

ISSN Online: 2161-7562 ISSN Print: 2161-7554

¹¹B NMR Spectroscopy of Lead Borate Glasses: Additive Effect of Cerium Oxide

Gomaa El-Damrawi¹, Fawzia Gharghar¹, Rawia Ramadan², Mohamed Aboelez³

¹Glass Research Group, Physics Department, Faculty of Science, Mansoura University, Mansoura, Egypt

Email: gomaaeldamrawi@gmail.com

How to cite this paper: El-Damrawi, G., Gharghar, F., Ramadan, R. and Aboelez, M. (2016) ¹¹B NMR Spectroscopy of Lead Borate Glasses: Additive Effect of Cerium Oxide. *New Journal of Glass and Ceramics*, **6**, 57-63.

http://dx.doi.org/10.4236/njgc.2016.64007

Received: August 21, 2016 Accepted: October 8, 2016 Published: October 11, 2016

Copyright © 2016 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

Abstract

Glasses and glass ceramics in the system $xCeO_2 \cdot (50 - x)PbO \cdot 50B_2O_3$ (0 \le x \le 50) have been studied, for the first time, by NMR and FTIR techniques. Effect of CeO₂ substitution with PbO on NMR parameters has been discussed in terms of changing both boron and cerium coordination. The quantitative fraction of four coordinated boron (N₄) has been simply determined from ¹¹B NMR spectroscopy. On the other hand, the fraction of total tetrahedral structural units B₄ (BO₄ + PbO₄ + CeO₄) is obtained from FTIR spectral analysis. It is not possible to get the fraction of cerium oxide directly from the applied spectroscopic tools. Therefore, a simple approach is applied, for the first time, to determine CeO₄ fraction by using the different criteria of both ¹¹B NMR and FTIR spectroscopy. The fraction of B₄ species is equal to N₄, within the experimental error, of the same glasses in the composition region of up to 10 mol% CeO₂. On the other hand, there is a clear difference between both N₄ and B₄ values in glasses of higher CeO₂ content (>10 mol%). The related difference showed a linear increasing trend with increasing the content of CeO₂ in the glass. This was discussed on the bases of structural role of CeO2 which acts as a glass former in the region >10 mol%, while, at lower concentration, it consumed as a glass modifier.

Keywords

New Approach, Cerium Oxide, Boron Fraction

1. Introduction

Borate glasses containing CeO_2 and PbO are used in wide field of applications. This may be due to their distinction features including wide glass forming region and low thermal expansion [1]-[4]. Several investigations have been reported on the structure of

DOI: 10.4236/njgc.2016.64007 October 11, 2016

²Microwave and Dielectric Department, Physics Division, National Research Centre, Giza, Egypt

³Faculty of Engineering, Monofya University, Sheben Elkom, Egypt

lead containing glasses [2]-[6]. It was concluded that glass and glass ceramics containing high concentration from PbO are of great importance from the viewpoint of glass formation. This may because PbO in such a case inters the network of the glass as s former.

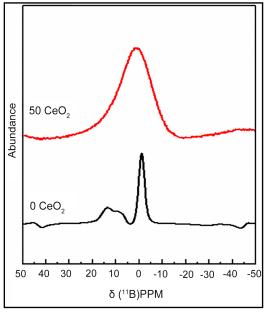
In the low PbO content (up to 50 mol%), majority of PbO act as a network modifier. The reverse behavior is found in binary CeO_2 - B_2O_3 glasses, since cerium oxide acts as a glass former [3] [4]. Each atom of PbO added is used to convert two BO_3 species into two BO_4 units. The fraction of BO_4 groups increases with increasing PbO contents reaching maximum value ~0.50 - 0.53 [7]-[10] at equal amount of PbO and B_2O_3 oxides. Further increase of PbO content decreases the number of BO_4 units by forming nonbridging oxygen atoms in glass network. In such situation Pb ions are mainly surrounded by two BO_4 tetrahedral units and in part by BO_3 units with NBOs [11]. But major portion of CeO_2 inters the network of the glass as a modifier at extremely high contents (40 - 60 mol %) [3].

In this paper, the structure of CeO₂-PbO-B₂O₃ glasses is investigated by means of FTIR absorbance and NMR techniques with an aim to determine the structure role of cerium in ternary cerium lead borate glasses. In this regard, there is a remarkable lack and shortage information about the role of ceria in glass ceramics.

2. Experimental Details

2.1. Glasses Preparation

The glass samples were prepared by mixing and fusing the desired amount of CeO₂, PbO, and H₃BO₃ compounds in alumina crucibles. The melting process was carried out at different temperatures depending on the glass compositions. The glasses were prepared with a wide variety of the cerium oxide concentration which is varied from 2.5 to 50% CeO₂. The melt was swirled frequently and then poured on stainless steel plate and pressed by another plate to get disc like shape.


2.2. 11B NMR Measurements

All samples were measured with JEOL GSX-500 high-resolution solid-state MAS NMR spectrometer in a magnetic field of 11.4 T. ¹¹B MAS NMR spectra were recorded at a frequency of 160.4 MHz and spinning rate of 15 KHz. The glass samples were measured with a single pulse length of 0.5 - 1.0 ms and a pulse delay of 2.5 s, and an accumulation of 200 - 300 scans is obtained.

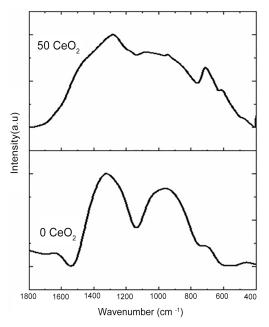
3. Results and Discussion

3.1. Binary Borate Glasses

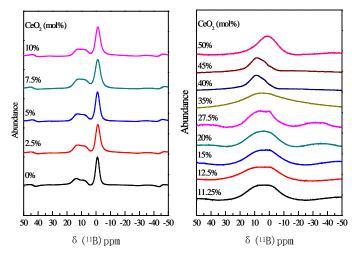
NMR spectra of both 50CeO_2 - $50\text{B}_2\text{O}_3$ and 50PbO- $50\text{B}_2\text{O}_3$ binary glasses are presented in **Figure 1**. It is clear from this figure that there is a great difference between the features of the two spectra. In case of PbO-B₂O₃ glass (free from cerium), well resolved rsonance peaks characterizing BO₃ (both in ring and nonring) and BO₄ groups are

Figure 1. ¹¹B NMR spectra of cerium free (at the bottom) and of glass contains 50 mol% CeO₂.

clearly distinguished. The fraction of boron tetrahedral units is ~0.53 which means that 53% from the total boron is found in its tetrahedral coordination with oxygen atoms. This suggests that the majority of PbO is consumed as a glass modifier. It converts two BO_3 units to two BO_4 groups. On the other hand, broader and anti-symmetric NMR band of CeO_2 - B_2O_3 glass are clearly evidenced by the effect of CeO_2 . It can be seen from the ¹¹B spectrum of the glass that the bands characterizing BO_3 is diluted by CeO_2 . As a result, a wide spectrum containing overlapped peaks characterizing BO_3 and BO_4 is obtained, see **Figure 1**. The fraction of tetrahedral boron is much lower than that of lead borate glass, since the determined value of $B_4 = 0.34$.


Similar observation can be also found in FTIR absorbance spectra of the two glasses, see **Figure 2**. It can be seen from the spectrum of cerium free glass that individual resonances representing BO₃ and BO₄ are markedly distinguished. Higher CeO₂ concentration (50 mol%) leads to appearing of broader and anti-symmetric FTIR resonance band. This wide band is assigned to mixed Ce₄-O, B₄-O and B₃-O stretching vibration mode.

3.2. Ternary Cerium Lead Borate Glasses


There are two main spectral regions which characterize the NMR resonance modes of the ternary glass network. The first is dominant in glass of $0 \le \text{CeO}_2 \le 10$ mol%, since both resonance spectra characterizing separated BO₃ and BO₄ groups are clearly appeared [12]-[15] (**Figure 3**). The wide spectral band of chemical shift exists between 11 - 20 ppm is attributed to BO₃ (both in ring and nonring) groups [12] [13]. The second appears at 0 ppm which is due to tetrahedral BO₄ units. An extra increase in CeO₂ at expense of PbO concentration will result in overlapping resonance spectra characteriz-

ing both BO₃ and BO₄ groups. This may reflect change in structure role of cerium oxide in this composition region, since it acts as a glass former [1] [13] [16] [17]. As a direct result, tetrahedral CeO₄ species are suggested to be formed upon a frequent replacement of CeO₂ with PbO. Increasing concentration of CeO₄ groups is accompanied with a decrease in the fraction of BO₄ units. This is because part of modifier oxide is consumed to modify CeO₂ network. The same feature is reported in detail in our previous work [18] on the same glasses investigated by FTIR spectroscopy.

Figure 4 represents the changes of B_4 and N_4 fractions with CeO_2 concentration. The B_4 can be showed to change with different rates upon addition of CeO_2 concentration.

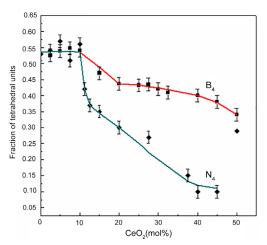


Figure 2. FTIR absorbance spectra of cerium free (at the bottom) and of glass contains 50 mol% CeO_2 .

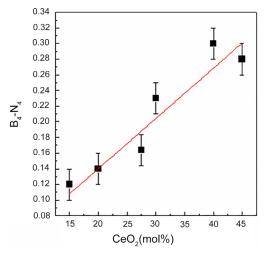


Figure 3. ¹¹B spectra for CeO₂-PbO-B₂O₃ glasses at different CeO₂ concentrations.

First, both B_4 and N4 value in both cases changes slightly around fixed value with introducing CeO_2 up to ~10 mol%. This little difference between the two fraction (B_4 and N_4) may be considered due to the same role of both lead and cerium as glass modifier, since substitution of PbO by CeO_2 hasn't remarkable effect on both values. Further substitution of PbO by CeO_2 (in the region >10 mol %) will result in decreasing in both B_4 and N_4 with different rates. Moreover, the differences between them increase with increasing CeO_2 contents. Increasing differences between B_4 and N_4 may lead to conclusion that the ability of CeO_2 to act as a glass former is increased with its content. Thus the formation of CeO_4 groups as the most dominate species in this region is considered as the main reason of reduction in the tetrahedral (BO_4) groups in the glass network. As a direct effect, B_4 is abruptly decreased upon more addition of CeO_2 (see Figure 4). The difference between B_4 and N_4 for each composition gives a quantitative concentration of CeO_4 fraction as a glass former. Figure 5 presents the change of CeO_4 .

Figure 4. Changes of B₄ and N₄ fraction as function of CeO₂ concentration.

Figure 5. Changes of Ce_4 fraction as function of CeO_2 concentration.

fraction with CeO₂ contents. Ce₄ is observed to increase linearly with increasing CeO₂ concentration. The linear correlation between Ce₄ and CeO₂ concentration leads to confirm that most of all CeO₂ inters the glass network as a strong glass former.

Based upon the above considerations, we suggest that Ce (in high CeO_2) glasses has strong ability to form its own structural units and preferentially bridge to BO_3 rather than increasing number of tetrahedral BO_4 groups. For this reason both B_4 and N_4 values are continuously decreased with increasing CeO_2 contents.

4. Conclusion

Glasses in system of $xCeO_2$ · $(50 - x)PbO·50B_2O_3$ with $0 \le x \le 50$ mol% have been investigated, for the first time, by ^{11}B NMR structural technique. It is evidenced that cerium and lead ions play a dual role in the studied system. In low CeO_2 content, ≤ 10 mol, CeO_2 plays a modifier role. The structure role of CeO_2 is changed from modifier to a glass former at higher content. The fraction of the tetrahedral cerium (Ce_4) as a former species is determined from a suggested approach which is based on correlation between structural feature obtained from both NMR and FTIR analysis. Accordingly, Ce_4 fraction is determined from the differences between values of B_4 and N_4 .

References

- [1] Gautam, C., Yadav, A.K. and Singh, A.K. (2012) A Review on Infrared Spectroscopy of Borate Glasses with Effects of Different Additives. *ISRN Ceramics*, 2012, Article ID: 428497. http://dx.doi.org/10.5402/2012/428497
- [2] Wadate, Y., Hattori, T., Nishiyama, S., Fukushima, K., Igawa, N. and Noda, K. (1996) Short-Range Structural Analysis of an Oxide Glass Composed of Light and Heavy Elements: 3B2O3-2PbO Glass by X-Ray Diffraction. *Journal of Material Science Letters*, 15, 776-780. http://dx.doi.org/10.1007/BF00274601
- [3] El-Damrawi, G. and El-Egili, K. (2001) Characterization of Novel CeO₂-B₂O₃ Glasses, Structure and Properties. *Physica B*, 299, 180-186. http://dx.doi.org/10.1016/S0921-4526(00)00593-7
- [4] Singh, G.P., Kaur, P., Kaur, S.P. and Singh, D.P. (2012) Conversion of Covalent to Ionic Character of V₂O₅-CeO₂-PbO-B₂O₃ Glasses for Solid State Ionic Devices. *Physica B*, **407**, 4269-4273. http://dx.doi.org/10.1016/j.physb.2012.07.015
- [5] Terashima, K., Hashimoto, T. and Yoko, T. (1997) Structure and Nonlinear Optical Properties of PbO-Bi₂O₃-B₂O₃ Glasses. *Physics and Chemistry of Glasses*, **38**, 211-217.
- [6] Mao, D. and Bray, P.J. (1992) ¹¹B NQR and NMR Studies of Lead Borates. *Journal of Non-Crystalline Solids*, 144, 217-223. http://dx.doi.org/10.1016/S0022-3093(05)80403-X
- [7] Doweidar, H., El-Damrawi, G., Mansour, E. and Fetouh, R.E. (2012) Structural Role of MgO and PbO in MgO-PbO-B₂O₃ Glasses as Revealed by FTIR; a New Approach. *Journal of Non-Crystalline Solids*, **358**, 941-946. http://dx.doi.org/10.1016/j.jnoncrysol.2012.01.004
- [8] Doweidar, H., Gohar, I.A., Megahed, A.A. and El-Damrawi, G. (1991) Structure-Transport Relationships in Lead Borate Glasses Containing V₂O₅. Solid State Ionics, 46, 275-281. http://dx.doi.org/10.1016/0167-2738(91)90226-2
- [9] Takaishi, T., Jin, J., Uchino, T. and Yoko, T. (2000) Structural Study of PbO-B₂O₃ Glasses by X-Ray Diffraction and ¹¹B MAS NMR Techniques. *Journal of the American Ceramic Society*, **83**, 2543-2548. http://dx.doi.org/10.1111/j.1151-2916.2000.tb01588.x

- [10] Doweidar, H., El-Igili, K. and Abd El-Maksoud, S. (2000) Correlations between Properties and Structure in CuO-PbO-B₂O₃ Glasses. *Journal of Physics D: Applied Physics*, **33**, 2532-2537.
- [11] Saini, A., Khanna, A., Michaelis, V.K., Kroeker, S., Gonzalez, F. and Hernandez, D. (2009) Structure-Property Correlations in Lead Borate and Borosilicate Glasses Dopped with Aluminum Oxide. *Journal of Non-Crystalline Solids*, 355, 2323-2332. http://dx.doi.org/10.1016/j.jnoncrysol.2009.08.006
- [12] Kroeker, S. and. Stebbins, J.F. (2001) Three-Coordinated Boron-11 Chemical Shifts in Borates. *Inorganic Chemistry*, **40**, 6239-6246. http://dx.doi.org/10.1021/ic010305u
- [13] Aguiar, P.M. and Kroeker, S. (2005) Medium-Range Order in Cesium Borate Glasses. Solid State Nuclear Magnetic Resonance, 27, 10-15. http://dx.doi.org/10.1016/j.ssnmr.2004.08.009
- [14] Singh, G.P., Kaur, P., Kaur, S.P., Kaur, R. and Singh, D.P. (2013) Conversion of Ce⁺³ to Ce⁺⁴ Ions after Gamma Ray Irradiation on CeO₂-PbO-B₂O₃ Glasses. *Physica B*, **408**, 115-118. http://dx.doi.org/10.1016/j.physb.2012.09.005
- [15] Culea, E., Pop, L. and Bosca, M. (2010) Structural and Physical Characteristics of CeO₂-GeO₂-PbO Glasses and Glass Ceramics. *Journal of Alloys and Compounds*, 505, 754-757. http://dx.doi.org/10.1016/j.jallcom.2010.06.135
- [16] Marzouk, S.Y. and Ezz-Eldin, F.M. (2008) Optical study of Ce³⁺ Ion in Gamma-Irradiated Binary Barium-Borate Glasses. *Physica B*, 403, 3307-3315. http://dx.doi.org/10.1016/j.physb.2008.04.041
- [17] Kutub, A.A., Elmanharawy, M.S. and Shawoosh, A.S. (1996) Optical Proprties of Irradiated Sodium Diaborate Glasses Containing Copper and Cerium. *Physica Status Solidi* (*A*), **155**, 239-248. http://dx.doi.org/10.1002/pssa.2211550124
- [18] El-Damrawi, G., Gharghar, F. and Ramadan, R. (2016) Structural Studies on New CeO₂·(50-x)PbO·50B₂O₃ Glasses and Glass Ceramics. *Journal of Non Crystalline Solids*, **452**, 291-296.

Submit or recommend next manuscript to SCIRP and we will provide best service for you:

Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc.

A wide selection of journals (inclusive of 9 subjects, more than 200 journals)

Providing 24-hour high-quality service

User-friendly online submission system

Fair and swift peer-review system

Efficient typesetting and proofreading procedure

Display of the result of downloads and visits, as well as the number of cited articles

Maximum dissemination of your research work

Submit your manuscript at: http://papersubmission.scirp.org/

Or contact njgc@scirp.org

