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Abstract 
This research builds upon the authors’ previous work that introduced and 
modeled a novel Gallium-Arsenide, Emitter-less, Back-surface Alternating 
Contact (GaAs-EBAC) thin-film solar cell to achieve >30% power conversion 
efficiency. Key design parameters are optimized under an Air-Mass (AM) 1.5 
spectrum to improve performance and approach the 33.5% theoretical effi-
ciency limit. A second optimization is performed under an AM0 spectrum to 
examine the cell’s potential for space applications. This research demonstrates 
the feasibility and potential of a new thin-film solar cell design for terrestrial 
and space applications. Results suggest that the straight-forward design may 
be an inexpensive alternative to multi-junction solar cells. 
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1. Introduction 

The renowned British mathematician George Box once quipped, “Essentially, all 
models are wrong, but some are useful” [1]. Generalizations, mathematical 
processes and other factors prevent models from perfectly representing solar cell 
behavior; however, simulation can be useful to investigate various design alter-
natives before a prototype is built. Our previous work [2] showed that a high- 
level of confidence can be attained for a given model by carefully accounting for 
key design parameters, benchmarking model behavior to experimental results, 
and making single-variable adjustments to predict new behavior. 

At the time of this publication, power conversion efficiency η for a single-ab- 
sorption-layer (i.e. single p-n junction) solar cell remains at 28.8%: well below 
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the ~33.5% theoretical limit [3] [4]. Since silicon cell η is restricted to approx-
imately 26% due to intrinsic losses, research has focused mainly on direct band-
gap, III-V compounds such as Gallium-Arsenide (GaAs) to approach theoretical 
efficiency. To this end, [5] [6] [7] demonstrate that strong internal and external 
luminescence promoted by good optical characteristics is important to high-ef- 
ficiency (HE) operation for thin-film cells. Hence, improved optical perfor-
mance has become a dominant theme for thin-film cell design as absorption 
layer thickness approaches sub-wavelength dimensions.  

1.1. Previous Research 

The authors’ previous research [2] developed the novel structure shown in Fig-
ure 1(a) to simulate a HE GaAs cell from [4] [8] [9]. Though not a perfect repre-
sentation, the model was useful for examining various design parameters. Exten-
sive research was conducted to ensure that the simulation accurately reproduced 
experimental results before the GaAs Back-surface Alternating-Contact (GaAs- 
BAC) cell shown in Figure 1(b) was derived. All variables were held constant for  
 

 
(a) 

 
(b) 

Figure 1. (a) 3D model of the HE GaAs cell from [4] [8] [9]. (b) 
3D model of the GaAs-BAC cell from [2]. 
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the new design while only the emitter and associates electrical contacts were 
moved to the back-surface. The small, but significant design change improved 
optical and electrical performance such that model η improved from 28.8% to 
30.3%; open-circuit voltage VOC improved from 1.12 V to 1.13 V; short-circuit 
current density JSC improved from 29.7 mA/cm2 to 30.1 mA/cm2; and FF im-
proved from 86.5% to 88.8%. To further improve cell η, the emitter was removed 
from the GaAs-BAC cell model to produce the novel design shown in Figure 
2(a). FF and η improved slightly to produce the output characteristics shown in 
Figure 2(b). 

1.2. Purpose and Approach 

The purpose of this research is to optimize the thin-film GaAs-EBAC cell model 
from [2] in order to further approach theoretical η. We again utilize Silvaco® 

ATLAS software to alter design variables, predict electrical characteristics, and 
simulate the transport of charge carriers through the cell structure [10]. This re-
search represents the final stage before prototype development. 
 

 
(a) 

 
(b) 

Figure 2. (a) 3D model of the GaAs-EBAC cell from [2]. (b) J-V 
curves and output parameters of the HE GaAs cell from [4] and the 
GaAs-EBAC cell from [2]. 
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2. Optimizing the GaAs-EBAC Cell Model  

In this section we examine the impact of back-surface reflectivity, absorption 
layer thickness and absorption layer doping concentration on cell η in order to 
optimize performance under Air-Mass 1.5 Global (AM1.5G) and AM0 solar 
spectrums. 

2.1. Optimizing the GaAs-EBAC Cell for Terrestrial Application 

GaAs-EBAC cell terrestrial performance is simulated at 300˚K under an AM1.5G 
solar spectrum. Back-surface reflectivity, absorption layer thickness and absorp-
tion layer doping concentration are varied to examine impacts on model per-
formance and maximize η. 

Reflectivity of the bottom contacts contributes directly to photon recycling, 
which contributes to a higher effective minority carrier lifetime [5] [6] [7] [8] 
[9]. Radiative recombination is modeled in ATLAS as 

( )2 2 2exp 1 expn p n pF F F F

rad i i i

E E E E
R B np n Bn Bn

kT kT

 −  −   
= − = − ≈            

,   (1) 

where B is the intrinsic radiative recombination coefficient, EFn - EFp is the ener-
gy difference between electron-hole-pair (EHP) quasi-Fermi levels, k is Boltz- 
mann’s constant, and T is the operating temperature. When reflectivity is varied 
from 90% to 99%, the model indicates a positive correlation with JSC and VOC, 
and no correlation with FF as shown in Table 1. 

Absorption layer thickness contributes to EHP generation in the cell. Maxi-
mum thickness should not exceed minority carrier diffusion length in order to 
ensure carrier capture at the electrical contacts. Spectral generation rate g is de-
fined as 
 
Table 1. Design variable impact on GaAs-EBAC cell output parameters under AM1.5G at 
300˚K. 

Back-Surface Reflectivity (%) 90* 93 96 99 

VOC (V) 
JSC (mA/cm2) 

FF (%) 
η (%) 

1.13 
30.1 
89.1 
30.4 

1.13  
30.2 
89.1 
30.4 

1.14  
30.2 
89.1 
30.5 

1.15  
30.38 
89.1 
30.5 

Absorption Layer Thickness (μm) 1.0 1.2* 1.4 1.6 

VOC (V) 
JSC (mA/cm2) 

FF (%) 
η (%) 

1.14  
29.7  
89.2  
30.2 

1.13  
30.1  
89.1  
30.4 

1.13  
30.2  
89.1  
30.4 

1.13  
30.2  
89.1  
30.3 

Absorption Layer Doping (cm−3) 2 × 1017* 5 × 1017 8 × 1017 2 × 1018 

VOC (V) 
JSC (mA/cm2) 

FF (%) 
η (%) 

1.13  
30.1  
89.1  
30.4 

1.15  
30.0  
89.3  
30.7 

1.16  
29.8  
89.3  
30.8 

1.16  
28.5  
89.3  
30.1 

*Baseline design parameter setting. 
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( ) ( ) ( ) ( ) ( ), 1 ' expg d R dλ λ η φ λ α λ α λ= − −       ,            (2) 

where R is the front-surface reflectivity, λ is the spectral wavelength, η' is the in-
ternal quantum efficiency, ϕ is the photon flux, d is the depth (thickness) of the 
cell and α is the absorption coefficient. When absorption layer thickness is va-
ried from 1 μm to 1.6 μm, the model indicates a positive correlation with JSC and 
a negative correlation with VOC and FF as shown in Table 1. 

Absorption layer doping is the intentional distribution of impurities within a 
semiconductor’s crystal lattice to increase the density of majority carriers-either 
electrons or holes. Increased doping generally improves VOC (i.e. the splitting of 
quasi-Fermi levels) in non-degenerately doped materials and negatively impacts- 
minority carrier mobility and lifetime; therefore, optimization is required. When 
doping is varied from 2 × 1017 cm−3 to 2 × 1018 cm−3, the model indicates a posi-
tive correlation with VOC and FF, and a negative correlation with JSC as shown in 
Table 1. 

Complex cell designs often require innovative methods (i.e. genetic algo-
rithms, Monte-Carlo simulation, etc.) to optimize the design; however, the sim-
plicity of the GaAs-EBAC cell model permits an iterative approach to achieve 
the best design variable combination and minimize the risk of converging on a 
local maximum. Optimization produces a maximum η of 31% when back-sur- 
face reflectivity ≈ 99%, absorption layer thickness ≈ 1.2 μm and doping concen-
tration ≈ 8 × 1017 cm−3. Decreasing back-surface reflectivity to a conservative 
value of 96% reduces η only slightly to 30.9%.  

2.2. Optimizing the GaAs-EBAC Cell for Space Application 

GaAs-EBAC cell space performance is simulated at 350˚K under an AM0 solar 
spectrum. The design is well-suited for space operation due to the intrinsic radi-
ation hardness of GaAs [11]; the superior temperature coefficient of GaAs (as 
compared to silicon) [12] [13] [14]; the high packing density of the back-contact 
design (W/m2) [15]; and the high power density (W/kg) of HE thin-film cells 
[16].  

Design parameters from section 2.1 are varied again with results shown in 
Table 2. Optimization produces a maximum η of 25% when back-surface reflec-
tivity ≈ 99%, absorption layer thickness ≈ 1.0 μm and doping concentration ≈ 8 × 
1017 cm−3. Decreasing back-surface reflectivity to 96% reduces η slightly to 
24.9%. The lower η under the AM0 spectrum (compared to AM1.5G) is attri-
buted to high temperature operation which has a negative impact on VOC: ap- 
proximately −1.4 mV/˚K [13]. A temperature coefficient adjustment was calcu-
lated for a HE triple-junction cell using the manufacturer’s specification sheet 
[17], which yielded η of 26.8% at 350˚K under an AM0 spectrum. Thus, our 
model indicates that conceding just 1.8% η can dramatically reduce design com-
plexity, which could improve system reliability and decrease manufacturing cost. 

3. Conclusion and Future Work  

In this work, parameters were optimized for a GaAs-EBAC cell model [2] in  
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Table 2. Design variable impact on GaAs-EBAC cell output parameters under AM0 at 
350˚K. 

Back-Surface Reflectivity (%) 90* 93 96 99 

VOC (V) 
JSC (mA/cm2) 

FF (%) 
η (%) 

1.07 
35.6 
87.3 
24.4 

1.07  
35.6  
87.3 
24.5 

1.07 
35.7 
87.3 
24.5 

1.07  
35.7  
87.3 
24.5 

Absorption Layer Thickness (μm) 1.0 1.2* 1.4 1.6 

VOC (V) 
JSC (mA/cm2) 

FF (%) 
η (%) 

1.08 
35.2 
87.3 
24.3 

1.07  
35.6  
87.3  
24.4 

1.07 
35.6 
87.2 
24.4 

1.07  
35.6  
87.2  
24.3 

Absorption Layer Doping (cm-3) 2 × 1017* 5 × 1017 8 × 1017 2 × 1018 

VOC (V) 
JSC (mA/cm2) 

FF (%) 
η (%) 

1.07  
35.6  
87.3  
24.4 

1.09  
35.4  
87.4  
24.7 

1.10  
35.1  
87.5  
24.8 

1.13  
33.3  
87.6  
24.1 

*Baseline design parameter setting. 

 
Silvaco® ATLAS which demonstrated the potential for a single-absorption-layer, 
thin-film cell to achieve 31% η at 300˚K under an AM1.5G terrestrial solar spec-
trum, and 25% η at 350˚K under an AM0 space solar spectrum.  

Results suggest that the novel GaAs-EBAC cell design has record-setting po-
tential for terrestrial applications and offers a good alternative to multi-junction 
cells for space applications. In fact, the model produced η within 1.8% of a lead-
ing HE triple-junction cell [17]. 

Future research will investigate the effects of random texturing on the front- 
and-back surfaces to exceed 98% photon internal reflection as absorption layer 
thickness is reduced to less than a spectral wavelength. Additionally, a prototype 
will be developed to experimentally verify the GaAs-EBAC cell design.  

Patent applications have been filed for ideas presented in this paper [18] [19]. 
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