

Fabrication by Fine Particles and Evaluation of WO₃ Photo Semiconductor Electrode

Toshihito Ohtake

Department of Mechanical Systems Engineering, Faculty of Engineering, Aich University of Technology, Gamagori, Japan
Email: ohtake@aut.ac.jp

Received September 15, 2013; revised October 15, 2013; accepted October 22, 2013

Copyright © 2013 Toshihito Ohtake. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

Application of semiconductor particles has been noticed to solve energy problems as photocatalysis for O_2 evolution in water splitting etc. We are trying fabrication of semiconductor electrode by n-WO₃ particle toward O_2 evolution in water splitting. The electrode obtained high photooxidation properties of water as preventing effective recombination between electrons and holes by utilizing fine semiconductor particles. Particularly, application of suspension prepared by ball milling was able to obtain fine n-WO₃ thin film and the remarked semiconductor properties.

Keywords: Semiconductor; Electrode; WO₃; Photocatalysis; Photoelectrochemistry; Water Splitting

1. Introduction

We have noticed that water splitting by the use of a semiconductor electrode or photocatalysis is utilized for alternative energy resources by solar energy. At present, the efficiency is very low in order to absorb only ultraviolet ray for a titanium oxide or other metal oxide etc. as the semiconductors. Therefore, development of photo semiconductor materials is required to absorb broad visible light region toward high efficiency [1-8].

The evaluation has performed photoelectrochemically toward utilization of solar energy [9-14], and we have attempted fabrication a complex semiconductor electrode consisting of n-Si and n-WO₃. The n-Si/WO₃ semiconductor electrode is expected to absorb long wavelength at n-Si and short wavelength at WO₃ in solar lights for water splitting efficiency, which is called for Z-scheme as known to two steps electron transport chain of photosynthesis. At first, we attempted fabrication of highly active n-WO₃ electrode on FTO substrate in this study, and the n-WO₃ properties was evaluated photoelectrochemically.

2. Methodology

2.1. Photoelectrochemical Measurements

The n-WO₃ thin film semiconductor electrode was fabricated by a doctor blade method, and evaluated photo-

electrochemically by forming the thin film on FTO substrate. Current-voltage (j-V) measurements of the WO₃ electrode was performed by illuminating it with 100 mW/cm², A.M. 1.5 Xe lamp with imposing anodic bias at 50 mV/s, which was constructed with potentiostat, Ag/AgCl reference electrode and Pt counter electrode in 0.1 mol/l Na₂SO₄ electrolyte as shown in **Figure 1**. Action spectra were measured by 300 W Xe lamp filtered out UV ray (UV-33) through a monochromator.

2.2. Fabrication of WO₃/FTO Electrode

 WO_3 suspension was prepared with the WO_3 powder (Wako Pure Chemical Industries, Ltd.) at ca. 200 nm particle size, which was obtained by mixing 1 g WO_3 + 0.1 g HNO_3 (60%) + 0.2 g H_2O and a small amount of surfactant (Triton-X 100, MP Biomedicals, Inc.). The WO_3 thin film was formed by applicating the suspension with doctor blade method on FTO substrate, and was calcinated at 450°C for 30 min in air. Furthermore finer WO_3 powder (Aldrich) was also utilized as ca. 30 - 50 nm particle size.

2.3. Fine WO₃ Powder Preparation by Ball Milling

A ball milling was applied to prepare a finer WO₃ powder with ZrO₂ balls at 3 mm diameter. The finer WO₃ suspension was produced by mixing 6 g WO₃

52 T. OHTAKE

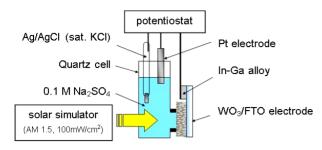


Figure 1. Photoelectrochemical evalutation system to measure n-WO₃ semiconductor electrode on the FTO substrate.

powder (Aldrich) + 14 ml $\rm H_2O$ + 70 g $\rm ZrO_2$ balls in 30 ml bottle at 24 h in the ball milling. The $\rm WO_3/FTO$ electrode was fabricated by applicating the suspension on the FTO substrate at 450°C for 30 min sintering in air similarly.

3. Results and Discussion

3.1. Photoelectrochemical Properties

The j-V curves were shown about WO₃/FTO electrode under dark, illumination and illumination in adding methanol as a reducing agent in **Figure 2**, which obtained anodic photocurrent, and indicated water photooxidation. The photocurrent in the presence of methanol was about twice and means giving knowledge as following sentences. Photooxidation of methanol was known to two processes for electron transfer at direction and secondary. In the case of the direct process, methanol adsorbed on the WO₃ surface reacts with hole [15,16].

$$CH_3OH(ads) + h^+_{(V.B.)} \rightarrow CH_2OH(ads) + H^+(aq)$$

The hole makes photooxidaton of methanol proceed preferentially in comparison to that of water. Hence recombination between electrons and holes is prevented efficiently, and the generation of 'CH₂OH radical caused injection of electrons to conduction band in WO₃ to indicate enough negative redox potential

 $E_0(\cdot CH_2OH/CH_2OH) = -0.97 \text{ V}$ in following equation, and double photocurrent is observed.

$$\cdot \text{CH}_2\text{OH (ads)} \rightarrow \text{CH}_2\text{O} + \text{H}^+ (\text{aq}) + e^-_{(C.B.)}$$

The electron transfer corresponds with the j-V curves in **Figure 2**. In addition, the secondary electron transfer by electrolyte diffused into WO₃ thin film etc. except the photocurrent would not occur not to decrease the photocurrent remarkably in the absence of methanol [15,16]. Consequently, the fabricated WO₃/FTO electrode would show good semiconductor properties for water photooxidation.

Furthermore, WO₃/FTO electrode based on a finer WO₃ powder at 30 - 50 nm diameter (Aldrich) was evaluated as shown in **Figure 3**. The photocurrent increased

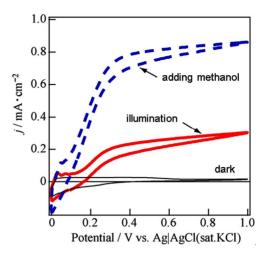


Figure 2. Current-voltage curves about WO₃/FTO electrode under dark (black line), illumination (red line) and the illumination in adding a small amount of methanol (dashed blue line) in 0.1 mol/l Na₂SO₄.

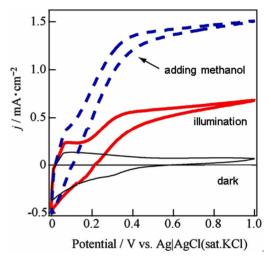


Figure 3. Current-voltage curves about WO₃/FTO electrode based on fine WO₃ powder under dark (black line), illumination (red line) and the illumination in adding a small amount of methanol (dashed blue line) in 0.1 mol/l Na₂SO₄.

as compared with that of the WO₃/FTO electrode based on the previous WO₃ powder, which would suggest that carrier transfer was faster to be deposited with high density and homogeneous. Hence, the finer powder will be required to obtain the excellent semiconductor properties.

3.2. Application of Ball Milling

We attempted fabrication of excellent WO₃/FTO electrode by a ball milling to prepare most homogeneous WO₃ suspension from the WO₃ powder at 30 - 50 nm diameter (Aldrich) without the surfactant. The suspendsion was markedly homogeneous without separation or precipitation. The j-V curves of the WO₃/FTO electrode

T. OHTAKE 53

indicated increase of photocurrent in the presence of methanol particularly in **Figure 4**. The results will suggest that the fabrication method by utilizing the ball milling process of WO₃ powder is very effective for the excellent semiconductor properties. Absorbance of the WO₃ thin film indicated a large absorption at short wavelength within ca. 440 nm as shown in **Figure 5**, and corresponded to band gap at 2.8 eV. Moreover, an action spectrum in **Figure 6** also accorded with the absorption

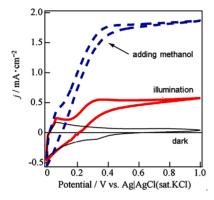


Figure 4. Current-voltage curves about WO_3/FTO electrode based on WO_3 suspension prepared by ball milling under dark (black line), illumination (red line) and the illuminetion in adding a small amount of methanol (dashed blue line) in $0.1 \text{ mol/l } Na_2SO_4$.

Figure 5. Absorption spectrum of WO₃ thin film fabricated by utilizing ball milling on Kubelka-Munk analysis.

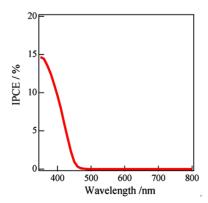


Figure 6. Action spectrum of WO_3/FTO electrode fabric-cated by utilizing ball milling in 0.1 mol/l Na_2SO_4 .

spectrum, and the results would indicate that the ball milling method was one of valid fabrication methods to prepare the thin film for ideal photo semiconductor properties.

4. Conclusion

Application of the fine WO₃ particle improved photoelectrochemical properties, which was more effective by ball milling process for WO₃/FTO electrode. These results suggested that the recombination between electrons and holes was prevented and anodic current was improved in the presence of methanol, and would expect for water photo splitting.

REFERENCES

- [1] R. Nakamura and Y. Nakato, "Primary Intermediates of Oxygen Photoevolution Reaction on TiO₂ (Rutile) Particles, Revealed by in Situ FTIR Absorption and Photoluminescence Measurements," Journal of the American Chemical Society, Vol. 126, No. 4, 2004, pp. 1290-1298. http://dx.doi.org/10.1021/ja0388764
- [2] R. Nakamura, T. Tanaka and Y. Nakato, "Mechanism for Visible Light Responses in Anodic Photocurrents at N-Doped TiO₂ Film Electrodes," *The Journal of Physical Chemistry B*, Vol. 108, No. 30, 2004, pp. 10617-10620. http://dx.doi.org/10.1021/jp048112q
- 3] A. Fujishima and K. Honda, "Electrochemical Photolysis of Water at a Semiconductor Electrode," *Nature*, Vol. 238, No. 5358, 1972, pp. 37-38. http://dx.doi.org/10.1038/238037a0
- [4] H. Kato, K. Asakura and A. Kudo, "Highly Efficient Water Splitting into H₂ and O₂ over Lanthanum-Doped Na-TaO₃ Photocatalysts with High Crystallinity and Surface Nanostructure," *Journal of the American Chemical Society*, Vol. 125, No. 10, 2003, pp. 3082-3089. http://dx.doi.org/10.1021/ja027751g
- [5] G. Hitoki, T. Tanaka, J. N. Kondo, M. Hara, H. Kobayashi and K. Domen, "An Oxynitride, TaON, as an Efficient Water Oxidation Photocatalyst under Visible Light Irradiation (λ ≤ 500 nm)," Chemical Communications, Vol. 16, 2002, pp. 1698-1699. http://dx.doi.org/10.1039/b202393h
- [6] M. Hara, G. Hitoki, T. Tanaka, J. N. Kondo, H. Kobayashi and K. Domen, "TaON and Ta₃N₅ as New Visible Light Driven Photocatalysts," *Catalysis Today*, Vol. 78, No. 1-4, 2003, pp. 555-560. http://dx.doi.org/10.1016/S0920-5861(02)00354-1
- [7] W.-J. Chun, A. Ishikawa, H. Fujisawa, T. Tanaka, J. N. Kondo, M. Hara, M. Kawai, Y. Matsumoto and K. Domen, "Conduction and Valence Band Positions of Ta₂O₅, TaON, and Ta₃N₅ by UPS and Electrochemical Methods," *The Journal of Physical Chemistry B*, Vol. 107, No. 8, 2003, pp. 1798-1803. http://dx.doi.org/10.1021/jp027593f
- [8] A. Ishikawa, T. Takata, J. N. Kondo, M. Hara and K. Domen, "Electrochemical Behavior of Thin Ta₃N₅ Semi-

54 T. OHTAKE

- conductor Film," *The Journal of Physical Chemistry B*, Vol. 108, No. 30, 2004, pp. 11049-11053. http://dx.doi.org/10.1021/jp048802u
- [9] M. Tripathia, R. Upadhyay and A. Pandey, "Semiconductor Photo-Electrochemical Solar Cells Based on Admixing of Nano-Materials for Renewable Energy," *International Journal of Ambient Energy*, Vol. 33, No. 4, 2012, pp. 171-176. http://dx.doi.org/10.1080/01430750.2012.686196
- [10] N. R. de Tacconi, C. R. Chenthamarakshan, G. Yoge-eswaran, A. Watcharenwong, R. S. de Zoysa, N. A. Basit and K. Rajeshwar, "Nanoporous TiO₂ and WO₃ Films by Anodization of Titanium and Tungsten Substrates: Influence of Process Variables on Morphology and Photo-electrochemical Response," *The Journal of Physical Chemistry B*, Vol. 110, No. 50, 2006, pp. 25347-25355. http://dx.doi.org/10.1021/jp064527v
- [11] K.-S. Ahn, S.-H. Lee, A. C. Dillon, C. E. Tracy and R. Pitts, "The Effect of Thermal Annealing on Photoelectrochemical Responses of WO₃ Thin Films," *Journal of Applied Physics*, Vol. 101, No. 9, 2007, pp. 093524-1-093524-4. http://dx.doi.org/10.1063/1.2729472
- [12] S. Higashimoto, N. Kitahata, K. Mori and M. Azuma, "Photo-Electrochemical Properties of Amorphous WO3

- Supported on TiO₂ Hybrid Catalysts," *Catalysis Letters*, Vol. 101, No. 1-2, 2005, pp. 49-51. http://dx.doi.org/10.1007/s10562-004-3748-7
- [13] A. Tacca, L. Meda, G. Marra, A. Savoini, S. Caramori, V. Cristino, C. A. Bignozzi, V. G. Pedro, P. P. Boix, S. Gimenez and J. Bisquert, "Photoanodes Based on Nanostructured WO₃ for Water Splitting," *ChemPhysChem*, Vol. 13, No. 12, 2012, pp. 3025-3034. http://dx.doi.org/10.1002/cphc.201200069
- [14] Q. Wang, Z. Wen, Y. Jeong, J. Choi, K. Lee and J. Li, "Li-Driven Electrochemical Properties of WO₃ Nanorods," *Nanotechnology*, Vol. 17, No. 13, 2006, pp. 3116-3120. http://dx.doi.org/10.1088/0957-4484/17/13/006
- [15] C. Santato, M. Ulmann and J. Augustynski, "Photoelectrochemical Properties of Nanostructured Tungsten Trioxide Films," *The Journal of Physical Chemistry B*, Vol. 105, No. 5, 2001, pp. 936-940. http://dx.doi.org/10.1021/jp002232q
- [16] R. Nakamura, T. Tanaka and Y. Nakato, "Oxygen Photoevolution on a Tantalum Oxynitride Photocatalyst under Visible-Light Irradiation: How Does Water Photooxidation Proceed on a Metal-Oxynitride Surface?" *The Journal of Physical Chemistry B*, Vol. 109, No. 18, 2005, pp. 8920-8927. http://dx.doi.org/10.1021/jp0501289