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Abstract 
Comparison of the loss factor determination methods of the sandwich composite structure with 
polyethylene terephthalate core in the aspect of core material rheological parameters identifi- 
cation was the purpose of the study. Three frequency bandwidths n dB: 1 dB, 2 dB, 3 dB methods, 
the resonant amplitude method and the fit method of the response of the one degree of freedom 
model system are taken into considerations. Identification procedure, according to ASTM E756- 
2005 [1] based on experimental studies of the forced vibrations of the composite structure was 
presented in the paper. To determine the function of the complex shear modulus of the core 
material, the Nelder-Mead method is applied. Shear modulus and loss factor identification results 
were presented on the plots in the frequency domain. The results in a quantitative manner set the 
applied methods and their practical utility in order. 
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1. Introduction 
Polyethylene terephthalate (PET) (C10H8O4)n is a thermoplastic polymer having various industrial applications. 
Due to the high mechanical strength and resistance to both low and high temperatures, PET films are often used 
in various structures as damping elements. To identify dynamic properties of thin film materials, a composite 
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layered configuration is taken into investigations. 
Scientific studies in the layered composite field are carried out for a long time. In the fifties of the twentieth 

century a method of damping of flexural vibration of the plate by means of viscoelastic laminate layers was pre-
sented by Ross et al. (1959). In sandwich configuration, the damping of the plate is caused by elongation and 
shear of viscoelastic layers. Theoretical and experimental analysis of the effectiveness of different configura-
tions of viscoelastic damping layers was presented. The presented method, known in the literature as the RKU 
method was verified and used later in the works of many researchers (e.g. Jones, 2001 [2]; Rao 2003 [3], Marti-
nez-Agirre and Elejabarrieta, 2010 [4]). 

The appearance at the end of the last century many new laminates caused interest in dynamics of layered 
composites with viscoelastic cores. To describe the viscoelastic properties of the core, both classical rheological 
models and fractional rheological models were used. For example in the study by Bagley and Torvik (1985) [5] 
three-layer beam with fractional internal damping is analyzed by using both a continuum formulation and a fi-
nite element formulation. In the later study by Cupiał and Nizioł (1995) [6], three-layer plate with a viscoelastic 
middle layer is analyzed. To describe the viscoelastic properties of the core, a complex shear modulus deter-
mined from classical rheological models is used in this study. However, as shown in later studies in this field 
(e.g. Pritz (1996) [7], Jones (2001) [2], Marynowski (2012) [8]), to describe the viscoelastic properties of lami-
nated material it is necessary to introduce more accurate tool than the widely used classical rheological models. 

The inaccuracy of the classical rheological models can be observed in the frequency domain, where the slope 
of the experimental amplitude curves is always smaller than that of the curves predicted by these models. The 
reason for this inaccuracy can be found in the stress-strain relationship defined in the time-domain by a linear 
differential equation of integer order. By replacing the integer order derivatives in the Zener rheological model 
with fractional order ones, the four-parameter rheological model with fractional derivatives was introduced in 
the studies by Pritz (1996, 2003) [7] [9]. The effect of the parameters on the frequency curves was demonstrated 
in these studies. It is shown that there is a strict relation between the dispersion of the dynamic modules, the loss 
peak and the slope of the frequency curves of the viscoelastic material. Since that time, the fractional model was 
used in many works (e.g. Beda and Chevalier 2004 [10]; Cortes and Elejabarrieta 2006, 2007 [11] [12]; De 
Espindola et al. 2008 [13]; Monje et al. 2010 [14]; Ghanbari and Haeri, 2011 [15]). Overview of publications in 
this field, together with a critical analysis of, applications of fractional derivatives in modeling of mechanical 
systems, can be found, at the study of Rossikhin and Shitikova (2010) [16]. 

A great variety of PET films, and also a trade secret hiding the full results of the research carried out by the 
manufacturers, make it necessary to conduct fundamental research in this field. In this study the authors focus 
attention on an important issue that arises in the identification of viscoelastic properties of thin polyethylene film. 
The three-layer sandwich structure consisting of a metal covers and the polyurethane core, is tested in the identi-
fication process. A method of determining of the loss factor of such composite object has a significant influence 
on the identification results of the polyethylene core. In the numerous papers many methods of the modal loss 
factor determination of viscoelastic structures may be found. These are mainly methods based on frequency 
bandwidth of the experimental resonant plot, but also methods based on other physical parameters. The latter 
categorizes the resonant amplitude method and the fit method of the response of a one degree of freedom model 
system to the measured response near a particular resonance peak. Authors determinated the impact of each me-
thod on the final identification results of polyethylene terephthalate (PET) material. The results in a quantitative 
manner set the applied methods and their practical utility in order. 

2. The Effects of Temperature and Frequency 
When a viscoelastic material is subjected to periodic load, the induced deformation is also periodic out of phase. 
Then the stress-strain relationship can be characterized by complex modulus given in the frequency domain, de-
scribed in [2], by  

( ) ( ) ( )( )1vE E iω ω η ω= + ,                                 (1) 

where ( )E ω  is the Young’s modulus, and ( )η ω  is the loss factor. 
Assuming that Poisson ratio of the viscoelastic material is constant in frequency, the complex shear modules, 

yields 
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( ) ( ) ( )( )1vG G iω ω η ω= +                                 (2) 

It is well known that most polymeric materials exhibit dynamic behavior which depends strongly on frequen-
cy and temperature. Polymers are composed of long intertwined and cross-linked molecular chains, each con-
taining very many atoms. The internal molecular interactions which occur during vibration leads to energy dis-
sipation and damping. If the polymers are homogenous and isotropic, the stiffness and damping characteristics 
vary with temperature and frequency. The shear, extensional and bulk moduli are closely related to each other 
for homogenous and isotropic polymers (Jones, 2001 [2]). 

The complex modules properties of polymers vary strongly with temperature, in ways particular to each po-
lymer composition. Figure 1 illustrates nonlinear behavior of some typical polymers 

Figure 1 shows that above softening temperature Ts in the transition region, the shear modulus decreases ra-
pidly and the loss factor rises to a maximum in the temperature Tm and then falls again. In temperatures above 
the transition region, the modulus is low, and as the temperature continues to rise, the material disintegrates. 

While the effects of frequency are small for typical metal solid materials, the effects of frequency is much 
stronger for many polymers. The effect of frequency is the inverse of the effect of temperature, increasing fre-
quency is similar to the effect of decreasing temperature, but at much different rates, as Figure 2 illustrates. The 
difference is very significant. While the temperature may vary by a few hundred degrees to reach the transition 
region, the corresponding change of frequency encompass many orders of magnitude. In this range the fre-
quency can vary from 10−8 Hz to 108 Hz or more. For low frequencies the loss factor and shear modulus increase 
slightly. In transition region one can observe strong increase of loss factor, which takes maximal value and then 
significantly decreases. In this region the shear modulus increases. Above the transient region one can notice 
further decrease of loss factor and slight increase of the shear modulus, which takes maximal value.  

3. Fractional Rheological Model of Viscoelastic Material 
It is known that fractional derivative rheological models constitute a powerful tool in describing the dynamic 
behavior of viscoelastic materials in the frequency and time domains (Pritz 1996 [7], Jones 2001 [2]). In order to 
reduce the number of terms required by the multiple-element models, the constitutive relation is represented in 
terms of non-integer order derivatives. The four-parameter fractional derivative model (generalized Zener model) 
is given by the formula presented in [2]: 
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Figure 1. Effect of temperature of complex modules behavior. 
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Figure 2. Effect of frequency of complex modules behavior.         



K. Marynowski, K. Grochowska 
 

 
476 

( ) ( ) ( ) ( )
0

d d
,

d d
t t

t E t E
t t

α α
α α

α α

σ ε
σ τ ε τ ∞+ = +                             (3) 

where: σ—stress, ε—strain, E0—static modulus, E∞ —asymptotic modulus, τ—relaxation time, α—fractional 
parameter (0 < α < 1).  

On the base of the Fourier transform of Equation (3), the complex modulus is given by: 

( ) ( )
( )
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= =
+

                                (4) 

where: σ(ω)—the Fourier transform of σ(t), ε(ω)—the Fourier transform of ε(t), ω—frequency, 1i = − . 
If the Poisson ratio of material is assumed to be constant in the considered frequency range, the complex shear 

modulus yields 

( ) ( )
( )

0* ,
1

G G i
G

i

α

α

τω
ω

τω
∞+

=
+

                                  (5) 

where: G0—static shear modulus, G∞ —asymptotic shear modulus. 
Most often to identify the properties of viscoelastic material the sandwich composite structure with viscoelas-

tic core is taken into experimental investigations. An experimental technique that allows identification of the 
complex modulus of the composite structure and the complex shear modulus of the viscoelastic core is utilized 
in this study. 

4. Identification Method 
A sandwich beam of the width b and the thickness (2h1 + h2) is considered. The top and bottom layers are made 
of the same elastic material and the core is of thin, soft polymeric material. The geometry and configuration of 
the layers are shown in Figure 3. 

To identify and model the composite structure the Ross-Kerwin-Unger (RKU) equations are used (Ross et al., 
1959 [17]). The effect of bending of the viscoelastic core is neglected. Then the flexural rigidity of the compo-
site cantilever beam according to [2] is given by 

( ) ( )2 *3
* 1 1 1 21 1

* ,
6 1 2

E h h h gE hEI
g

+
= +

+
                               (6) 

where:  
* 2

* 2
2

1 1 2

,
n

G lg
E h h ξ

=                                       (7) 

and: E1—Young’s modulus of the outer layer, 
*
2G —complex shear modulus of the core, nξ —the n-th eigen-

value of the cantilever beam.  
In experimental way by applying a seismic excitation the flexural rigidity of the composite beam is deter-

mined. From the measured resonant frequencies and loss factors of the composite beam, and also from the re-
sponse of outer beams taken separately, the modal flexural rigidity is given by the formula presented in [2] [4] 

( ) ( )*
2*

2 2

1 1 1 1 0

2
1 1n

n n
n

EI fhZ i
E I h f

ρ
η

ρ
  

= = + +  
  

,                          (8) 
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Figure 3. Geometry and configuration of layers.       
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where: fn—the n-th resonant frequency of the composite beam, f0n—the n-th natural frequency of each individual 
outer beam, ηn—the modal loss factor.  

To measure the modal loss factor the standard ASTM E 746-2005 recommends the half-power bandwidth 
(HPB) method [1]. In this method from the experimental transmissibility function, the resonant frequency and 
the frequencies both above and below the resonant frequency are evaluated for each mode. These two frequen-
cies are determined at points, where the value of the transmissibility function is 3.01 dB less than the value at 
resonance. Then the modal loss factor η is defined as the ratio of the half-power bandwidth ( )f∆  to the reso-
nant frequency f given by 

f
f

η ∆
=                                          (9) 

The HPB method is not the only method for determining the modal loss factor, described in the literature. In 
the same standard ASTM E 746-2005 the “n dB” bandwidth method is considered [1]. Then the modal loss fac-
tor is calculated by 

2

1

1

f
fx

η
  ∆

=   − 
                                   (10) 

where 2010nx = , and n the “n dB” value chosen from the range 0.5 - 3 dB.  
Is worth noting that the HPB method is the “n dB” bandwidth method when n = 3.01 dB. As in the HPB me-

thod, the frequencies above and below the resonant frequency are measured where the value of the experimental 
transmissibility function is n dB less than the value at resonance. In this study both the “2 dB” bandwidth me-
thod, and the “1 dB” bandwidth method are taken into considerations.  

In addition to the methods of determining the loss factor utilizing the frequency bandwidth, in the literature 
can be found two other methods. One of them is a method in which to determine the loss factor is only necessary 
to measure the amplitudes of both the exciter and the test sample at resonance [7]. In the resonant amplitude 
method the loss factor is, according to [2], given by 

2

1

1rX
η =

−
                                    (11) 

where Xr is the measured amplitude ratio at resonance. 
The second method, which does not use the frequency bandwidth, is the fit method of the response of a one 

degree of freedom model system to the measured response near to a particular resonance. In this method, the 
function of square error ε, derived in [2], determines the following expression: 

2

221
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r

F
k X

f
f

ε

η
=
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 
 
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   
 − +  

     

∑                            (12) 

where: Xn—the nth measured displacement response amplitude at the frequency fn; fr—the resonant frequency; 
F—amplitude of the excitation force; k, η—stiffness and loss factors respectively of one degree of freedom 
model system.  

On the base of the measured resonant frequencies and modal loss factors of the composite beam the identifi-
cation of the core is possible. Comparing Equation (8) and Equation (6) the shear parameter *g , closely related 
with the complex modal shear modulus of the core, according to [2], can be determined 

*
* 2

2
*2
2

1

2

12 1 2 4

Zg
h Z
h

−
=

 
+ − + 

 

.                              (13) 

From Equation (13) and Equation (7) the complex modal shear modulus of the core, shown in [2], is given by  
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( )
* 2

* 1 1 2
2 2 2 21 ng E h h
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ξ
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where η2 is the modal loss factor of the core. 
According to the standard ASTM E756-2005 [1] the shear modulus and the loss factor of the material of the 

core are derived by 

( ) ( )
( ) ( )

2 2 1 2 1
2 2 22

2π
2 2

1 2 2 4
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 

;                    (17) 

Cn—coefficient for the n mode of clamped—free beam.  

5. Experimental Investigations 
In order to determine loss factor of sandwich composite beam with viscoelastic core experimental investigations 
were carried out. Investigations were performed according to the standard ASTM E756-2005 [1]. A seismic ex-
citation was generated by electrodynamic shaker Ling Dynamic System V780. For shaker signals parameters 
modification the signal generator HMF2525 was used. In Figure 4 the experimental configuration scheme is 
presented. 

Specimens were mounted in the fixture on the shaker. Two laser streams from HSV-700 sensor head were di-
rected respectively to fixture and free end of the beam in order to determine input and response signal. Signal 
was transmitted by optical fibers to two HSV-800 units and to HSV-2002 laser unit. Afterwards signal was 
transmitted via Brüel & Kjær Pulse to PC unit. In order to verify correctness of the signal oscilloscope was 
placed parallel to PC. Data was elaborated in LabShop software using Fast Fourier Transform. Furthermore as 
signal was measured as velocity it was necessary to perform integration in order to obtain displacement. 
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Figure 4. Test stand for investigation the loss factor of sandwich composite. 1—Arbitrary Generator HMF2525 Hameg In-
struments, 2—Brüel & Kjær LDS HPA K amplifier, 3—LDS V780 shaker, 4—HSV-700 sensor head, 5—HSV-800, 6— 
HSV-2002 laser unit PC, 7—Brüel & Kjær Pulse, 8—oscilloscope, 9—PC, 10—specimen, 11—fixture.                    
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In experimental studies the specimens in the form of the symmetric beams composed of two aluminum alloy 
PA38 with polyester-based adhesive core TESA4965 ware analyzed. In Figure 5 geometry of two specimens 
taken into investigations is shown. Properties of the core and layers materials are presented respectively in tables 
Table 1 and Table 2. 

During the tests investigations single base beams and composite beams were tested as was mentioned in [4]. 
Six specimens were subjected to the pink noise input signal. In order to determine the resonant plot the Fast 
Fourier Transformation (FFT) of the response signal was used. Afterwards the specimens (length of the beams l 
= 180 mm and l = 250 mm) were subjected to sinusoidal excitations with frequencies in the vicinity of each re-
sonant frequency. In this way the five resonant frequencies of the single base beams and the composite beams 
were identified. The value of the loss factor of sandwich composite beam with viscoelastic core was determined 
according to the “3 dB”, “2 dB”, “1 dB” bandwidth methods, the resonant amplitude method and the fit method. 

Investigation Results 
Investigation results for samples for the free length of the beam l = 250 mm and l = 180 mm were presented re-
spectively in Table 3 and Table 4. 

Samples of the length l = 180 mm (corresponding to the shortest length recommended by the standard) was 
subjected investigation to more accurately determine the position of the high frequency asymptote of the core 
material characteristic. The calculation results of the sandwich beams loss factor presented in tables Table 3 and 
Table 4 are shown respectively on plots in Figure 6 and Figure 7. 
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210  

Figure 5. Geometry of the specimens.                      
 

Table 1. Properties of the material TESA4965.              

Property Unit Value 

Tape overall thickness [µm] 205.0 

Film thickness [mm] 0.012 

Density [kg/m2] 1.1 

Max. short term temperature resistance [˚C] +80 

Min. long term temperature resistance [˚C] +200 

 
Table 2. Material properties of the alloy PA38/6060.           

Property Unit Value 

Density [g/cm3] 2.7 

Freezing temperature [˚C] 610 

Flow temperature [˚C] 655 

Poisson’s ratio - 0.33 

Thermal conductivity W/mK 200 
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Table 3. Sandwich composite beam loss factor comparison for the free length of the beam l = 250 mm.                    

Beam No Mode No fr [Hz] Fit method Res. ampl method “3 dB” method “2 dB” method “1 dB” method 

1 1 48 0.272 0.190 0.275 0.263 0.255 

1 2 280 0.325 0.418 0.331 0.328 0.324 

1 3 760 0.359 0.766 - - - 

1 4 1500 0.339 - 0.290 0.286 0.257 

1 5 2300 0.305 - - 0.231 0.157 

2 1 46 0.201 0.175 0.213 0.203 0.192 

2 2 260 0.255 0.307 0.244 0.241 0.231 

2 3 710 0.269 0.513 - 0.262 0.257 

2 4 1350 0.249 1.361 0.213 0.224 0.182 

2 5 2150 0.152 1.148 0.149 0.148 0.141 

3 1 46 0.250 0.170 0.266 0.252 0.242 

3 2 260 0.237 0.282 0.219 0.218 0.211 

3 3 690 0.213 0.450 0.234 0.223 0.218 

3 4 1300 0.193 1.005 0.194 0.192 0.181 

3 5 2150 0.150 1.051 0.148 0.149 0.141 

4 1 49 0.241 0.179 0.239 0.233 0.226 

4 2 260 0.258 0.296 0.254 0.254 0.253 

4 3 730 0.316 0.526 - 0.333 0.291 

4 4 1450 0.236 1.499 0.400 0.216 0.249 

4 5 2250 0.180 1.226 0.176 0.163 0.151 

5 1 47 0.231 0.171 0.221 0.214 0.205 

5 2 250 0.188 0.223 0.188 0.189 0.187 

5 3 710 0.192 0.363 0.189 0.188 0.188 

5 4 1350 0.158 0.761 0.156 0.165 0.153 

5 5 2200 0.087 0.583 0.064 0.056 0.042 

6 1 48 0.239 0.184 0.239 0.231 0.218 

6 2 260 0.231 0.291 0.229 0.228 0.222 

6 3 710 0.263 0.505 - 0.275 0.266 

6 4 1350 0.158 1.561 - - 0.269 

6 5 2200 0.116 1.164 0.124 0.112 0.074 

 
Table 4. Sandwich composite beam loss factor comparison for free length of the beam l = 180 mm.                       

Beam No Mode No fn [Hz] Fit method Res. ampl method “3 dB” method “2 dB” method “1 dB” method 

7 1 75 0.152 0.108 0.149 0.138 0.058 

7 2 460 0.143 0.209 0.146 0.145 0.154 

7 3 1300 0.148 0.557 0.160 0.162 0.163 

7 4 2400 0.064 0.291 0.060 0.058 0.046 

8 1 84 0.206 0.181 0.231 0.208 0.212 

8 2 520 0.290 0.389 0.296 0.288 0.287 

8 3 1400 0.279 1.932 0.285 0.275 0.270 

8 4 2500 0.092 0.545 0.116 0.099 0.091 
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Figure 6. Graphical comparison of the loss factor values for the sandwich composite beam for the free length of the 
beam l = 250 mm.                                                                                                
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Figure 7. Graphical comparison of the loss factor values for the sandwich composite beam for the free length of the 
beam l = 180 mm.                                                                                                 

6. Core Properties Identification  
Data obtained according to the particular methods of the sandwich beam loss factor determination was used in 
further calculations. According to the standard ASTM E756-2005 [1] shear modulus and loss factor of the core 
material are described by the formulas (15) and (16). It shows that both shear modulus and loss factor of viscoe-
lastic core material depends on the loss factor of whole composite structure. Using loss factor calculations re-
sults, presented in the previous section, the identification of rheological parameters of fractional model of the 
core material was carried out. To determine the function of the complex shear modulus of the core material, the 
Nelder-Mead method was applied. Formulas for the different methods of loss factor determination of the com-
posite material were obtained. Identification results are shown in Figures 8-12. 

The results presented in Figures 8-12 show that the “3 dB”, “2 dB”, “1 dB” methods and the fit method pro-
vides similar results for the core material rheological parameters identification. Identification results by mean of 
the resonant amplitude method significantly differ from the others. The plot of shear modulus is characterized by 
the greatest value of the slope for the transition region (α = 0.834). The values of fractional parameter α obtained 
from other methods are within range: α = 0.626 (“3 dB” method) to α = 0.7 (“1 dB” method). Also the maximal 
loss factor value for the resonance amplitude method is twice as high as results obtained according to other four 
methods. 

In Figure 13 identification results comparison is presented. Shear modulus and the loss factor as a function of 
frequency are shown. Shear modulus low frequency asymptote values are close to each other for the bandwidth 
methods and the fit method (range from G0 = 1.947 MPa for the fit method to G0 = 2.01 MPa—for “1 dB” me-
thod). Shear modulus high frequency asymptote values are within range from G∞ = 4.9 MPa (“3 dB” method) to 
G∞ = 4.97 MPa (“1 dB” method). Loss factor maximal value for “n dB” and fit methods is observed for the 
range from η = 0.819 (the “3 dB” method) to η = 0.977 (the “1 dB” method). The relaxation time τ is related to 
the frequency at which the loss factor is maximum, is the lowest value for the ’’3 dB” method (τ = 0.18 × 10−4), 
and minimum for the “1 dB” method (τ = 0.24 × 10−4). 
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(a) 

Meth. G0 [Pa] G∞ [Pa] τ α 

“3 dB” 195010.930 4901085.590 0.18 × 10−4 0.626 

(b) 
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Figure 8. Rheological parameters identification for the “3 dB” method. 
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(a) 

Meth. G0 [Pa] G∞ [Pa] τ α 

“2 dB” 196076.357 4948554.715 0.23 × 10−4 0.683 

(b) 
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Figure 9. Rheological parameters identification for the “2 dB” method. 
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(a) 

Meth. G0 [Pa] G∞ [Pa] τ α 

“1 dB” 201366.429 4969226.443 0.24 × 10−4 0.7 

(b) 
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Figure 10. Rheological parameters identification for the “1 dB” method. 
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(a) 

Meth. G0 [Pa] G∞ [Pa] τ α 

Fit 194707.007 4929288.916 0.2 × 10−4 0.65 

(b) 

 107 

106 

105 

104 

Frequency [rad/sec] 

Lo
ss

 fa
ct

or
 [ 

- ]
 

0.1        10       1×103      1×105     1×107 

Sh
ea

r m
od

ul
us

 [P
a]

 

10 

1 

0.1 

0.01 

 
(c) 

Figure 11. Rheological parameters identification for the fit method. 
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(a) 

Meth. G0 [Pa] G∞ [Pa] τ α 

Ampl. 31644.073 2246375.314 0.22 × 10−4 0.834 

(b) 

 107 

106 

105 

104 

Frequency [rad/sec] 

Lo
ss

 fa
ct

or
 [ 

- ]
 

Sh
ea

r m
od

ul
us

 [P
a]

 

10 

1 

0.1 

0.01 
0.1        10       1×103      1×105     1×107 

 
(c) 

Figure 12. Rheological parameters identification for the resonant amplitude method. 
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Figure 13. Comparison of identification results.                                                             

7. Conclusions 
Comparison of the loss factor determination of the sandwich composite methods with polyethylene core results 
in the identification of the fractional rheological model of the core material is presented in this study. Five me-
thods of the loss factor determination of the three layer composite with viscoelastic core were compared. Three 
of the compared methods are bandwidth methods, and the other two the resonant amplitude method and the fit 
method. Identified material was polyethylene terephthalate (PET) used as a thin film placed between two covers 
made of an aluminum alloy. Applied identification procedure in accordance with ASTM E756-2005 [17], is 
based on experimental studies of forced vibrations of such composite structure. The paper becomes convenient 
practical guide describing the main advantages and disadvantages and detailed methodology for composite loss 
factor determination.  

For the bandwidth methods and the fit method, convergence of identified values of rheological parameters is 
obtained. The obtained results by means of the resonance amplitude method differ significantly from the others. 
Different physical nature of the data, used to determine the loss factor of the sandwich beam, causes the differ-
ence. For the amplitude method, only the amplitude of the exciter and the beam at resonance peak is measured. 
The methods of the loss factor determination by means of the frequency bandwidth, are determined by the graph 
of the function in close proximity to the resonance peak. Similar features present the fit method: experimental 
data are matched to the response of a one degree of freedom system. Taking into account the graph of the func-
tion in the vicinity of resonance peak the modal loss factor can be determined more precisely. According to re-
ceived results one can conclude that only the bandwidth methods and the fit method in the identification proce-
dure allow obtaining correct results of identification of polyethylene material. 

Identification results obtained by means of the “3 dB” method and the fit method are close to each other. Due 
to the fact that the “3 dB” method is easier and more convenient to use than the fit method, it is common rec-
ommended in engineer practice, and is the most frequently used method for the loss factor determination of vis-
coelastic layer composites. However, due to the flattening of the resonance peaks appearing at the higher modes 
of vibration, often the “3 dB” method cannot be used. Then the “n dB” bandwidth methods may be used. The 
results of identification by mean of the “2 dB” and “1 dB” bandwidth methods have proved the correctness of 
such proceedings. 
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