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Abstract 
This paper analyzes the peculiarities of plastic flow of metals for the case of non-proportional load-
ing when the loading path consists of two portions—uniaxial tension and subsequent infinitesimal 
pure shear (torsion). The issue is discussed from the point of view of the hardening rules go-
verning the kinetics of loading surface. Three cases are considered, flow plasticity theory with 
isotropic and kinematic hardening rule, as well as the synthetic theory of plastic deformation. As 
a result, the synthetic theory leads to the results that correlate with experiments, whereas the 
former two theories associated with smooth loading surfaces give a principal discrepancy with 
experimental data. 
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1. Introduction 
The overwhelming majority of the theories of plastic deformation of metals address the notion of yield and 
loading surface to give a geometrical interpretation of the onset and development of plastic strains. This paper 
will analyze (i) plastic flow theories with smooth loading surfaces and (ii) results obtained in terms of the syn-
thetic theory of irrecoverable deformation for the case of a non-proportional loading. Consider a loading path  
consisting of two parts in stress space (Figure 1): AB—proportional loading ( )0

xσ  beyond the yield limit of 

material in uniaxial tension Sσ  and BC—infinitesimal additional loading ( )d xzτ  at right angle to AB potion. 

According to Sveshnikova [1], such loading regimes result in the increment of plastic deformation ( )d 0S
xzγ > .  

Sveshnikova’s experiments were carried out on thin-walled cylinders loaded in uniaxial tension and the addi-
tional loading was obtained by the twisting of the specimens. 
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Figure 1. Loading path ABC in Sveshnikova’s experiment.     

 
The goal of the paper is to show that the synthetic theory is capable of describing the occurrence of the in-

crement of plastic deformation due to the additional loading, whereas the theories with smooth loading surfaces 
lead to the absence of plastic flow, which is contradictive to the experimental results. Although the problem 
dates back to the 20th century, it remains unsolved till now. The issue of the occurrence of plastic deformation 
due to an infinitesimal additional loading, nevertheless, is of high importance. Indeed, as is often the case, 
structural members working under some stress state are subjected to a small additional loading resulted from 
sudden overloading or lack of fit. Such a situation is typical, e.g. beams deformed by bending and undergoing 
small torsions. 

The occurrence of the increments of plastic strains due to the additional loading is studied in a geometrical 
way, by means of the analysis of loading surfaces. In terms of the synthetic theory [2] [3], an additional ortho-
gonal loading leads to the occurrence of additional plastic deformation (which can be calculated by the formulae 
presented in [2] [3]), which is not the case in the framework of the theories providing smooth loading surfaces. 

2. Smooth Loading Surface under Two-Sectional Loading Path 
Consider the behavior of material modeled by the flow theories based on the isotropic and kinematic hardening 
rule [3]-[6] for the following loading path (as shown in Figure 1): uniaxial tension and subsequent orthogonal 
additional loading (infinitesimal torsion). 

In isotropic hardening, the yield surface increase in size due to the stress vector S ( )    SS σ> , but remain the  

same shape, as a result of plastic straining (Figure 2(a)). This condition in the three dimensional subspace, 3R , 
of the Ilyushin five-dimensional space 5R  [3] [5], can be expressed as 

2 2 2 2
1 2 3 23 mS S S J+ + =                                    (1) 

where 2mJ  is the maximum value of the second invariant of stress deviator tensor 2J  [4] for the whole history 
of loading. 

According to kinematic hardening rule, the yield surface remains the same shape and size but merely trans-
lates in stress space (Figure 2(b)), which can be expressed by the following equation: 

( )( ) 2 2 2
0

2,   ,   
3

S
i i i i S k k S SS S S S S S c e S σ′ ′ ′− − = = =                        (2) 

where S
ke  is the plastic strain vector components [3] [5], 0c  constant. 

Equations (1) and (2) give the von-Mises yield criterion when 2    m SJ S=  and  0S
ke =  respectively, and lS

( )  1, 2,3l =  are the components of stress vector, 3   S R∈ , which expresses loading. The components iS  are con- 
verted from the stress deviator tensor components acting at a point of body ( )– ijS i j x y z=  as follows [2] [3]: 

3
3

1
3 2 , 2 2 , 2 ,    ,   3xx xx yy xz ij ij ij ii

i
S S S S S R S σ σδ σ σ

=

 + ∈ = − =  ∑              (3) 

where ijδ  is the Kronecker’s delta. The length of vector S  is related to the second invariant of stress deviator 
tensor, 2J , as 2   S J= . 

Now, consider the infinitesimal additional loading dS , dS S⊥ . It is easy to see that in both case the vector 
dS  lies on the tangent drawn through a loading-point, the endpoint of the vector S , i.e. it is perpendicular to  
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Figure 2. Direction of additional loading vector dS (0, 0, dτxz) with respect to the loading sur-
face in terms of isotropic (a) and kinematic (b) hardening rule in S1 - S3 coordinate planes.      

 
S1-axis (Figure 2(a) and Figure 2(b)). In terms of flow plasticity theories, this means that the additional loading 
dS  is a neutral loading resulting in no plastic strain increment. Therefore, the dS  vector-increment does not 
induce the increment in plastic deformation, which contradicts the result obtained by Sveshnikova. 

Therefore, although the theories discussed above are widely used for the modelling of the plastic strains of 
metals, they are incapable of catching the phenomenon registered in [1]. 

3. Fundamentals of the Synthetic Theory 
The synthetic theory is based on the Batdorf-Budiansky slip concept [7] and the Sanders flow theory [8] and deals 
with small irrecoverable (plastic/creep) deformations of hardening materials. 

Similarly to the Batdorf-Budiansky concept, the deformation of material is calculated on its two structural le-
vels: macro- and micro-level. A point of a body is considered as an elementary volume of the body, V . The 
volume V  consists of a large quantity of microvolumes (grains), 0V , each being an element of the continuous, 
capable of deforming under the applied forces (Figure 3). The mechanism of irrecoverable deformation within the 
microvolume 0V  is slip of one part of 0V  in relation to another. It is assumed that the number of 0V  is so great 
(theoretically it tends to infinity) that every possible orientation of slip systems exists in volume V . Accordingly 
to Budiansky, the stress state in every volume 0V  (slip system) is the same as that in the volume V . The stress 
acting in V  is obtained in a conventional way by solving the equilibrium equation of the body together with 
consistency and boundary conditions (the problem is the simplest for the case of e.g. tension, or torsion when a 
homogenous stress distribution is observed). It must be noted that, in contrast to a uniform distribution of the stress 
among microvolumes 0V , the magnitude of slip strongly depends on the orientation of the slip system relative to 
the direction of the acting stresses. The total deformation in V  is determined as the sum of micro-deformations 
developed in volumes 0V . 

The modeling of irrecoverable deformation at a point of a body ( )V  takes place in the three-dimensional 
subspace ( )3R  of the Ilyushin five-dimensional space of stress deviators, 5R  [5]. The yield surface in 3R  is a 
sphere of radius SS , which corresponds to the von-Mises yield criterion, 

2 2 2 2
1 2 3 ,    2 3S S SS S S S S σ+ + = =                              (4) 

where Sσ  is the yield limit of material in uniaxial tension. 
According to Sanders [8], through each point on the sphere we draw a tangent plane. So, the yield surface can be 

thought of the inner envelope of the equidistant planes. 
The position of plane in 5R  is defined by the following two quantities: (i) the unit vector N  normal to the 

plane and (ii) the distance from the origin of coordinates to the plane, NH  (in the virgin state,    N SH S=  in all 
directions). Since we work in 3R  subspace, the projection of 5R -planes in 3R  are considered, whose posi-
tions are defined by NH  and vector m  normal to plane in 3R  (Figure 4). The orientation of m  is estab-
lished by spherical angles α  and β  as shown in Figure 4, and a relationship between N  and m  is

    cosN m λ= , where λ  is an angle between N  and m  [2] [3]. 
To establish a hardening rule, which governs the kinetics of loading surface during plastic flow, we extend the 

provision that a surface can be constructed as an inner envelope of planes to the case of loading as well. In the  
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Figure 3. Two levels of material structure: an elementary volume of loaded body 
(V) consists of grains (slip systems) V0 producing deformation on microlevel.      

 

 
Figure 4. Distance to plane HN and the orientation 
of vector m.                                 

 
course of loading, the vector S  displaces on its endpoint a set of planes from their initial position, i.e. from 
sphere (4). Each plane moves without changing its orientation (Figure 5(a)). As a result, the loading surface—the 
inner envelope of the planes—has the form as shown in Figure 5(b). It consists of two parts: the cone whose 
lateral surface is formed by the boundary planes reached by the S , and the part of sphere (4), which is the inner 
envelope of stationary planes. 

Each tangent plane corresponds to an appropriate slip system 0V , and the displacement of the plane on the 
endpoint of stress vector symbolizes the development of plastic micro-deformation within the slip system. Plastic 
microstrain modeled by the displacement of one plane is assumed to be a vector normal to the plane (see Figure 
5(a)). It is easy to see that the distance to a plane gives the degree of the hardening of material. Actually, the 
greater NH , the greater stress vector needed to reach the plane, i.e. to induce plastic shift within the corres-
ponding slip system. 

As it follows from Equation (4) and the hardening rule, material is considered initially isotropic, but after the 
development of irrecoverable strain its properties (e.g. hardening) become definitely anisotropic. 

The condition that a plane in 3R  is located on the endpoint of stress vector, i.e. that irrecoverable deformation 
develops within corresponding slip system, is expressed as 

( )1 1 2 2 3 3 1 1 2 2 3 3 cosNH S N S N S N S N S m S m S m λ= ⋅ = + + = + +                   (5) 

where the product S N⋅  plays the role of resolve stress acting within the slip system. The components im  [2] 
[3] 

1 2 3cos cos ,   sin cos ,   sinm m mα β α β β= = =                            (6) 
An average measure of irrecoverable strain within one slip system ( )0V , irrecoverable strain intensity ( )Nϕ , is 

defined via S N⋅  as [2] [3]: 
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(a) 

 
(b) 

Figure 5. Displacement of plane on the endpoint of stress vector (a) and loading-surface (b) in terms of the 
synthetic theory.                                                                             

 
2 22 3 if   plane is reached by 

0 if   plane is not reached by 
N S N

N
N

H H S N S
H S N S

σ
ϕ

 − = ⋅= 
> ⋅

                  (7) 

Macro-deformation is defined by a strain vector, Se , whose components ( S
ke ,   1, 2,3k = ) are calculated as the 

sum (three-fold integration) of nonzero strain intensities, i.e. only the planes displaced by the stress vector con-
tribute to the value of macrostrain: 

( )2 21 1 2cos d d d cos cos cos d d d
3

S
k N k S ke N S m m

r rα β λ α β λ

ϕ β α β λ λ σ λ β α β λ = = ⋅ −  ∫ ∫ ∫ ∫ ∫ ∫             (8) 

The upper and lower integration limits in (8) are obtained from the condition    0Nϕ =  [2] [3]. The strain vector 
components can be converted to the strain-deviator tensor components, ije ( ), , , ,i j x y z= , as 

1 2 33 2 ,   2 2 ,   2xx xx yy xze e e e e e e= = + =                         (9) 

Summarizing, the magnitude of plastic deformation rate depends on the set of planes located on the endpoint of
S , and the distances they traveled from the sphere (4). 

4. Synthetic Theory for Two-Sectional Loading Path 
Let us study if an additional plastic strain increment occurs due to the additional loading dS  in terms of the 
synthetic theory. According to the principle of the forming of loading surface as the inner envelope of displaced 
planes, i.e. because of the forming a conical singularity at the loading point (the endpoint of stress vector S , 
point M ), it is easy to see that the additional vector dS  points outward the current loading surface (Figure 6).  
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Figure 6. Orientation of additional stress-vector dS with 
respect to the loading surface in terms of the synthetic 
theory.                                         

 
This fact means that the action of the dS  induces the increment in plastic deformation: d 0Se > . As shown in 
Rusinko’s early work [9], the number of planes displaced by the dS S⊥  is a half of the planes locating on the 
endpoint of S . 

Therefore, in the framework of the synthetic theory, the phenomena of the occurrence of plastic deformation 
on the orthogonal portion of additional loading can be modelled, this fact is of great importance since is not the 
case for the flow theories with smooth loading surface. 

5. Conclusion 
The formation of corner point (conical singularity) on the loading surface during plastic straining is of crucial 
importance for the correct formulation of the theories of plasticity. As it has been shown in this paper, the flow 
plasticity theories based on hardening rules with smooth loading surfaces lead to non-conformity with the expe-
rimental result obtained for the case of non-proportional loadings (they give no increment in plastic strain), e.g. 
when the loading path is a broken line with orthogonal portions. At the same time, the synthetic theory of plastic 
deformation shows the occurrence of plastic straining in the additional loading even without calculations; it is 
immediately seen from the shape of loading surface and the direction of additional loading. 
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