain additional restrictions. 
There are examples of applying the cutting plane algo-
rithm to constrained discrete optimization problems [31, 
32]. In both cited studies, the authors employed a 
multi-processor system and parallel C++ language. In 
particular, using the 188 processors system, a Concorde 
team obtained the exact solution for a 120-point problem 
for 10 days. Our heuristic GES algorithm found exactly 
the same solution in just ten seconds using a standard PC 
Pentium IV (2.0 Ghz). This fact illustrates that heuristic 
approaches for constrained optimization problems are 
preferable, and GES manages with this challenge effec-
tively. We note that our mapping-oriented GES is based 
on hybrid technology and employs powerful properties 
of both Guided Local Search [33,34] and Evolution Stra- 
tegy algorithms [11,19]. 

Returning to the discussion about the importance of 
re-sampling for reliable mapping, we should stress again 
that one of the most frequent factors of instability in 
small sample sizes and in a large number of markers is 
errors in marker reading. As a rule, the number of such 
errors is rather small, just a few per marker per popula-
tion. But the result is that marker pairs that had to be 
non-resolvable (no true recombinants) or poorly resolv-
able (one recombinant) upon the small sample size, be-
come “resolvable” and are somehow ordered. Thus, if, 
on some position of the chromosome, there are several 
absolutely linked markers, the small rate of scoring er-
rors, approximately equal for all markers, should dis-
perse the markers in some multi-dimensional sphere 
(where they are equally distant from each other). In fact, 
during the mapping of these markers, they will be or-
dered in a one-dimensional space (as part of the map), 
resulting in map length inflation proportional to the 
number of such markers and the rate of errors. Local 
marker order in such a situation should be very unstable 
(non-reproducible) upon jackknife re-sampling, hence 
the proposed method of detecting such a region by our 
verification procedure. Removing a considerable propor-
tion of such markers should significantly improve the 
map reliability and reduce the map length. As was sho- 
wn in the previously mentioned example on wheat, 
missing data also may be an important contributor to the 
instability of marker neighborhoods, hence, markers 
with high missing levels should be considered among the 
first candidates for removal during the building of ske- 
leton maps.  

The discomfort that a researcher gets from a map that 
is too long, explains the intention of reducing the map 
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length, sometimes by rather artificial approaches. For 
example, such trials may include removing double re-
combinants and/or recovering the missing data by scores 
yielding non-recombinant genotypes after the marker 
ordering was finished. We found a good example for 
such a situation in re-analyzing the data on wheat chro-
mosome 1B (see the previously mentioned analysis on 
wheat chromosome 1B). In a trial to display the map len- 
gth for the multilocus order of 1B presented on the web-
site, we used “per meiosis” recombination rates con-
verted to Kosambi map distances. This resulted in a 1B 
map with L = 432 cM length, in contrast to the one pub-
lished on the website with L = 104 cM. How could this 
huge discrepancy (432 vs. 104 cM) be explained? We 
managed to “reproduce” the underlying procedure with 
very high precision. As with many other published maps, 
major efforts have been invested by several teams to enr- 
ich this population with molecular markers from other 
populations, thereby bridging these mapping resources 
together. Unfortunately, new waves of markers were 
scored only partially, so that the level of missing data for 
this population was often very high, up to 50-70%.  

It appeared that the problem of missing data was 
treated by the map constructors (or by the software they 
have employed) as follows. After ordering the markers, 
missing data were recovered by replacing the missing 
scores with those that resulted exclusively in non-re-
combinants. Clearly, the higher the level of missing data 
the stronger the effect of such correction will be, i.e., a 
reduction of the map length. Before transforming rf val-
ues for RIL to rf values for F1, double recombinants for 
any pair of adjacent intervals were also replaced by 
non-recombinants. This method of removing erroneous 
double recombinants seems reasonable for F2 or double 
haploids, but it is inappropriate given that in RIL map-
ping population, “double recombinants” are not neces-
sarily a result of scoring errors or real double recombi-
nation events. Indeed, a considerable portion of “double 
recombinants” have likely resulted from recombination 
in adjacent intervals that occurred in meiosis IN DIF-
FERENT generations of genotypes that remained het-
erozygous for those regions (in F2, F3, etc.). We consid-
ered several intervals, where our ordering was exactly 
the same as in the published map, but the distances were 
different (namely, our distances were higher than those 
published on the website). After conducting the previ-
ously mentioned “correction” steps, we obtained exac- 
tly the same distances as reported on the website map. 
The conducted revision analysis indicates that these dis-
tances may be irrelevant to the actual situation. Thus, the 
relatively small lengths of those maps are almost cer-
tainly an artifact introduced during the merging of dif-
ferent marker data sources, some of which contained 

high frequencies of missing data and inappropriate “er-
ror correction”. 

In genetic mapping, multilocus ordering is usually co- 
nsidered as a much more complicated problem compared 
to subdivision of the marker set into linkage groups. 
However, many examples indicate that markers from 
non-homologous chromosomes were assigned to the 
wrong chromosomes, presumably, due to pseudo-linkage. 
We have encountered these types of errors in analyzing 
cereal species (see [5]). Similarly, in cattle, such wrong 
assignments were found for 12% of markers/contigs (H. 
Lewin, personal communication). Thus, the pseudo-lin- 
kage phenomenon should be of special concern for 
large-scale genetic mapping. As indicated above, incor-
rect assignments can be caused by biological and statis-
tical reasons. The probability of sampling deviation from 
the random segregation of markers from non-homolog- 
ous chromosomes should grow with increased numbers 
of chromosomes, length of chromosomes, number of 
markers, and with small sample size. We propose in this 
paper that a considerable part of “wrong assignment” 
errors can be reduced by the algorithm of stepwise clus-
tering markers into linkage groups alternated by multi-
locus ordering.  

The possibility of re-sampling based on testing map 
stability by detecting and removing the markers that 
cause low map quality is the second major component of 
the proposed approach. Detection and removal of the 
markers responsible for local map instabilities and 
non-monotonic change in recombination rates allows 
building stable skeleton maps with minimal total length. 
Clearly, there is some degree of uncertainty in such 
choices; hence, there might be different versions of the 
skeleton map. In such situations, the high performance 
of our algorithms is an important advantage allowing 
further fast correction (complementing) of the skeleton 
map by using additional markers and/or some of the de-
leted markers. Further improvement of the mapping 
quality is achievable by joint analysis of mapping data 
from different mapping populations that can be referred 
to as consensus mapping [9,26]. 
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