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Abstract 
In this work, ZSM-5 type chromosilicate samples as K[Cr]ZSM-5(KCS) and Na[Cr]ZSM-5(NCS) were 
prepared by hydrothermal method and their catalytic properties were investigated for the oxida-
tive dehydrogenation of ethylbenzene in the presence of CO2 as an oxidant using a fixed-bed stain-
less steel reactor. The prepared samples were characterized by their morphology (SEM), structur-
al parameters (XRD), and textural parameters (BET). The performance of these catalysts was eva-
luated in terms of conversion, styrene yield, and selectivity. The KCSBW catalyst (potassium chro-
mosilicate before washing with distilled water) afforded the highest styrene yield, 56.19%, with 
the selectivity of 96.05% in the presence of CO2 because of the coexistence of potassium ion and 
Cr2O3 in its structure and their synergistic effect. The influence of the presence of Cr2O3 and so-
dium or potassium ion on the catalytic activity of the chromosilicate samples in the catalytic EB 
dehydrogenation process was discussed in detail. Moreover, according to the results, the catalytic 
activity of the chromosilicate samples (CS) in EB dehydrogenation was increased by decreasing 
the surface area. 
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1. Introduction 
Styrene (ST) belongs to the most important monomers in petrochemical industry and is mainly used for the 
synthesis of many polymers [1]-[4]. The commercial production of styrene (ST) is performed by the catalytic 
dehydrogenation of ethylbenzene (EB), utilizing Fe-K-Cr oxide-based catalysts in the presence of superheated 
steam as a diluent (reaction I) at high temperatures of 600˚C - 700°C [5]. 

Recently, the dehydrogenation of EB in the presence of carbon dioxide as a mild oxidant (reaction II) has 
been extensively investigated [6]-[8]. This new strategy is considered an energy-saving and environmentally 
friendly process. Carbon dioxide, an unwanted greenhouse gas, is depleted by applying in the reaction. Accord-
ing to the literature, the energy required for the new process using CO2 is 1.9 × 108 cal∙t−1, only 13% of which is 
for the conventional commercial process using steam [1] [9]. 

According to Mimura et al., there are two possible reaction pathways for the dehydrogenation of EB in the 
presence of CO2 [1]. The one-step pathway shown in Equation (1) includes the direct oxidative dehydrogenation 
of EB with CO2. The two-step pathway shown in Equations (2) and (3) includes the reaction coupling of EB 
simple dehydrogenation with the reverse water-gas shift (RWGS) [10]. According to the method reported by 
Mimura, the dehydrogenation of EB over the catalyst in the presence of CO2 was estimated to proceed via 45% 
of a one-step pathway and 55% of a two-step pathway [11]. 

 

 
 
Various catalysts have been used in the dehydrogenation of EB in the presence of CO2, which include iron- 

based oxides, hydrotalcite-like oxides, zeolites, spinel oxides, active carbon, pillarised clays, active carbon con-
taining promoters (Li, Be, Na, Mg, K, Ca), and carriers for active components (Fe, V, Cr, Cu, Zn, Zr, Ce, La, Ni, 
Co) [12]-[25]. Among these catalysts, vanadia and chromia are believed to be more active in the dehydrogena-
tion of EB with CO2 [10]. Additionally, according to the fact that support plays a decisive role in disposing the 
dispersion of the active phase, supported metal or metal oxide catalysis has been extensively increasing both in 
fundamental and industrial applications [26]. For an instance, it is believed that the catalysts of iron oxide sup-
ported on silicon oxides are active and selective in the above reaction [27]. 

In this contribution, our main purpose was to prepare chromosilicate samples with different alkaline metals 
(M[Cr]ZSM-5 (M = K, Na)) and study their catalytic activity in the oxidative dehydrogenation of ethylbenezene 
in the presence of CO2. It is interesting to mention that chromosilicate can be considered the supported chromia 
in a silicon oxide matrix (as a conventional support). For this purpose, the influence of alkali-metal type (K or 
Na) of chromosilicate structure as well as the amount of chromium oxide on their catalytic performance in the 
EB dehydrogenation process was investigated. 

2. Experimental 
2.1. Catalyst Preparation 
2.1.1. Preparing M[Cr]ZSM-5 (M = K, Na) 
Na[Cr]ZSM-5(NCS)and K[Cr]ZSM-5 (KCS) were prepared according to the procedure in our previous work 
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[28]. Materials that were used for the preparation of the samples were as follows: silicic acid (Merck), chromium 
(III) nitrate (Merck), potassium (or sodium) carbonate (Merck), and tetrapropylammonium bromide (TPABr, 
Merck) (as template). Molar ratios of the synthesized samples were Si/Cr = 15, TPABr/Si = 0.17, H2O/Si = 35, 
and K (or Na)/Si = 2. In a typical synthesis, at first the solution of silicic acid and sodium (orpotassium or ce-
sium) carbonate in distilled water was prepared and added slowly to the solution of Cr(NO3)3-9H2O and sulfuric 
acid in water with pH = 0.5; then, pH of the mixture adjusted at about 9 using concentrated sulfuric acid. Then 
TPABr was added; and the obtained gel was maintained at room temperature for about 4 h under vigorous stir-
ring. The resulting gel was transferred into Teflon-lined stainless-steel autoclave. Na[Cr]ZSM-5 or K[Cr]ZSM-5 
or Cs[Cr]ZSM-5 was obtained after about 100 h of hydrothermal treatment of the mixtures at 155˚C. After crys-
tallization, the as-synthesized solids were washed several times with distilled water and dried overnight in an 
oven at 120˚C. Calcination of the samples was made under air for 5 h at 550˚C. At this point, the obtained prod-
uct (MCS) was washed with distilled water in order to remove chromium species. Thus, KCS samples before 
and after washing, were labeled as KCSBW and KCSAW, respectively. By the same way, NCS samples before and 
after washing were labeled as NCSBW and NCSAW, respectively. 

2.1.2. Characterization of Catalysts 
The X-ray powder diffraction profiles of the samples were examined by means of a STOE X-ray diffractometer 
system (Version: PKS-2.01) equipped with Cu Kα radiation (λ = 1.540598 Å). The applied voltage and current 
were 40 kV and 40 mA, respectively. The samples were scanned from 2θ of 4˚ - 70˚ with the step size of 0.06˚ 
and counting time of 1.0 sec/step. 

Scanning electron microscopy (SEM) and dispersive analysis (EDX) were performed to characterize the 
morphology and surface composition. The analyses were carried out using Philips XL-30 system equipped with 
an EDX detector on the samples coated with a thin layer of gold. 

2.2. Apparatus and Procedure 
Figure 1 shows a schematic diagram of the used experimental setup for the dehydrogenation of EB process. The 
dehydrogenation experiments were carried out on catalysts, pelletized, crushed, and sieved at about 0.5 - 1 mm 
diameter under atmospheric pressure in a continuous-flow type reactor made of a stainless steel tube (4.3 mm i.d. 
and 500 mm length) placed in an electrically heated furnace. Since the low reactor pressure gradients of the cat-
alyst bed improves the yield and selectivity of ST production, in the industry, it is better to use the catalyst in the 
form of pellet or extrudate. Thus, our samples were supplied in the form of cylindrical pellets of 1 mm diameter 
 

 
Figure 1. Schematic diagram of the experimental setup used for dehydrogenation of 
ethylbenzene to styrene.                                                         
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and 0.7 cm length. Prior to the dehydrogenation of EB, the reactor was loaded with 2.0 g of the catalyst with the 
support of quartz beads. The reaction was performed at 973 K for 4 h. Before EB was introduced into the reactor, 
the catalyst was pretreated under the flow of N2 (100 ml∙min−1) from room temperature to 973 K at the heating 
rate of 3˚C/min and maintained at this temperature for 30 min. A mixture of EB and CO2 (CO2: EB molar ratio 
≤3) was introduced into the reactor using a pump with the feed rate of 36.64 ml∙min−1. The outlet stream from 
the reactor was passed through a condenser equipped with the ice bath for GC analysis. The obtained products 
were analyzed by a Varian 3800 CX gas chromatograph apparatus using a flame inductivity detector (FID). He-
lium was used as the carrier gas, the injection temperature was 180˚C, and the samples were injected into the 
split injection mode. For each measurement, at least three repeated injections were taken, which obtained repro-
ducible results. ST, toluene, and benzene were the main desired products. The peak area normalization method 
was used for the quantitative analysis of the products. Benzene was the standard sample (sensitivity factor was 
set at 1). 

( )
out

out

ethylebenzene
Ethylbenzene conversion 1

ethylebenzene styrene toluene benzene
= −

+ + +
 

( )
out

out

styrene
Styrene selectivity

styrene toluene benzene
=
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where ethylbenzene out or styrene out stands for the amount of ethylbenzene or styrene in the products. Moreo-
ver, the styrene yield is calculated using the output data of GC analysis. 

3. Result and Discussion 

3.1. XRD Analysis 
The XRD patterns of the prepared chromosilicate samples are given in Figure 2. For comparative purposes, the 
chromosilicate samples (CS) after and before washing with distilled water were included in this Figure (Figure 
2). 

As shown in Figure 2, XRD patterns of the synthesized chromosilicate samples (Na[Cr]ZSM-5 (NCS) and 
K[Cr]ZSM-5 (KCS)) was in good agreement with the XRD pattern of ZSM-5 zeolite with orthorhombic sym- 
 

 
Figure 2. XRD patterns of the prepared samples.                                                   
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metry in the literature [27], which was characterized by peaks at 2θ = 7.94, 8.86, 23.10, 23.9, and 24.45, re- 
presenting (011), (200), (051), (033), and (313) planes of crystal structure, respectively. Additionally, an ex-
tremely small peak was observed at 31.68 due to the crystalline CrO3 phase in NCS sample which was calcined 
in air. It is noteworthy that this small peak disappeared after washing the mentioned sample with distilled water. 
Moreover, there were also some differences in the intensities of some lines between these samples and ZSM-5 
zeolite (prepared in our laboratory [29]). These variations confirmed the incorporation of chromium in the 
structure [28]. 

3.2. BET Surface Analysis 
BET surface areas (SBET) of KCSAW, KCSBW, NCSAW, and NCSBW samples are presented in Table 1. As can be 
observed, NCS samples, compared with KCS samples, had a relatively higher surface area. Between the NCS or 
KCS samples, the sample after washing with distilled water (NCSAW or KCSAW) has higher surface area than the 
one before washing, which can be related to the removal of significant amounts of Cr2O3 after washing with dis-
tilled water. 

3.3. Morphology Studies 
SEM images of KCS and NCS samples, before and also after washing with water, are shown in Figure 3. It can 
be distinguished that NCS appears in the form of cubic particles; its particle size ranged from 7 to 8 μm, whereas 
KCS had well-formed and fairly uniform coffin-type crystals of relatively large sizes (about 20 - 21 μm). The 
SEM images of KCS and NCS samples revealed the proper growth of crystal grains. However, a few smaller 
grains with low crystallinity or even amorphous still existed, which were perhaps due to the incomplete crystal-
lization of some particles or could be assigned to CrO3 particles. In order to understand the origin of these par-
ticles, we decided to perform SEM analysis for the mentioned samples after washing with distilled water. The 
aim was to understand the nature of these particles. According to Figure 3, it can be inferred that washing the 
samples with water resulted in removing a large amount of the grains and a small ratio of them was left. So, a 
large amount of these particles could be related to CrO3 particles and the remaining particles were the ones 
which could not completely perform crystallization process. This result is in agreement with EDX analysis 
(Table 2). 

3.4. Catalytic Performance of the Prepared Samples 
A great deal of research has been conducted for the development of catalysts with improved dehydrogenation 
activity for the new process, since the commercial K-promoted iron oxide catalysts do not work effectively for 
EB dehydrogenation in the presence of CO2. For this purpose, a variety of metal oxide catalysts, such as iron 
oxide [30] [31], vanadia [8] [32], chromia [7] [33], ceria [7], and zirconia [34] has been studied by many re-
searchers. 

On the other hand, it should be mentioned that silica- and alumina-supported chromium oxides are industrial-
ly used for the productions of lower alkenes such as ethene, propene, and isobutene through the dehydrogenation 
of the corresponding alkanes [35] [36]. Carbon dioxide is believed to enhance the dehydrogenation of ethane [8] 
 
Table 1. BET surface area and catalytic activity of the prepared catalysts in EB dehydrogenation at 600˚C and CO2 flow of 
36.64 ml∙min−1.                                                                                            

Components CO2 (ml∙min−1) SBET (m2/g) X [%] Bz [%] Tol [%] S [%] EB conversion 
[%] 

IC 36.64 4.64 41.09 11.62 9.94 65.58 62.65 

KCSAW 36.64 307.59 40.52 3.5 2.08 87.80 46.15 

KCSBW 36.64 294.02 56.19 1.07 1.24 96.05 58.5 

NCSAW 36.64 316.62 44.81 2.24 3.32 88.96 50.37 

NCSBW 36.64 307.74 46.38 1.24 1.87 93.72 49.49 

X = Styrene yield, Bz = Benzene, Tol = Toluene, S = Styrene selectivity, EB = Ethylbenzene. 
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Figure 3. SEM images of NCSBW (a), NCSAW (b), KCSBW (c) and KCSBW (d).                                  

 
Table 2. EDX information of the samples.                                                           

Sample 
Elements 

Na (wt%) K (wt%) Si (wt%) Cr (wt%) O (wt%) 

NCSBW 2 - 35 7 56 

NCSAW 2 - 37 3 58 

KCSBW - 1 36 6 57 

KCSAW - 1 38 2 59 

 
[37] [38], propane [4] [24] [39]-[41], or isobutene [34] over supported chromium oxide. The reduction-oxida- 
tion property and the appropriate dispersion of chromium species on the support are important in these catalytic 
reactions [18] [42]. Aiming to find alternative catalysts for this reaction, we utilized the mentioned methods for 
improving the activity of Fe-K commercial catalyst in the dehydrogenation of EB process in the presence of CO2. 
In this trend, some new catalysts had to be designed on the basis of the commercial catalyst for the purpose of 
performing the mentioned process with proper efficiency. Chromosilicate (which can be considered the sup-
ported chromium oxide in the silicon oxide matrix) can be a good candidate. Furthermore, for the purpose of 
understanding the roles of chromium oxide and alkali-metal type (K or Na) of chromosilicate structure, in de-
termining the catalytic activity of different types of chromosilicate, various chromosilicate samples were pre-
pared. 

Table 1 and Figure 4 present the results of the dehydrogenation of EB with CO2 over the various chromosi-
licate catalysts and a Fe-K commercial catalyst for comparison. We found that, in the presence of the new cata-
lysts, EB was predominantly converted into ST via an oxidative manner and ST selectivity was improved at the 
cost of a decrease in conversion [43]. According to the results (Table 1, Figure 4), the MCS-based catalysts can 
be ordered in terms of their selectivity toward ST production as follows: 

KCSBW ˃ NCSBW ˃ NCSAW ˃ KCSAW 

This order can be related to the important role of potassium ion as an effective promoter as well as that of  
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Figure 4. The performance of various chromosilicate samples (M[Cr]ZSM-5) in ethylbenzene 
dehydrogenation reaction in the presence of CO2 at 600˚C.                                    

 
Cr2O3 as a proper co-promoter in these catalysts. In the case of KCSBW sample, both potassium ion and Cr2O3 
coexisted in this catalyst and the high conversion and selectivity were the result of the mentioned species. By 
removing the significant amounts of Cr2O3, via washing, the obtained sample (KCSAW) had lower selectivity 
even compared with its sodium analogous (NCSAW). This result can highlight the importance of the synergic ef-
fect of potassium ion and Cr2O3 for improving the catalytic activity of the sample. The presence of sodium in-
stead of potassium as the alkali metal ion in the structure of chromosilicate can slightly enhance the ST selectiv-
ity of the CSAW samples (chromosilicate samples after washing with distilled water and removing a significant 
amount of Cr2O3). This trend confirmed that the synergic effect of potassium ion and Cr2O3 for improving the 
catalytic activity was a little bit more important than that of sodium ion and Cr2O3. 

Moreover, regarding the results of Table 1, it is noteworthy that the catalytic activity of the chromosilicate 
samples in EB dehydrogenation increased by decreasing the surface area. 

4. Conclusion 

The catalytic performance of chromosilicate catalysts as M[Cr]ZSM-5 (MCS) (M = K, Na) was investigated in 
the oxidative dehydrogenation of EB through CO2. The KCSBW catalyst (potassium chromosilicate before 
washing with distilled water) afforded the highest ST yield, 56.19%, with the selectivity of 96.05% in the pres-
ence of CO2 because of the coexistance of potassium ion and Cr2O3 in its structure. By removing the significant 
amounts of Cr2O3, via washing with distilled water, the obtained sample (KCSAW) had lower selectivity, even in 
comparison with its sodium analogous (NCSAW). This result could highlight the importance of the synergic ef-
fect of potassium ion and Cr2O3 for improving the catalytic activity of the sample. This trend confirmed that the 
synergic effect of potassium ion and Cr2O3 for improving the catalytic activity was a little bit more important 
than that of sodium ion and Cr2O3. Moreover, regarding the results, it is noteworthy that the catalytic activity of 
the chromosilicate samples (CS) in EB dehydrogenation is increased by decreasing the surface area. 
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