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ABSTRACT 

Thermodynamic properties of diamond cubic and zinc-blende semiconductors with point defects are considered by the 
statistical moment method (SMM). The thermal expansion coefficient, the specific heats at constant volume and those at 
constant pressure, CV and CP, and the isothermal compressibility are derived analytically for semiconductors with de-
fects. The SMM calculated thermodynamic quantities of the Si, and GaAs semiconductors with defects are in good 
agreement with the experimental results. 
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1. Introduction 

Recently, there has been a great interested in the study of 
bulk semiconductor, semiconductor heterostructures and 
nanodevices [1-4] since they provide us a wide variety of 
academic problems as well as the technological applica- 
tions. The physical characteristics of semiconductors are 
determined both by the properties of the host crystal and 
by the presence impurities and crystalline defects. Crys- 
tal lattice defects or other impurities also modify the 
properties of the semiconductor and thus may make a 
semiconductor unsuitable for its intended applications. 
The point defects in semiconductors including the va- 
cancies play an important role in many properties of 
material. Understanding these defects will lead to im- 
proved semiconductor devices for the technological ap- 
plications.  

First principles (or ab initio) electronic structure com- 
putations have been performed on semiconductor com- 
pounds and the results compared with experiment [5-7]. 
More recently a large number of high-quanlity calcula-
tions have been performed on group-IV, III-V, and II-VI 
materials. Modern calculations allow the accurate re- 
laxation of structures to their minimum energy configu- 
rations and the incorporation of temperature effects. One 
can also study the melting of solids and phase transitions 
in Si using first-principles molecular-dynamics method 
[8,9]. Such calculations are computationally expensive 
and, currently, simulations can only be run for periods of 
tens of picoseconds, which is not long enough for some 

of the processes of interest. 
In our previous papers [10,11] the statistical moment 

method was used to investigate the thermodynamic 
quantities of the elemental perfect semiconductors, tak- 
ing into account the anharmonicity effects of thermal 
lattice vibrations. The thermal expansion coefficients, 
elastic moduli, specific heats at constant volume and 
those at constant pressure, CV and CP, are derived ana- 
lytically for diamond cubic semiconductors.  

The purpose of the present article is to investigate the 
temperature dependence of the thermodynamic proper- 
ties of the semiconductors with defects using the analytic 
statistical moment method (SMM) [12-16]. The ther- 
modynamic quantities are derived from the Helmholtz 
fnee energy of semiconductors with defects.  

2. Theory 

2.1. Atomic Displacements of Semiconductor 

To derive the temperature dependence of the thermody- 
namic properties of semiconductors, we use the statisti- 
cal moment method. This method allows us to take into 
account the anharmonicity effects of thermal lattice vi- 
brations on the thermodynamic quantities in the analytic 
formulations. 

The essence of the SMM scheme can be summarized 
as follows: for simplicity, we derive the thermodynamic 
quantities of crystalline materials with cubic symmetry, 
taking into account the higher (fourth) order anharmonic 
contributions in the thermal lattice vibrations going be- 
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yond the quasi-Hamonic (QH) approximation. The exten- 
tions for the SMM formalism to non-cubic systems is 
straightforward. The basic equations for obtaining ther- 
modynamic quantities of the given crystals are derived in 
a following manner: the equilibrium thermal lattice ex-
pansions are calculated by the force balance criterion and 
then the thermodynamic quantities are determinded for 
the equilibrium lattice spacings. The anharmonic contri-
butions of the thermodynamic quantities are given ex-
plicitly in terms of the power moments of the thermal 
atomic displacements. 

Let us first define the lattice displacements We demote 

il  the vector defining the displacement of the ith atom 
in the lth unit cell, from its equilibrium position. The po-
tential energy of the whole crystal  is expressed 
in terms of the positions of all the atoms from the sites of 
the equilibrium lattice. We use the theory of small atomic 
vibrations, and expand the potential energy U as a 
power series in the cartesian components, 

u

 ilU u

iu  of the 
displacement vector  around this point. il

For the evaluation of the anharmonic contributions to 
the free energy 

u

,  we consider a quantum system, 
which is influenced by supplemental forces i  in the 
space of the generalized coordinates .i  For simplicity, 
we only discuss monatomic systems and hereafter omit 
the indices  on the sublattices Then, the Hamiltonian 
of the crystalline system is given by 

q

l

 
0 ˆ

i i
i

H H q              (1) 

where  0H  denote the crystalline Hamiltonian without 
the supplementary forces i  and upper huts   repre-
sent operrators. The supplementary forces i  are acted 
in the direction of the generalized coordinates  The 
thermodynamic quantities of the anharmonic crystal 
(harmonic Hamiltonian) will be treated in the Einstein 
approximation. 

.iq

After the action of the supplementary forces i  the 
system passes into a new equilibrium state. If the 0th 
atom in the lattice is affected by a supplementary force 

p

p , then the total force acting on it must be zero, and one 
gets the force balance relation as 
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 

 

 

(2) 

The thermal averages of the atomic displacements 

i iu u    and i i iu u u     (called as second and third- 

order moments) at given site i  can be expressed in 
terms of the first moment i

R
u   with the aid of the re-

curence formula [12-14]. Then Equation (2) is trans-
formed into the new differential equation: 

 

 

2

2
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     (3) 

      

where j P
y u , cothX x x , and ;Bk T 

2
x







. 

In the above Equation (3), ,k   and   are defined 
by 
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      (4) 

In deriving Equation (3) we have imposed the symme-
try criterion for the thermal averages in the diamond cu-
bic lattices as  

j j jp p p p
u u u y  ju     

Let us introduce the new variable y in the above Equa-
tion (3) 

3
y y




                      (5) 

Then we have the new differential equation instead of 
Equation (3) 

 
2
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2

d d
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d d
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where 

 

2
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     (7) 

For higher temperatures, the relation xcothx 1 holds 
and Equation (6) is reduced to 



2
2 3

2

d d
3 0

d d

y y
y y Ky p

p p
   

 

 
          (8) 
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The nonlinear differential equation of Equation (8) can 
be solved in the following manner: We expand the solu-
tion  in terms of the “force”  up to the second 
order as  

y *p

*
0 1 2

*2y y A p A p                 (9) 

where 1A  and 2A  are the constants [12]. The above 
Equation (8) is solved as 

2

0 3

2

3
y

K

  A                 (10) 

with 

2 2 3 3 4 4

1 2 34 6 8

5 5 6 6

5 610 12

4A a a a
K K K

a a
K K

     
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   

 

a
    (11) 

and 1 2 3 43 2; 33 2; 51; 458 3;a a a a      

5 61589 3; 1633.a a    

Here, 0  represents the atomic displacement for the 
case when the force  is zero. The general solution of 
Equation (3) is solved as  
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*p

*0 0
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k
y
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    (12) 

Once the thermal expansion 0  of the lattice is found, 
one can get the Helmholtz free energy of the system in 
the following form 

y

0 0U 1                 (13) 

where 0  denotes the free energy in the harmonic ap-
proximation and 1  the anharmonic contribution to the 
free energy. The Helmholtz free energy of our system can 
be derived from the Hamiltonian H of the following 
form: 

 
0H H V 


 

where  0H  denote the Hamiltonian of the harmonic ap-
proximation,   the parameter and V


 the anharmonic 

vibrational contributions. Following exactly the general 
formular in the SMM formulation [12], one can get the 
free energy   of the system as  


0 0

0

dU V


                 (14) 

where V  represents the Hamiltonian corresponding t
o the anharmonicity contribution. Then the free energy
of the system is given by  
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where 

1

2
1
3

2

3

a
M

K

   
 

, and the second term of above 

Equation (15) denotes the harmonic contribution to the 
free energy 

 2
0 3 ln 1 e xN x               (16) 

with the aid of the “real space” free energy formula 
,E TS    one can find the thermodynamic quantities 

of given systems. The thermodynamic quantities such as 
specific heats and elastic modul at temperature T  are 
directly derived from the free energy   of the system. 

2.2. Thermodynamic Properties of  
Semiconductors with Defects 

The Gibbs free energy of crystals consisting of N atoms 
and  vacancies has the form: n N

   0, , f
VG T P G T P ng TS   C       (17)  

where  0 ,G T P  is the Gibbs free energy of the perfect 
crystals consisting N atoms,  ,f

V g T P  is the Gibbs en-
ergy change on forming a single vacancy, -the en-
tropy of mixing:  

CS

 !
ln

! !C B

N n
S k

N n


                (18) 
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From the minimization condition of t
rgy of the crystal with point defects

he Gibbs free ene
, we obtain the eq

uilibrium concentration of the vacancies as [15,16]  

 ,
exp

fg P T
n 
 

    
  

             (19) 

where fg is the change in the Gibbs fre
the fo on of a vacancy and can be given by 

e energy due to 
mati

  *
0 0,f

Vg T P u P V             (20) 

It should be noted that pressure affects the diffusivity 
through both the free energies, *

0 , and 
change, resulting from the format of the point defect, 

In

the volume 
ion 

V . This change is due to the P V  work done by the 
pressure medium against the volume change associated 
with defect formation and migration. 

 the above Equation (20), 


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From Equations (20), (21), and (22
pression of the Gibbs energy change 
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In the case of zero pressure,   0,0
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(26) 

where CV is the specific heat at constant volume of per-
fect crystal [10]. 

The equation of states of the system with defects at fi-
nite temperature T is now obtained from Equation (24) 
and the pressure P of the system is given by the deriva-
tive of the free energy with respect to volume as 

3
def def

T T

a
P

V V a

     
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             (27) 

where v is the atomic volume. 
From the Equations (24) and (27) 

equation of states of the crystal with defects at zero pres-
ion 

one can find the 

sure in the harmonic approximat
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                         

          

  (30) 

In the case of zero pressure, the expression of t
thermal compressibility for crystals with defects is given 
as 

he iso-

3
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 
                                    

 (31) 

or 
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(32) 
with is the isothermal compressibility of perfective 

crystals at zero pressure 
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
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              (33  

The specific heat at constant pressure, 

)

PC  of cr
ef

ystal 
with d ects is determined from the well known thermo-
dynamic relations 

 29def def def
P V def

T

TV
C C 


             (34) 

where the thermal expansion coefficient def  of defec-
tive crystal is given as  

2 2
0

3 3
defdef B T ak a

a V a





       

       (35) 

3. Results and D

def

iscussion 

To calculate the thermodynamic quanti
GaAs crystals with defects, we will use the many-body 

bo
tions 

ties of Si and 

potential [18], which include both the two- dy and the 
three-body atomic interac
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    



    



     (36) 

The parameters were fitted to the bond lengths of the 
dimer and trimer and the lattice parameters and cohesive 
energy of the diamond structure. Parameters of the many- 
body potential for monoatomic (A), binary (A-B
are given in Tables 1 and 2, respectively. 

In Table 3, we compare the calculation results of the 
specific heats at constant pressure, CP of Si crystal with 
defects obtained by using the SMM analytic formula with 
the experimental results of Ref. [19]. Here, it should be 
no

 

0

) systems 

ted that the equilibrium concentration of the vacancies 
is very small at low temperature. At high temperature 
being near the melting one the contribution of the vacan- 

 
Table 1. Parameters of many body potential r , Z, and  for 
Si [18]. 

Quantity Si 

AA (eV) 2.81 
r0AA (A

0) 2.295 
ZAAA(eVA09) 3484.0 
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Table 2. Parameters of many body potential r0, Z, and  for 
GaAs [18]. 

Quantity GaAs 

AA (eV) 1.738 
r0AA (A

 

0) 2.448 
Z ) 0.0 
Z )9) .0 
Z 0)9) 

AAB (eVA09

(eV(A0
190
460ABB 

AA (eV(A
0

1826.A 4 

 

P .
In Table 3, we also present the SMM calculations of the 
spe  at constant volume, CV and 

V for Si crystal with defects
present the SMM results quilib-

rium of the vacancies, the sp eats at 
con  CV and V mpare 
th calculation results of th  at constant 

al. The Figure 
1 shown that th onable 
va

pendence of the 

[19,20], by solid lines. Figures 2 
an

cies on the specific heats at constant volume, CV and 
those at constant pressure C  of Si crystal is about 0 5%. 

cific heats
defV V

a
C C C   
In e 

. 
 T ble 4, w of the e
 concentration ecific h

stant volume, def
V VC C C   ,

e specific heats
 and co

e 
pressure, CP for GaAs defective crystal with the experi-
mental results [20].  

The linear thermal expansion coefficient of Si crystal 
is calculated using the many-body potenti

e many-body potential gives reas

Figure 1. Temperature dependence of the linear thermal 
expansion coefficient of Si crystal with defects. 
 
the many-body potentials, as a function of the tempera-
ture. One can see in Figures 2 and 3 that the specific 
heats at constant pressure, CP increase with the tempera-
ture, in agreement with the experimental results [19,20].  

lues of thermal expansion coefficient compared with 
the experimental results [19]. In Figures 2 and 3, we 
present the temperature de specific heat at 
constant pressure CP of Si and GaAs crystals with defects, 
by dashed lines, in comparison with the corresponding 
experimental results 

4. Conclusions 

The thermodynamic properties of semiconductors with 
defects have been studied using statistical moment 
method. We have presented the SMM formulation for the 
thermodynamic quantities of diamond cubic and zinc- 
blende semiconductors with defects taking into account  

d 3 show the SMM specific heats at constant pressure, 
CP (dashed lines) of the diamond cubic Si and zinc- 
blende GaAs crystals with defects, calculated by using  

 
Table 3. SMM calculated temperature dependence of

T(K) 300 400 500 600 700 800 

 thermodynamic quantities for Si crystal with defects. 

900 1000 1100 1200 1300 1400 1500 
6.3 6.8 4.5 7.3 1.5 7.7 1.7 2.0 1.5 8.1 3.4 1.2 3.3 

nv 1038 1025 1020 1017 1014 1013 

7.1 3.2 1.1 1.0 1.3 4.5 
CV 

1026 1018 1013 1010 108 107 

def
VC  2.369 3.577 4.318 4.793 5.107 5.326

f

1011 1010 109 109 108 107 107 

6.9 5.9 3.3 1.4 4.5 1.2 2.8 
106 105 104 103 103 102 102 

5.484 5.603 5.696 5.768 5.826 5.868 5.895 

2.39 3.63 4.41 4.92 5.28 5.53 5.73 5.88 6.01 6.12 6.21 6.30 6.36 de
PC  

PC exp.[ 6.70 16] - 5.33 5.63 5.83 5.98 6.10 - 6.30 - 6.47 - - 

 
Table 4 M calculate perature d den f th n c quantities fo As c al wi fect

T(K) 300 500 600 700 800 900 1000 1200 

. SM d tem epen ce o ermody ami r Ga ryst th de s. 

400 
1. 0 .7 2.8 4 2.0 5 7.6 2. 3.9 1  2.5 1.

nv 10  10 10 10 7 10

6. 7 7 12.
CV 10  108 5 10 2 10

5.  93 6.24 6.3 6.55 6.76 

23 1018 14 1012 10 9 108 10 6 

0 


1.3 


1. 1.9 


5.1 5.  3.6 


1.5 


1 
 17 10 11  10 6 10 4 10 3 10 2 

de
PC f  22 5.67 5. 6.11 6 6.48 

PC exp.[16] 5.65 5.79 5.93 6.07 6.21 6.35 6.49 6.63 6.91 
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Figure 2. Temperature dependence of the specific heat at 
constant pressure CP of Si crystal with defects. 
 

 

Figure 3. Temperature dependence of the specific heat at
constant pressure CP of GaAs crystal with defects. 
 
the higher order (fourth order) anharmonic vibrat
terms in the Helholtz free energy and derived the various
thermodynamic quantities in closed analytic forms. Th
lattice constants, linear thermal expansion coefficients, 
specific heats at constant volume and those at co
pressure, CV and CP, have been calculated successfully 
for the Si and GaAs crystals with defects. We have cal

M

T work is support y the rch p  No. 
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