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ABSTRACT 

Instrumented indentation has been developed for determining the mechanical properties of materials but an accurate 
determination of these properties requires attention on contact stiffness analysis, indentation size effect, elastic modulus 
mode of calculation, role of stress distribution around the indent and its introduction in expanding cavity models for 
tensile mechanical properties determination. In the present work, models for hardness, elastic modulus and plastic 
properties determination by indentation are briefly reviewed and applied for the characterization of a porosity-free 
β-TCP bioceramic. As a main result the elastic modulus is found to be equal to 162 GPa resulting from the application 
of different approaches based on the use of various sharp and spherical indenters. Additionally, Martens and contact 
macrohardnesses were found to be independent on the dwell-time and equals to 4.1 and 6.3 GPa, respectively. Finally, 
models based on Hollomon’s and Ludwik’s laws as well as expanding cavity models were critically analyzed in light of 
their capacity to determine the yield stress and to represent the behavior law of the material. As a main result, the yield 
stress of the β-TCP is found to be equal to 2 GPa. 
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1. Introduction 

Among the experimental techniques used for the deter- 
mination of mechanical properties of ceramics, the in- 
strumented indentation test (IIT) is probably the most 
useful since it allows collecting information on hardness, 
elastic modulus and tensile properties from a single 
load-depth indentation curve. However, due to the vari- 
ety of indentation conditions, different methodologies 
and, subsequently, different models can be applied for 
characterizing the mechanical behavior of a material. For 
example, some models consider the indentation size ef- 
fect modeled by Nix and Gao [1] into the hardness cal- 
culation [2] or in the expanding cavity models for tensile 
properties determination [3] while other models consider 
the hardness independently on the load [4,5]. To improve 
the accuracy on the determination of the elastic modulus 
from unloading curves, different correction factors pro- 
posed by Hay et al. [7], Antunes et al. [8] and Fischer- 
Cripps [9] have been introduced into the model of Oliver 
and Pharr [6] to take into account the geometry of the 
indenter and the approximation made when applying the 
contact theory of Hertz. Still, an important question re-  

mains that divides the opinions of the researchers into 
two groups; one group considering that it is the Young’s 
modulus that is determined by IIT and another group 
stating that only the bulk modulus can be determined by 
this method. In our opinion, a part of the explanation is 
undoubtedly related to the standard calibration that is 
used for the determination of the elastic modulus. A first 
point is that the calibration used by the users of indenta- 
tion equipments is based on the assumption that it is the 
Young’s modulus that is obtained from the standard pro- 
cedure. A second point is that the procedure supposes a 
constant compliance of the system. As a matter of fact, 
we showed recently by molecular dynamic analysis that 
the bulk modulus is obtained by indentation instead of 
the Young’s modulus [10]. Moreover, in the same paper 
we showed that the compliance of the system depends on 
the indentation conditions in accordance to the observa- 
tions of Fischer-Cripps [9] on the effect of nature, ge- 
ometry, mounting of the sample on the total compliance 
of the system. As a consequence, the procedure should be 
to calculate the compliance for each test and to consider 
that is the bulk modulus which is determined by indenta- 
tion. 
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The shape of the indenter is also of main influence on 
the estimated mechanical properties of a material. Some 
authors have compared spherical and sharp indentations. 
For example, Alcala et al. [5] studied the plastic defor- 
mation around spherical and Vickers indents in metals 
and ceramics. Gao [3] developed the expanding cavity 
models for spherical and conical indentations taking into 
account the indentation size effect. On the other hand, 
Chudoba et al. [11] suggest calculating the bulk modulus 
of a thin film using a spherical indenter instead of a 
conical one since it allows remaining the material com- 
pletely elastic if the indenter radius is large enough and 
the load is low enough. 

In the present paper, the first objective is to determine, 
as precisely as possible, the hardness, the elastic proper- 
ties and the behavior law of a porosity-free beta trical- 
cium phosphate (-TCP) bioceramic. The conditions in 
which the material is obtained are new and no data are 
available in literature concerning its mechanical proper- 
ties. In addition, the dimensions of the sample that can be 
produced impede direct determination of the mechanical 
properties by standard mechanical tests. The second ob- 
jective is to examine the validity of the interpretation of 
indentation results obtained by various indentation proc- 
ess and indenters (Knoop, Vickers and sphere). For the 
determination of the elastic modulus, Knoop indentation 
will be used within the objective to apply the Marshall’s 
method [12] based on the elastic recovery of the indent. 
Then Vickers and spherical indenters will be used to de- 
termine the elastic modulus in the conditions of calibra- 
tion stated above. Concerning hardness determination, 
we will use classical methodologies combined with a 
loading curve modeling developed in [2]. Standard me- 
chanical properties like flow stress or work-hardening 
coefficient must be known for useful comparison be- 
tween industrial materials or to be included in numerical 
models. When application of tensile test is not possible 
for determining the tensile parameters, indentation can be 
used by means of application of models. In the present 
work, we will apply and discuss several of these models 
in order to determine the elasto-plastic properties of the 
-TCP. 

2. Materials and Experiments 

2.1. Material 

β-tricalcium phosphate powder was synthesized by co- 
precipitation of a mixture of diammonium phosphate 
solution NH4(HPO4)2 (Carlo Erba, France) and a calcium 
nitrate solution Ca(NO3)2, 4H2O (Brenntag, France) us-
ing aqueous precipitation technique. A Ca/P = 1.52 ratio 
was chosen in order to obtain stoichiometric powders 
[13]. The pH solution was maintained constant at 6.4 
during the reaction by continuous ammonia addition. The 

temperature was fixed at 30˚C and maturation was car-
ried out during 24 h. After ripening, the solution was 
filtered and the precipitate dried at 80˚C. Due to a sig-
nificant specific surface area of the powder (>60 m2·g−1), 
the precipitate was calcined at high temperature to in-
crease the average primary particle size. Afterwards, 
β-TCP was crushed in order to break agglomerates 
formed during calcination and to reduce the powder to its 
final particle size. This crushing was carried out by ball 
milling using HDPE milling jars and yttrium stabilized 
zirconia balls for a duration of 5 h. β-TCP slurries with 
powder concentration of 65 wt% were prepared with 
distilled water. The slurry dispersion was ensured by the 
addition of 1.5 wt% of the TCP content of a commercial 
organic dispersant (Darvan C, R.t. Vanderbilt. Co.) and 
ball milling during 1 h. Cylindrical shape specimens (20 
mm diameter; 5 mm height) were obtained by slip cast-
ing. After drying, the specimens were sintered for a dura-
tion of 2 h by natural sintering. Calcination and sintering 
temperatures were selected at 750˚C and 1060˚C, re- 
spectively, in order to obtain less than 2% of porosity 
estimated by the Archimedes’ method. After sintering, 
the sample was heat-treated by a post-HIP treatment at 
1050˚C under 150 MPa in Ar/O2 atmosphere to obtain a 
100% dense material showing a semi-transparent aspect 
(Figure 1). 

2.2. Indentation Experiments 

Instrumented indentation experiments were performed 
with a micro-hardness Tester CSM 2-107 equipped with 
Vickers and spherical indenters using loads chosen in the 
range 0.2 to 10 N. Three tests are performed at each 
maximum applied load in order to evaluate the repro- 
ducibility of the experiments. Loading and unloading 
rates (expressed in mN/min) were set up at twice the 
value of the maximum applied load according to the  
 

 

Figure 1. The dense -TCP ceramic. 
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stant duration of one minute for the test. In addition, a 
recommendations of Quinn et al. [14] to ensure a con- 
dwell-time of 15 s was imposed according to the standard 
CSM test procedure. Knoop indentation tests were per- 
formed using a standard micro-indenter with a load of 5 
N and a dwell-time of 15 s. All indentation experiments 
were performed on the flat side of the cylindrical sample. 

3. Background Theory 

3.1. Elastic Modulus 

In 1980, Marshall et al. [12] suggested to evaluate the 
elastic modulus of a material by considering the elastic 
recovery of a Knoop indentation. These authors had ob- 
served that the small diagonal, w', of the indent was 
shorter than the expected theoretical value, w, while the 
large diagonal, L, remains constant after the withdrawal 
of the indenter. According to this observation, the au- 
thors proposed the following equation: 

w w HK

L L E



               (1) 

which allows the calculation of E by: 
1

w w
E HK

L L


   
 


          (2) 

Note that  = 0.45 when HK is calculated using the 
projected contact area of the indent [12] whereas  = 0.5 
when considering the true contact area [15]. This method 
is simple but very imprecise when applied to material 
with predominant plastic behavior and should be re- 
stricted to hard predominantly elastic materials analysis. 

Based on the original work of Doerner and Nix [16], 
Oliver and Pharr [6] proposed the calculation of the elas- 
tic modulus of a material from the determination of the 
compliance of the specimen and that of the instrument 
based on the analysis of the unloading part of a load (P)- 
depth (h) indentation curve. They proposed the follow- 
ing relation since the specimen compliance is given by 
the inverse of the contact stiffness, (dh/dP), calculated at 
the maximum indentation depth, hm: 

2d

d π
m

R C

h h

E AP

h 

    
 

         (3) 

where AC is the projected contact area of the elastic con- 
tact measured from the indentation hardness impression. 
ER is the reduced modulus defined by: 
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

  
 
 


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         (4) 

where Em, Ei, νm and νi represent the elastic modulus and 
the Poisson’s ratio of the material and the indenter, re- 
spectively. 

Valid application of Equation (3) necessitates precise 
knowledge of AC and h. Moreover, these two parameters 
are not independent and a relation can be found between 
AC and h depending on the scale of indentation. For na- 
noindentation, the relation takes different forms [17] while, 
for microindentation which is the purpose of the work 
presented here, effects related to the imperfect sharpness 
of the tip are negligible. In this condition, the contact 
area can be represented by the simple expression: 

224.5CA h                 (5) 

where  is the contact depth according to [6]. 2
ch

All the theoretical reasoning that was done until now 
supposes that the results are obtained using an infinite 
stiffness of the indentation system. In reality, this is not 
the case and the compliance of the system has to be taken 
into account. In fact, during the test, the displacement 
that is measured, hmeas is the result of the addition of the 
penetration of the indenter into the sample and the de- 
formation of the indenting system: instrument frame, 
indenter, specimen mounting, etc. All these influences 
are taken into account in a correction proposed by Fisch- 
er-Cripps [9] under the form of a single parameter, Cf, 
named frame compliance. According to this author, the 
difference between hmeas and the actual indentation depth, 
h, is linearly proportional to the applied load. As a con- 
sequence, the indentation depth takes the following form: 

meas fh h C P               (6) 

This expression shows the importance of knowing Cf 
as precisely as possible. Most of the time, researchers 
calibrate their system by performing indentations on 
fused silicate. By this way, they obtained a frame com- 
pliance Cf which is introduced and recognized as a con- 
stant in their analysis software. In reality this assumption 
is no true for higher loads. Indeed, in a previous work, 
we have confirmed the conclusions of Fischer-Cripps [9] 
about this coefficient, i.e. Cf is not a constant for a given 
apparatus but depends on range of loads, nature, size, 
shape, mounting and testing conditions of the sample 
[6,11]. 

Some other features are still to be considered for the 
application of Equation (3). Firstly, a coefficient β is 
needed to represent the geometry of the indenter when it 
is not a body of revolution. For a Vickers indenter, King 
[18] proposed a value of 1.012 whereas Dao et al. [19] 
proposed a value of 1.07. Using a three dimension simu- 
lation of the Vickers indentation, Antunes et al. [8] give 
1.05 independently on the mechanical properties of the 
material which is the value here considered for . Sec- 
ondly, another coefficient, γ, has to be introduced to take 
into account the overestimation of the elastic modulus. 
This was shown by Hay et al. [7] whom pointed out that 
the assumptions considered in Sneddon’s solution did not 
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lead to correct estimation of the radial displacements in  
the contact zone. These authors proposed the following 
relation to express γ which is only Poisson’s ratio de- 
pendent: 

 

 

2

π 1 2
0.1548 cot

4 4 1
π

π 1 2
0.8312 cot

2 4 1

 



 


 
 

 
   





      (7) 

where  represents the half-angle of the equivalent coni- 
cal indenter which would produce the same contact area 
of a pyramidal indenter under the same indentation load 
[20]. For a Vickers indenter  is equal to 70.3˚.  is the 
Poisson’s ratio of the tested material. 

In a previous work [10], we proposed a modification 
of Equation (3) taking into account all these aspects for 
the calculation of the elastic modulus:  

 
d π 1

d 24.5 2
m

f
h h

1

R c

h
C

P  

          E h

ch

    (8) 

This expression can be employed for every self-similar 
indenter like cone, Vickers or Berkovich indenters. In the 
particular case of spherical indenters, the deformation 
induced with different loads is not self-similar. The fol- 
lowing considerations will explain how to take into ac- 
count this problem. Hertz’s theory for sphere/plan con- 
tact provides three useful expressions. The relation be- 
tween the maximum indentation depth, hm, and the con- 
tact indentation depth, hc: 

2mh                   (9) 

The relation between the applied load, P, and the con- 
tact radius, a: 

34

3
RE a

P
R

                (10) 

where ER is the reduced modulus and R the indenter ra- 
dius. 

The relation between the total displacement, hm, and 
the contact radius: 

2

m

a
h

R
                 (11) 

Using these three expressions, the objective is to rep- 
resent the contact stiffness, (dh/dP), as a function of the 
contact depth, hc, and the reduced modulus. By combin- 
ing Equation (10) and Equation (11), we may write: 

3 24

3 R mP E R h             (12) 

The derivation of the applied load compared to the maxi- 
mum indentation depth leads to the following expression: 

1 2d
2

d
m

R m
h h

P
E R h

h 

   
 

         (13) 

Taking into account Equation (9) and introducing in 
Equation (13) the frame compliance and the correction 
factors  and , the contact stiffness for a spherical in- 
denter can be expressed as a function of the square root 
of the reciprocal contact indentation depth, as follows: 

d 1

d 2
m

f
h h

1

R c

h
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P E D h
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  (14) 

where β equals 1 and γ depends on Poisson's ratio and on 
the contact to indenter radii ratio [7]: 
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3.2. Hardness 

The definition usually admitted for the hardness is the 
resistance of a material to plastic deformation induced by 
the penetration of a hard indenter. At the result of the 
indentation test, a remaining indent can be observed at the 
surface of the material as the manifestation of the extent of 
the plastic deformation. Measuring the dimensions of the 
indent allows calculating a hardness number using the 
following equation: 

P
H

A
                 (16) 

where H is the hardness number, P the applied load and A, 
a representative area of the indent that can be the projected 
or the total contact area. 

In instrumented indentation tests, the load-depth curve 
obtained during the test allows the calculation of a hard- 
ness number using the maximum distance (maximum 
indentation depth, hm, reached by the indenter during the 
indentation test), or the contact depth (indentation depth, 
hc, taking into account the deformation of the indent un- 
der load and calculated using the method of Oliver and 
Pharr [6]). As a consequence of all the possibilities to 
use one hardness number value or another, it is clear that 
comparison of the values that can be found in literature 
for a given material has to be carefully given for avoid- 
ing false conclusions about the hardness of this material. 
As an example it can be found in Table 1 the different 
possibilities to express the hardness of a material using a 
conical indenter. 

Note that Martens hardness, HM, and contact hardness, 
HIT, are generally used for micro and nano-indentation, 
respectively. Another problem that has to be taken into 
account when dealing with hardness, whatever its defini- 
tion, is that hardness number depends on the applied in- 
dentation load (Indentation Size Effect). This phenome- 
non has been associated to various causes such as work  
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Table 1. Hardness number calculations using total (true) or 
projected contact area and maximum or contact depth. 

Indentation Instrumented test 

Contact area Maximum depth Contact depth 

Total 226.43 m

P
HM

h
 

Martens 

226.43 c

P
H

h
 

Projected 224.5 m

P
H

h
 224.5 c

P
HIT

h
 

Oliver & Pharr 

 
hardening, roughness, piling-up, sinking-in, shape of the 
indenter, surface energy, varying composition and crystal 
anisotropy, which have been all discussed extensively by 
Cheng and Cheng [21]. 

In a previous paper, Chicot et al. [22] have discussed 
the various relationships that have been produced in lit- 
erature to represent this hardness-load dependence. To 
date, the strain gradient plasticity theory proposed by Nix 
and Gao [1] is probably the most applied. These authors 
proposed expressing the hardness as a function of the 
indentation depth as follows: 

0

2 *

1
H h

H h

  
    

   
          (17) 

where H0 is the macrohardness and h* the characteristic 
scale-length. 

Nix and Gao [1] assume for simplicity that the inden- 
tation deformation process is accommodated by geomet- 
rically necessary dislocations which are required to ac- 
count for the permanent shape change at the surface. In 
these conditions, the macrohardness and the characteris- 
tic scale-length are: 

0

2

* 2
0 3

3 3 81 1
 and tan

2 8sH b h b
Hf

  
 

   
 

 (18) 

where µ is the shear modulus, b the Burger’s vector, s 
the density of statistically stored dislocations and  is 
equal to 19.7˚. f is a corrective factor introduced after- 
wards by Durst et al. [23] to better represent the plastic 
zone size in nanoindentation. The factor f is equal to 1 in 
microindentation and, in nanoindentation, to 1.9 for 
Durst et al. [23] or 1.44 for Nix and Gao [1] who intro- 
duced the concept of non-uniformity of the dislocation 
spacing to explain this difference. 

In practice, when applying relation (18) to nano or to 
micro indentation on the same material gives different 
results for H0 and h*. For this reason, Chicot [24] sug- 
gested an alternative approach to represent ISE whatever 
the indentation scale. In this work, a hardness length- 
scale factor, HLSF, is defined: 

2
2 2

0 0 with LSF
LSF

H *H H H
h

   H h      (19) 

In order to use Equation (19), several indentation tests 
have to be performed on the same material. This is not 
always possible, especially in the case of heterogeneous 
material, where only one indentation can be performed 
on a local phase, constituent or particle. 

Starting from the relation proposed by Zeng and Chiu 
[25] for the description of the loading curve: 

2
0 0P P C h                (20) 

where P0 and C0 are fitting parameters, we proposed re-
cently the following relation to take into account the in-
dentation size effect [2]: 

1 22
2 2

0 026.43 LSFHM
P P HM h

h

 
     

 
   (21) 

This model allows representing the actual applied load 
(P) as a function of the actual indentation depth (h) in- 
volving the Martens macrohardness, HM0, the hardness 
length-scale factor, HMLSF, and a corrective load, P0. 

3.3. Tensile Properties 

In this part, some useful analytical models are going to 
be present in the objective of estimating tensile parame- 
ters from indentation tests. True-stress and true-strain, as 
determined by uniaxial tensile tests, were deduced from 
spherical indentation stress and strain through the fol- 
lowing expressions [26]: 

indentation uniaxial tension3
mp            (22) 

indentation uniaxial tension0.2
a

R
           (23) 

where pm is the mean pressure equivalent to the Meyer 
hardness calculated for spherical indentation, a is the 
contact radius and R the nominal radius of the indenter. 
Note that the ratio in Equation (22) varies between 2.8 
and 3 for metals whereas it can vary between 2 and 4 for 
ceramic materials. 

The mean pressure is calculated by: 

2πm

P
p

a



                (24) 

It is important to note that Equations (22) and (23) are 
applicable in the limit of a fully developed plastic contact, 
i.e. when a/R is close to 0.16 independently of the mag- 
nitude of the non-dimensional parameter y/E and the 
Poisson’s ratio of the material. Moreover, in order to 
represent the plastic domain in tensile stress-strain de- 
formation, different relations can be employed [27-29], 
the Hollomon’s law being probably the most used: 
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Hn
HK                 (26) 

where KH and nH are the strength coefficient and the 
strain-hardening exponent, respectively. 

In order to be valid, the stress expressed in Equation 
(26) must be calculated considering the plastic strain. In 
practice when Hollomon’s law is not verified, Ludwik’s 
law is employed: 

Ln
y LK               (27) 

where KL and nL are the strength coefficient and the 
strain-hardening exponent, corresponding to this law, 
respectively. 

Equations (23), (25) and (26) can be combined [5]: 

2.8 0.2
Hn

m H

a
p K

R
   
 

       (28) 

An alternative expression was proposed by Matthews 
[4] in the special case of work-hardening materials: 

 
6 8

2 9π

Hn

H
m

H

K a
p

n R

      
      (29) 

Based on Ludwik’s law, Huang et al. [30] suggested 
representing the mean pressure as the function of the 
flow stress, flow, and to take into account the indentation 
size effect as follows: 

  2

flow ref2.8 2.8mp f
R

         


  (30) 

where  is assumed to represent the ISE in spherical 
indentation. The stress, ref, and the function, f(), are 
deduced from Ludwik’s law as follows: 



 ref
Ly n

L
L

K f
K


  

 
    

 
      (31) 

Combining relations (23), (30) and (31), allows the 
expression of the applied load as a function of the inden- 
tation depth over the entire loading curve: 

2

2.8 0.2
Ln

y
m L

L

a
p K

K R R

                     


  (32) 

Recently, Gao [3] proposed the introduction of strain- 
hardening and indentation size effect in the expanding 
cavity models (ECMs) for conical and spherical indenta- 
tion tests. This way the author was able to express the 
ratio between the mean pressure, pm, and the yield stress, 
y, as a function of the contact radius to the indenter tip 
radius ratio, a/R. A series of relations were proposed ac- 
cording to the mechanical behavior of the tested material, 
ISE and the shape of the indenter. 

For spherical indentation: 
 Elastic perfectly plastic material with no strain gra- 

dient effect: 
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          (33) 

 Elastic perfectly plastic material with strain gradient 
effect, factor c: 
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    (34) 

 Elastic strain-hardening material with no strain gra- 
dient effect: 
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   (35) 

 Elastic strain-hardening material with strain gradient 
effect, factor c: 
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   (36) 

For Vickers indentations where  is equal to 70.3˚: 
 Elastic perfectly plastic material with no strain gra- 

dient effect: 

      22 7
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       (37) 

 Elastic perfectly plastic material with strain gradient 
effect: 
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 (38) 

 Elastic strain-hardening material with no strain gra- 
dient effect: 
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                                          (39) 

 Elastic strain-hardening material with strain gradient 
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effect: 
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                                          (40) 

 

Note that relations (37) to (40) are similar to relation 
(20) where the second term corresponds to P0. We may 
then write Equation (41) instead of Equation (38): 
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    (41) Figure 2. Residual knoop indent obtained at Pmax = 5 N. 
 
GPa and the elastic modulus was found to be equal to 160 
 26 GPa by applying Equation (2). and Equation (42) instead of Equation (40): 
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         (42) 

4.1.2. Instrumented Vickers Indentation 

Without any prior information on the mechanical be-
havior of the material, determination of the parameters of 
the tensile behavior law can be estimated by fitting the 
experimental data by these relations. This methodology 
allows determining yield stress, y, strength coefficients, 
KH or KL, strain-hardening exponents, nH or nL, elastic 
modulus, E, and constants, c and  characterizing the 
indentation size effect. 



4. Results and Discussion 

In this part, we have applied the above-mentioned rela-
tions to the determination of elastic modulus, hardness 
and tensile properties. 

4.1. Elastic Modulus 

The elastic modulus of the dense -TCP ceramic was 
calculated by applying indentation tests using Knoop, 
Vickers and spherical indenters. 

4.1.1. Marshall’s Method Using Knoop Indenter [12] 
Knoop indentations were performed using an indentation 
load of 5 N. In order to obtain accurate value for the 
elastic modulus, fifteen indents were performed under 
the same maximum applied load. As a result, the small 
diagonal length was found equal to 15.95  0.25 µm and 
the large one to 124.8  1.7 µm. An example of an indent 
is shown in Figure 2. Knoop hardness number HK, cal-
culated with the projected contact area, was equal to 4.57  

Instrumented indentation tests using a Vickers indenter 
were performed at the surface of the dense -TCP ce- 
ramic by applying different maximum applied loads. As 
an example, Figure 3(a) shows selected typical load- 
depth curves illustrating the good reproducibility of the 
loading. Analyzing the unloading part of the load-depth 
curves (Figure 3(a)), we represent the inverse of the 
contact stiffness as a function of the inverse of the in- 
dentation depth according to Equation (8) (Figure 3(b)). 

The Poisson’s ratio of the -TCP ceramic is equal to 
0.22 for Kobayashi and Sakamoto [31] and for Yamadi 
and Kobayashi [32], 0.29 for Dantas et al. [33] or 0.3 for 
Shibata et al. [34]. In absence of any justification by these 
authors of its measurement, we retained the value of 0.3 
for the Poisson’s ratio which leads to 1.067 for the cal- 
culation of the correction factor γ. The theoretical slope is 
then 0.1598/ER. As a consequence, the calculation gives 
153 GPa for the reduced modulus ER which depends on 
the properties of indenter and material (Equation (4)). 
Considering 1140 GPa for the elastic modulus and 0.07 
for the Poisson’s ratio for the diamond indenter [35], the 
elastic modulus of the dense -TCP ceramic was found 
equal to 161  5 GPa, a value very close to that obtained 
by the Marshall’s method. 

4.1.3 Instrumented Spherical Indentation. 
Instrumented indentation tests were performed using a 
spherical indenter with maximum loads ranging from 0.2 
to 10 N. Figure 4 shows typical load-depth curves. 

To apply the model for spherical indentations, Equation 
(9) between the maximum indentation depth and the 
contact indentation depth must be verified. As a matter of 
fact, Figure 5(a) shows that, for a major part of the ex- 
perimental indentation data, the slope can be considered 
equal to 0.5 according to the theory while a significant 
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(a) (a) 

  
(b) (b) 

Figure 3. (a) Load-depth curves obtained with Pmax ranging 
between 0.01 and 5 N; (b) Inverse of the contact stiffness as a 
function of the inverse of the contact indentation depth Ac- 
cording to Equation (8) resulting from Vickers indentation. 

Figure 5. (a) Contact depth versus maximum depth; (b) 
Inverse of the contact stiffness versus the inverse of the 
square root of the contact depth according to Equation (14), 
both resulting from spherical indentation. 

  
discrepancy occurs for the highest indentation depths. The 
corresponding data were not considered in the analysis. 
The selected points of Figure 5(a) are used in Figure 5(b) 
to represent the inverse of the contact stiffness as a func- 
tion of the inverse of the square root of the reciprocal 
contact indentation depth. Since a linear variation is ob- 
tained, it is possible to neglect the correction factor  that 
appears in Equation (14). Considering the spherical in- 
denter radius equals to 100 µm, a slope of 0.0354/ER is 
obtained and the reduced modulus equals to 135.6 GPa. 
Considering 540 GPa for the elastic modulus and 0.24 for 
the Poisson’s ratio of the tungsten carbide [36] of the ball 
indenter, a elastic modulus of 163  10 GPa is found. 
Moreover, it was observed that cracking around the sharp 
indent occurs at different extent. No cracks were observed 
for spherical indentation whereas some small cracks ap- 
pear along the long diagonals of the Knoop indentations 

 

Figure 4. Load-depth curves obtained by spherical IIT with 
Pmax ranging from 0.2 N to 10 N. 
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and larger cracks at the tips of the Vickers indenter. It is 
remarkable that using three methodologies, three different 
indenters and three cracking modes lead to values that are 
very close together. 

The average elastic modulus value of β-TCP obtained 
by the new process employed here which allows the fab- 
rication of a porosity-free β-TCP is of 162 GPa which is 
30 % higher than the value of single crystal β-TCP (120 
GPa) reported by Viswanath et al. [37]. These authors 
wrote that to obtain higher value for the elastic modulus, 
the -TCP phase has been eliminated by conversion of 
-TCP into β-TCP by dissolution of -TCP powder in 
the flux and recrystallisation of β-TCP single crystals. In 
addition, Viswanath et al. [37] added that the elastic 
modulus value of single crystal β-TCP is, at least, six 
times more that the elastic modulus of polycrystalline 
material reported by Wang et al. [38] or Metsger et al. 
[39]. For Viswanath et al. [37], the large difference ob- 
tained between single crystal and polycrystalline material 
is attributed to the defect-free nature of the miniature 
single crystal which can also explained the result ob- 
tained in the present work. 

4.2. Hardness 

Here, we are going to examine the conditions of calcula- 
tion for the determination of Martens hardness, HM, and 
contact hardness, HIT. A particular attention will be fo- 
cused on the choice of the moment of the measurement, i.e. 
at the onset or at the end of the loading plateau corre- 
sponding to the dwell-time of 15 s. 

For HM, calculation was made using the relation pre- 
sented in Table 1 where the compliance correction on hm 
(Equation (3)) is obtained from Figure 3(b) and Cf is 
0.267 µm/N. A synthesis of the results obtained for onset 
and end of the plateau is presented Figure 6 where the 
square of Martens hardness is plotted as a function of the 
reciprocal indentation depth according to Equation (19). 
The main information that can be obtained from this rep- 
resentation is that a unique HM0 is obtained indepen- 
dently of the choice of onset or end of the plateau. The 
difference in the slopes just shows the adaptation of the 
material during the dwell-time. 

For the calculation of HIT, it is also necessary to cor- 
rect the contact depth, hc, for the compliance effect. That 
cannot be done using Equation (3) since hc does not ap- 
pear on the load-depth curve. Instead, the complete me- 
thodology of Oliver and Pharr [6] has to be applied to the 
unloading part of the corrected load-depth curve. This 
requires a lot of time. We already suggested the applica- 
tion of a much faster methodology based on the correc- 
tion performed on the maximum indentation depth [40]. 
In this work, the corrected contact indentation depth was 
related to the corrected maximum indentation depth as 

follows: 

 
corcont max0.0184 0.817 0.267m ch h P h        (43) 

where the coefficients −0.0184 and 0.817 comes from the 
linear relation between the contact depth and the maxi- 
mum depth as shown in Figure 7. 

Calculating HIT from the relation presented in Table 1 
and taking into account the corrected hc (Equation (43)) 
allow the representation of Equation (19) in Figure 8. 
Again, Figure 8 shows that the two representations are 
linear and give the same value for HIT0 (6.3 GPa) when 
extrapolated at the origin of 1/hc axis. 

In order to be applied, the above-described methodol- 
ogy requires a substantial number of experiments and 
calculations. In the following we propose a simple me- 
thod using a single curve in order to reduce dramati- 
cally the time consummate for the hardness determina- 
tion. 

First of all we observed on Figure 3(a) that loading 
curves obtained for different maximum loads are very 
well superimposed. That means that any of these loading 
curves can be used to apply Equation (21) for the calcu- 
lation of the macrohardness and the hardness length-scale 
factor. Verification of a good fitting by Equation (21) 
was made on all the indentation curves (0.2 to 10 N) and 
it shows that mean value of HM0 equals to 4.4  0.4 GPa 
and mean value of HIT0 equals to 6.5  0.5 GPa are very 
near to the values obtained by the other methodologies. 
Note that for β-TCP, Viswanath et al. [37] found a hard- 
ness value around 8 GPa deduced from nanoindentation 
using a unique maximum load of 10 mN. By taking into 
account the indentation size effect clearly visible on Fig- 
ure 8 related to HIT which is the most often calculated in 
nanoindentation, the hardness values are in the same or- 
der of magnitude. 
 

 

Figure 6. Square martens hardness calculated at the onset 
and at the end of the dwell-time at Pmax versus the recipro- 
cal maximum depth for vickers indentation. 
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Figure 7. Contact depth versus maximum depth. 

 

 
Figure 8. Square of the contact hardness calculated at the 
onset and at the end of the dwell-time at Pmax versus the 
reciprocal contact depth for vickers indentation. 
 
4.3. Elasto-Plastic Properties by Indentation 

Hertz theory about the contact between a sphere and a 
planar surface has been used for a long time to express 
the mean pressure in the contact as a function of the elas- 
tic properties of the materials in contact (first part of 
Equation (44)). In the specific case of depth-sensing in- 
dentation, the mean pressure is calculated using Equation 
(24) and (a/R) ratio by Equation (11). As a result, the 
mean pressure in function of (a/R) ratio is expressed as 
follows: 

4
 with 

3π
mR

m

hE a a
P

R R


R
         (44) 

In this equation, ER is the reduced modulus already 
obtained from spherical indentation (Part 4.1) and equals 
to 135.6 GPa. Representing experimental values of Pm as 
a function of (a/R) should give a straight line for the 
elastic part of the curve. Figure 9 confirms that it is in  

 

Figure 9. Indentation stress-strain curves deduced from 
spherical indentations. 
 
fact the case for the first part of the curve corresponding 
to the theoretical Hertzian elastic response. 

The limit of proportionality between Pm and (a/R) cor- 
responds to the transition between elastic and plastic 
domains. It is called, py, which is the pressure at yield, 
equivalent to the hardness, as earlier demonstrated by 
Zhu et al. [41]. Here, py is found close to 6 GPa (Figure 
9). The yield stress is connected to the pressure at yield 
by a factor depending on the tested material. By consid- 
ering the mean value of 3 for the pressure at yield to the 
yield stress (Equation (22)), the yield stress is found to be 
equal to 2 GPa. 

Apart from elastic modulus and yield stress, important 
information on the mechanical properties of the material 
is the work-hardening coefficient observed in the plastic 
domain. Since no information is available concerning 
this type of ceramic, we choose to apply all the models 
presented in part 3.3: Alcala et al. [5], Matthews [4], 
Huang et al. [30] and the expanding cavity models de- 
veloped for elastic perfectly plastic materials and for 
elastic strain-hardening materials by Gao [3]. 

Table 2 collects the values of the fitting parameters 
according to the different models. Considering the range 
of values obtained for the same parameter using the dif- 
ferent models, it is very difficult to select the “best mo- 
del” that could be used as a reference model. What can 
be said is that Equations (35) and (36) cannot apply to 
the material since the work-hardening exponent is found 
negative. Moreover, Equation (28) and Equation (29) that 
consider a linear fit between ln(3Pm) and ln(0.2a/R) can-
not be applied since the linearity is not obtained (Fi- 
gure 10). 

The only relations that produce values data in accor- 
dance with the results obtained for elastic modulus (close 
to 160 GPa) and yield stress (close to 2 GPa) are rela- 
tions (32) and (37) to (42) developed by Huang et al. [30]  
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Table 2. Elasto-plastic properties deduced from spherical 
and Vickers indentations. 

 Spherical indentation 

Equation (28) (29) (32) (33) (34) (35) (36)

KH, KL (GPa) 21.7 21.4 7.4     

nH, nL 0.60 0.60 0.18   −0.60 −0.65

y (GPa)   1.8 6.6 6.0 8.2 8.3

E (GPa)    165 159 122 118

(µm)     −0.047     

c (N)     −0.95  0.03
 

 Vickers indentation 

Equation (37) (38) (41) (39) (40) (42) 

nH, nL   0.14 0.16 

y (GPa) 2.1 2.2 1.8 1.8 

E (GPa) 162 157 155 135 

c (N)  0.03  0.03 

P0 (N)  −0.02  −0.02 

 

In
 (P

m
/3

) 

 

Figure 10. Model of Alcala et al. [5] ln(pm/3) = f (ln(0.2a/R)). 
 
and Gao [3] for Vickers indentation, respectively. A pro- 
blem that remains is the discrepancy between yield stress 
values obtained using Equations (33) and (36) for sphe- 
rical indentation. Since a value close to 2 GPa was found 
experimentally (Figure 9), it means that these relations 
should be reexamined in order to verify if a coefficient 3 
could be neglected in these relations. Nevertheless, it is 
noticeable that the elastic modulus deduced from the 
ECMs model for spherical indentation is in a very good 
accordance with the elastic modulus found by all the 
models. It seems that only the value of the yield stress 
differs by a factor 3 compared to the experimental one. 

5. Concluding Remarks 

In this paper, some methodologies for interpreting inden- 
tation dentation data of a porosity-free beta tricalcium 
phosphate (-TCP) bioceramic obtained using various in- 
denters and conditions of indentation are proposed: 

1) For the determination of the elastic modulus, taking 
some precautions, Knoop discrete indentation, spherical 
indentation and Vickers indentation led to the same results, 
i.e. 163 GPa for the -TCP ceramic. 

2) We demonstrate that macrohardness HIT0 and HM0 
values are independent on the point considered for the 
calculation, onset or end of the dwell-time. However, 
HIT0 (6.3 GPa) and HM0 (4.1 GPa) differ from each other 
by 40% for our ceramic. 

3) It has been demonstrated here that different models 
except the expanding cavity models developed for sphe- 
rical indenter were able to give values in accordance with 
the elastic modulus and yield stress obtained experimen- 
tally. 
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