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Abstract 
The five-membered ring products and intermediates of cyclometalation reactions are very easily 
synthesized via donation from a hetero atom to a metal atom, which leads to the very high func-
tionality of the product. This functionality is caused by the donation of the hetero atom and vari-
ous types of metal atoms, halogen atom and other ligands such as alkanes, alkenes, alkynes, Cp, 
Cp*, aryl groups and heterocyclic compounds. These products have three types of catalytic appli-
cations: cyclometalation five-membered ring products as catalysts, cyclometalation five-mem- 
bered ring intermediates as catalyst agents and cyclometalation five-membered ring interme-
diates with unconventional substrates and as catalyst actions. Because of the high functionality of 
these products, the applications of them have been increasing not only as the metathesis in the 
first and second generations of Hoveyda-Grubbs catalysts but also as in chiral reactions, cross- 
coupling reactions and polymerization reactions. The above cyclometalation products have been 
utilized for the production in many industrial fields such as pharmaceuticals, OLEDs, carbon dio-
xide utilizations, dye-sensitizer solar cells and sensors. We expect that these products would be 
used for the development of further new industrial products. 
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1. Introduction 
When cyclometalation reactions are performed using metal compounds with substrates that contain heteroatoms 
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with a strong donor ability, such as amines, phosphines, alcohols and sulfur compounds, the reactions show high 
reactivity of the substrate to the metal compounds because the compounds with these heteroatoms are usually 
used as catalysts. Therefore, various articles, many reviews [1]-[49] and books [50]-[55] on this subject have 
been published since the 1960s, and cyclometalation reactions are considered representative reactions in organic 
synthesis. 

Commonly, cyclometalation reactions with conventional substrates that have a γ carbon atom as the heteroa-
tom proceed very easily via agnostic interactions with CH activation, as shown in Equation (1.1) [45]. Then, the 
metal atom is coordinated by the heteroatom and becomes the active center in the five-membered ring products. 
Many compounds easily afford their derivatives from reactions such as alkylation, alkenylation, alkynylation, 
carbonylation, isocyanation, halogenation, chiral reactions with amino acids, enantioselective rearrangement, 
asymmetric Diels-Alder reactions and dehydrogenation [41] [43] [55]. 

 

 (1.1) 

Ligands in cyclometalation reactions include atoms such as N, P, As, O and S. and groups such as alkenyl, 
allyl, alkynyl, aryl, cyclopentadienyl (Cp) and pentacyclopentadienyl (CP*). In the chelate compounds, five- 
membered ring compounds are well known to be more stable than the comparable four- and six-membered ring 
compounds [56]. The ring products are coordinated with one of the above-mentioned ligand atoms in cyclome-
talation reactions are also generally known to be stable in organic ring compounds. 

The products of the cyclometalation reactions are mainly four- to six-membered ring products. In particular, 
five-membered ring products are mostly synthesized in the cyclometalation reactions because five-membered 
ring compounds are the most stable type of rings [40] [41] [43] [55], and these products are very easily synthe-
sized. 

A monograph [55] was published to explain why organometallic intramolecular-coordination five-membered 
ring products are extremely easily synthesized through cyclometalation reactions, and three reasons were listed. 
First, activation of the metal is caused by coordination of a lone electron pair of a heteroatom to the metal atom. 
Second, the chelate effect is caused by the formation of a five-membered ring. Third, the metal is activated by 
ligands such as heteroatom-containing groups (e.g., bipyridnes, phosphines and carboxylates), unsaturated 
groups (e.g., aryl, allyl, Cp and Cp*), carbonyl groups and halogen atoms (F, Cl, Br and Cl), which bond to a 
central metal atom. Many articles have been published with title words such as C-H activation, C-X activation, 
C-H functionalization and chelation-assisted reactions which are related to the aforementioned metal activation 
and chelate effect in cyclometalation reactions [11] [13] [25] [26] [28] [30] [45] [55]. 

Among the other types of cyclometalation reaction, reactions with ligand groups [57]-[60] are compared with 
those with ligand atoms. However, there are few publications on this subject, and this article does not describe 
them. 

In these cyclometalation reactions, the substrates and metal compounds are as follows: 
1) Substrates with heteroatoms such as N [7] [15] [21] [32] [36], P [16]-[18] [20] [35], As [20] [37], O [12] 

[31] [34] [38] [44] and S [33]. 
2) Conventional substrates with a γ carbon atom as the heteroatom to form five-membered ring products, as 

shown in Figure 1. 
3) Unconventional base substrates such as 2-amino-3-picolines and anilines and auxiliary substrates such as 

alkynes and aldehydes [47]. 
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Figure 1. Representative conventional substrates to synthesize five-membered ring compounds in cyclometala-
tion reactions [55]. Asterisks (*) indicate the reaction sites of the metal compounds. There are generally at the γ- 
position to a coordinating atom such as N, P, O or S.                                                      

 
4) Ancillary ligands such as 2,2’-bipyridines, terpyridines and 1,10-phenanthroline in some cyclometalation 

reactions, which chelate with metal compounds. 
5) Transition metal and main group metals in general. In total, of 69 types of metal atoms are used [44] [55]. 
6) Various types of metal compounds. 
Accordingly, various five-membered products of cyclometalation reactions are synthesized with all types of 

combinations of substrates with heteroatoms, conventional substrates, unconventional substrates, ancillary li-
gands, metal atoms and metal compounds. 

Therefore, many articles on the five-membered ring products of cyclometalation reactions have been pub-
lished. These metal compounds, which are coordinated by a heteroatom and many ligand groups are used as cat-
alysts [41] [43] [55] and in the fields of OLED [48], pharmaceuticals [46], CO2 utilization [49], dye-sensitizer 
solar cells [55], sensors, etc. [55]. 

This article describes three types of catalytic actions of the five-membered ring products of cyclometalation 
reactions [41] [43] [47] [55]. 

1) Use of stable five-membered ring products of cyclometalation reactions as catalysts [41] [43] [55]. 
2) Use of the catalytic action of the reactive five-membered ring intermediates of cyclometalation reactions. 

Conventional substrates are used [41] [43] [55]. 
3) Use of the catalytic action of the reactive five-membered ring intermediates of cyclometalation reactions. 

However, unconventional substrates of the base substrates and auxiliary substrates are used [47]. 
Furthermore, recent articles on the first and second types of catalytic actions of the five-membered ring prod-

ucts of cyclometalation reactions are also described. 
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2. Three Types of Applications of Cyclometalation Five-Membered Ring Products  
and Intermediates as Catalytic Agents 

2.1. Introduction 
Many five-membered ring products of cyclometalation reactions have been synthesized because the reactions 
proceed very easily with many types of metal compounds, substrates and ancillary ligands. The five-membered 
ring products have many functions: they can be used as catalytic agents and in the fields of OLED, pharmaceut-
icals, CO2 utilization compounds, dye-sensitized solar cells and sensors, as previously described. 

This article describes three types of catalytic agents from the five-membered ring products of cyclometalation 
reactions. 

1) Use of the five-membered ring products of cyclometalation reactions as catalysts because of their catalytic 
activity and high stability. 

2) Use of the catalytic agents of the reactive five-membered ring intermediates of cyclometalation reactions as 
catalytic agents. In general, the final reaction products are the derivatives of the conventional substrates, which 
have a γ-carbon atom as the heteroatom in the substrates. 

3) Use of the catalytic action of the reactive five-membered ring intermediates in cyclometalation reactions. 
These substrates are unconventional base substrates and auxiliary substrates [47]. 

2.2. Applications of Cyclometalation Five-Membered Ring Products as Catalysts 
Several catalytic reactions that involve the five-membered ring products of cyclometalation reactions as cata-
lysts have been reported in reviews [41] [43] and a monograph [55]. 

Recently three Nobel prizes in synthetic organic reactions were awarded for chiral reactions in 2001, metathe-
sis reactions in 2005 and cross-coupling reactions in 2010. This chapter briefly describes these chiral, metathesis, 
cross-coupling reactions and other reactions such as polymerizations, reductions and dehydrogenations. 

In chiral reactions with the five-membered ring products of cyclometalation reactions, the metal atoms in the 
metal compounds act as the catalysts, and the Pd atom is mainly used as the catalyst. Many reviews report that 
palladium compounds serve as chiral catalysts [61]-[67]. The other metal atoms are Pt, Rh and Ru. Other articles 
have been published on other catalytic metal compounds such as Fe, Au, Ir, Sc, Y and Lu [68]-[71]. 

For the heteroatoms, a stronger donor N atom is mainly used, and other heteroatoms include P, O and S. 
Some examples of palladium catalysts for chiral reactions are shown in Figure 2 [61] [62] [72] [73]. 
In 1980, Noyori et al. [72] reported the synthesis of BINAP (2,2’-bis(diphenylphosphino)-1,1’-binaphtyl), 

which shows high enantioselectivity and catalytic activity as a super-chiral ligand of a chiral N,N-dimethyla- 
mine palladium compound 2.2, as shown in Scheme 1. 
 

 
Figure 2. Examples of five-membered ring palladium compounds 2.1 - 2.4 as catalysts 
for chiral reactions.                                                              
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Scheme 1. Preparation of BINAP [72].                                                                

 
For chiral reactions, two examples of five-membered ring products of cyclometalation reactions for rear-

rangements and Michael addition reactions are shown in Equations (2.2.1) and (2.2.2). 
Moreover, with a cyclopalladate (η4-tetraphenylcyclobutadiene)cobalt oxazoline propyl chloro-bridged com-

pound 2.5 as a catalyst, the rearrangements of N-(4-methoxyphenyl)trifluoroacetimidate 2.6 [74], to the corres-
ponding amides 2.7 proceed with high yields and high enantiomeric purities without using a silver salt as an ac-
tivator, as shown in Equation (2.2.1). 

              (2.2.1) 

Pincer metal compounds such as those with tin [75], rhodium [76], palladium [77] and platinum [78], are used 
as catalysts for Michael addition reactions. For example, the addition of an α-cyanopropionate to acrolein under 
mild, neutral conditions in the presence of a bis(oxazolinyl)phenylstannane-derived rhodium complex 2.8 enan-
tioselectively proceeds with high yield and high TON, as shown in Equation (2.2.2) [76]. 

          (2.2.2) 
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Metathesis reactions were reported in some reviews [79]-[84] and a handbook [85]. There are notably fewer 
types of metal atoms in metathesis reactions than in chiral reactions. Mainly Mo, W, Ta and Ru are used for this 
types of reactions. 

The ruthenium-carbene complex 2.9 is an excellent commercially available example of Grubbs’ catalyst. 
However, cyclometalation five-membered ring products 1st- and 2nd-generation Hoveyda-Grubbs catalysts 
2.10 - 2.12 which are activated by coordination with an ether oxygen atom, are much more active with respect to 
electron-deficient olefins and stable with respect to air as shown in Figure 3 [55] [81] [82] [86]. 

 

 
Figure 3. Representative metathesis reaction catalysts.                                

 
Many ruthenium carbene five-membered ring compounds have recently been reported to show good activities 

for metathesis. Many types of reactions proceed with the help of these catalysts, such as ring-closing metathesis, 
ring-opening metathesis, cross metathesis, enyne metathesis and diyne metathesis [55] [81]. 

For example, the ring-closing metathesis of an acyclic diene easily proceeds at room temperature with a high 
yield in the presence of the 1,3-dimesityl-4,5-dihydroimidazole-2-ylidene ruthenium catalyst 2.10, as shown in 
Equation (2.2.3) [86] [87]. 

                   (2.2.3) 

Many cross-coupling reactions have been reported since 1967, as shown in Figure 4 [88]. 
These reactions include Heck reactions, Mizoroki-Heck reactions, Negishi reactions and Suzuki-Miyaura reactions. 
Among these reactions, three were recognized with a Nobel Prize in Chemistry in 2010. The Nobel Prize was 

awarded based on practical use in the industrial sector. Heck reactions were used to synthesize of more than 100 
types of natural products and physiologically active substances, Negishi reactions were used to synthesize Pumi-
liotoxins A (PTXs) and Hennoxazole A. Suzuki-Miyaura reactions were used to synthesize Dynemicin A and 
Dragmacidine F [88]. 

Various articles and many reports [89]-[94] have been published on cross-coupling reactions using the five- 
membered ring compounds of cyclometalation reactions as catalysts: 

Palladium compounds are mainly used as catalysts, but Ni, Ir, Ru and Pt compounds are also used. 
In particular, many Heck and Suzuki-Miyaura reactions have been reported for the five-membered ring prod-

ucts of cyclometalation reactions. 
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Figure 4. Cross-coupling reactions [88].                                                            

 
In 2005, Heck reactions with phospha-palldacycles [95] or N-heterocyclic carbene phospha-palladacycles [96] were 

reported to show highly catalytic activities, as evidenced by their TONs of up to 300,000 and 533,000, respectively. 
Among the Suzuki reactions, palladacycle catalysts exhibit very high TONs. Most notably, phosphite palla-

dacycles 2.13 show the highest TON of 106 [97]-[100]. 
 

 
 

For other reactions, this section shows two examples of polymerizations and reductions. 
Among the polymerization catalysts, Ziegler catalysts (Et3Al and TiCl4), Natta catalysts (Et3Al and TiCl3), 

and metallocene catalysts (Cp2M(M = Ti, Zr, Hf, Fe)) and -(O-Al(R))n- (R = Me, Et)) are used as vinyl polyme-
rization catalysts. Ca, Hg, Zn and Cd compounds and Ti, Ge, Sn, Pb and Sb compounds are used for ester ex-
change and their polyester polymerization catalysts, respectively. 

However, organometallic intramolecular-coordination five-membered ring compounds have also recently 
been used as polymerization catalysts. 

The polymerization reactions of compounds such as ethylene polymerization, ethylene/1-octene and propyl-
ene polymerization and isoprene polymerization reactions and their catalysts of cyclomelated products are 
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shown in Figure 5 [101]-[103]. 
For example emine-type cyclopalladated products 2.14 have good activity for ethylene polymerization [101]. 

The molecular weight and molecular weight distribution of the obtained polymers correspond to single-site cat-
alysts, and the polymers have narrow molecular weight distribution, as shown in Table 1. 

Pincer organometallic compounds are reported mainly with regard to two types of compounds, NCN and PCP 
transition-metal complexes [63] [91]. However, ruthenium pincer CNN compounds have also been applied to 
the hydrogen-transfer reductions of ketones. 

For example, 6-(4'-methylphenyl)-2-pyridylmethylamine ruthenium pincer compound 2.17 is a highly effi-
cient catalysts in transfer hydrogenation, which involves 2-propanol, quantitatively reduce ketone with notably 
low loading in a short time, as shown in Equation (2.2.4) [104]. 
 

 
Figure 5. Polymerization reactions and their catalysts with cyclometalated products.                  

 

             (2.2.4) 
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Table 1. Molecular weight, molecular weight distribution and melting temperature (Tm) of polyethylene obtained using the 
imine cyclometalated palladium catalysts 2.14b and 2.14c [101].                                                        

Catalyst Reaction temp. (˚C) Tm (˚C) Mw Mw/Mn 

2.14b 80 136 74,000 1.7 

2.14c 40 137 245,000 2.1 

2.3. Applications of Cyclometalation Five-Membered Ring Intermediates as Catalytic  
Agents 

The second type of catalytic agent has weak coordination to the metal compounds and the catalysts are highly 
reactive intermediates of the five-membered ring cyclometalation reactions [105]. In particular, Murai et al. 
have published reports on such catalytic actions with ruthenium compounds since 1993 [106]-[116]. In this type 
of catalytic agents, the ligands mainly use the relatively weak donation of the oxygen atoms of ketone carbonyl, 
ester carbonyl, aldehyde carbonyl and amide carbonyl groups and the nitrogen atoms of oxazole, amide, imine 
and azo groups, whereas Ru, Rh, Co, Zr and Pd compounds are mainly used as the metal compounds. 

For example, the alkenylation reaction with a phenyl ester as a substrate proceeds via cyclometalation with 
intermediate 2.18 to produce an alkenyl derivative in high yield, as shown in Equation (2.3.1) [117]. 

         (2.3.1) 

Cyclopalladated t-butylimine compounds react with styrene and are consequently treated with trifluoroacetic 
acid to produce o-formylstilbenes in high yield. Their N-methylimine derivatives are converted to other hetero-
cyclic compounds (3-aryl-N-methyl-isoquinolones 2.19) by oxidation with mercuric acetate, as shown in Equa-
tion (2.3.2) [118]. 

            (2.3.2) 
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Other reactions such as alkylation, alkynylation, arylation, carbonylation, hydroacylation, ring-expansion 
reaction, carbocyclization, cross-coupling reaction, reductive elimination, carbonylation and hydroacyclation 
have also been reported [41] [43] [55]. 

2.4. Applications of Cyclometalation Five-Membered Ring Intermediates with  
Unconventional Substrates as Catalytic Agents 

The third type includes reactions that using base substrates such as 2-amino-3-picoline and anilines which do not 
have a γ-carbon atom as the hetero atom, and auxiliary substrates such as aldehydes and alkynes. This reaction 
produces conventional substrates, and the reactions with metal compounds produced the reactive five-membered 
ring intermediates from cyclometalation reactions. Finally, the derivatives of the reactive five-membered ring 
intermediates are formed as shown in Equation (2.4.1) and Scheme 2 [119]. 

       (2.4.1) 

In metal compounds, such as Mn, Pd, Rh and Ir compounds, the cyclization reactions of unsaturated com-
pounds, such as alkynes, alkenes and phenyl compounds proceed via cyclocarbonylation based on the following 
four characteristics [47]. 

1) Carbon-carbon π-electrons in these unsaturated compounds easily form π-coordination bonds to the metal 
atom. 

2) In the metal carbonyl compounds, hydrogen or an organic group easily migrates to a carbonyl. 
3) The coupling reactions between a carbonyl carbon in the metal carbonyl compounds and a carbon atom in 
 

 
Scheme 2. Proposed mechanism for hydroacylation via cyclometalation reactions 
[119].                                                                   
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the unsaturated π-coordination bonds easily proceed. 
4) Five-membered ring compounds are easily formed by the σ-coordination of the carbonyl oxygen atom to 

the metal atom. 
These characteristics of metal carbonyl compounds and unsaturated hydrocarbons enable the cyclometalation 

reactions of these compounds to easily proceed without using conventional substrates.  
For example, Stone et al. [120] reported the unconventional cyclometalation reaction of a manganese car-

bonyl with an alkyne as shown in Equation (2.4.2). 
First, the unsaturated π-electrons of the alkyne coordinate to the manganese atom with the concomitant mi-

gration of a hydrogen atom from the manganese to a carbonyl group. 
The coupling reaction between a carbonyl carbon atom and hydrogen occurs via the migration reaction, where 

the alkyne carbon atom bonds with an electron attractive trifluoromethyl group. Finally, cyclization reactions 
occur in the form of cyclocarbonylation, which is caused by the coordination of the carbonyl oxygen atom to the 
manganese atom. 

        (2.4.2) 

 
Alkynes or alkenes react with alkylmanganese carbonyl compounds at high pressures (2 - 10 kbar) to provide 

the five-membered ring products 2.20 and 2.21via the coupling reactions of the organyl migration carbonyl 
moiety with alkynyl or alkenyl groups in good yields. These cyclometalated products are used as intermediates 
to prepare organic compounds [121]. 

For example, alkyne cyclometalated intermediates 2.20 afford E-enones 2.23 under acidic conditions by de-
metalation. Alternatively, the intermediates 2.20 afford butenolides 2.24 via an intramolecular Reppe reaction by 
hydride reduction. Finally, alkene cyclometalated intermediates 2.21 afford ketones 2.25 by photochemical de-
metalation as shown in Scheme 3 [121]. 
 

 
Scheme 3. A variety of alkylmanganese pentacarbonyl compounds regioselectively 
react with structurally diverse alkynes or alkenes to produce their cyclometalated 
intermediates [121].                                                         
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3. Recent Applications of Cyclometalation Five-Membered Ring Products and  
Intermediates as Catalytic Agents 

3.1. Introduction 
The author has published a review article on the applications of cyclometalation five-membered ring (interme-
diate) products with catalytic actions [41] [43] [55]. Thus, this chapter only describes very recent cyclometala-
tion five-membered ring products as catalysts and cyclometalation five-membered ring intermediates with cata-
lytic actions. 

3.2. Recent Applications of Cyclometalation Five-Membered Ring Products as Catalysts 
Recently, the main metal compounds of the five-membered ring products of cyclometalation reactions, which 
are used as catalysts in the chiral reactions, are Pd compounds, and the other metal compounds are Pt, Ir, Rh, Ru 
and Fe compounds [122]-[130]. 

For examples, the asymmetric hydroarsination reaction [131], hydrogenation [132] and asymmetric aza- 
Michael reaction are cited [133]. 

An asymmetric hydroarsination reaction between diphenylarsine and 3-diphenylphosphanyl-but-3-en-1-ol has 
been achieved using ortho-metalated (R)-[1-dimethylamino)ethenylnaphthalene as the chiral reaction template 
3.1 with high stereoselectivity under mild reaction conditions, as shown in Scheme 4 [131]. The hydroarsination 
of 3-diphenylphosphanyl-but-3-en-1-ol with diphenylarsine produces only one stereoisomer as a five-membered 
As-P bidentate chelate on the chiral naphthylamine palladium template 3.2. The naphthylamine auxiliary can be 
chemoselectively removed by treatment with concentrated hydrochloric acid. The absolute configuration of the 
final hydroarsination product has been established using single crystal X-ray analysis. 

The following chiral reactions of phenyl alkyl ketone were reported for hydrogenation in the presence of 
bis(oxazolinyl)phenyl metal compounds 3.3, as shown in Equation (3.2.1) [132]. Furthermore, for the latter 
bis(oxazolinyl)phenyl ruthenium catalyst 3.3, Ito, J., Teshima, T. and Nishiyama, H. [132] reported, a significant 
increase in enantioselectivity with a zinc-chloride-bridged ruthenium compound. 
 

 
Scheme 4. Asymmetric hydroarsination reaction between diphenylarsine and 3-diphenlphosphanyl- 
bu-3-en-1-ol with ortho-metalated (R)-[1-dimethylamino]ethenylnaphthalene as the chiral reaction 
template [131].                                                                              
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            (3.2.1)

 

W. Zhang et al. [133] attempted the asymmetric aza-Michael addition of α,β-unsaturated nitriles using the 
P-stereogenic Ni compounds of common five-membered ring 3.4 and 3.5 (Ni PCP) compounds and chelate type 
3.6, 3.7 and 3.8 (Ni PNP) compounds. The reactions with the common Ni PCP pincer 3.4 and 3.5 compounds 
show much higher yields and higher ee% than the reactions with the chelate type 3.6 - 3.8 Ni PNP pincer com-
pounds as shown in Equation (3.2.2) and Table 2. 

                 (3.2.2) 

In Chapter 2, many metathesis reactions are shown with a Hoveyda-Grubbs metathesis catalyst, which has an 
oxygen donor atom as shown in Figure 3. 

Recently, other catalysts have used nitrogen atoms as the heteroatoms: 
 
Table 2. Reaction conditions of aza-Michael addition.                                                              

Cat Additive Yield (%) ee (%) 

3.4 AgOTf 83 35 

3.5  85 28 

3.6 AgOTf nd  

3.7 AgOTf 9 8 

3.8 AgOTf 11 11 
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The reaction of the Grubbs’ 3rd-generation complex (1,3-bis(2,6-diisopropylimidazolin)-2-ylidene complex) 
with 2-ethenyl-N-methylaniline forms complex 3.9. Compared to the conventional O-Grubbs-Hoveyda complex 
(such as 2.9 -2.12 in Figure 3), the new complexes are characterized by fast catalyst activation, which translates 
into fast and efficient ring-closing metathesis reactivity. Catalyst loadings of 15 - 150 ppm (0.0015 - 0.015 
mol%) are sufficient to convert a wide range of diolefinic substrates into the respective ring-closing metathesis 
products after 15 min at 50˚C in toluene as shown in Equation (3.2.3). The use of complex 3.9 in ring-closing 
metathesis reactions enables the formation of N-protected 2,5-hydropyrroles with turnover numbers (TONs) of 
up to 58,000 and turnover frequencies (TOFs) of up to 232,000 h−1 [134]. 

            (3.2.3)

 

Recently, many cross-coupling reactions using cyclometalation reaction five-membered ring products as cat-
alysts for Heck-type, Mizoroki-Heck and Suzuki cross-coupling reactions were reported, as shown in Figure 6. 

Recently, the five-membered ring products of cyclometalation reactions for polymerization catalysts were re-
ported as shown in Figure 7. 
 

 
Figure 6. Recent cross-coupling reactions with cyclometalated five-membered products as 
catalysts for Heck type, Mizoroki-Heck, and Suzuki cross-coupling reactions.                
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Figure 7. Recent polymerization reactions of ethylene polymerization and olefin polymeri-
zation (1-Hexene, propylene, and ethylene/1-octene).                                     

 
Other reactions have also been repoted, such as acceptorless cyclooctane dehydrogenation and aldehyde de-

carbonylation [141], transfer hydrogenation of ketones and Oppenauer-type oxidation of alcohols [142], otho- 
benzoxylation of 2-arylpyridines [143], etc. using cyclometalation compounds as their catalysts. 

3.3. Recent Applications of Cyclometalation Five-Membered Ring Intermediates as  
Catalytic Agents 

Many articles on arylations have reported the synthetic applications of cyclometalation reactions, in particular. 
For example, Song and Ackermann [144] have reported that the cobalt acac complex reacts with 2-phenylpyri- 
dine first to produce a cobalt intermediate, which is bonded with the γ-carbon atom 3.16, and the intermediate 
subsequently reacts with an aryl sulfamate to produce the final substitution product in high yield, as shown in 
Equation (3.3.1). 

              (3.3.1) 

With 2-phenyloxazolines [145] and phenyltriazenes [146] as the substrates, their alkenylations also proceed in 
the presence of rhodium compounds, as shown in Equations (3.3.2) - (3.3.3). 

      (3.3.2) 
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       (3.3.3) 

Alkynylations have been shown as reactions of cyclometalation reaction products with alkynes. 
For example, a phenyimine as an arylimine reacts with an alkyne in the presence of a renium compound to 

give the cyclization product aminoindane 3.18 via a cyclometalation intermediate 3.17, which is coordinated by 
an alkyne, as shown in Equation (3.3.4) [147]. 

           (3.3.4) 

Other reactions are acylation [148], amination [149], halogenation [150] and silylation [151], as shown in 
Equations (3.3.5)-(3.3.8), respectively. 

   (3.3.5) 

 

   (3.3.6) 
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            (3.3.7) 

            (3.3.8) 

4. Concluding Remarks 
The five-membered ring products and intermediates of cyclometalation reactions are synthesized with various 
types of substrates, metal compounds (69 types of meal atoms), and ancillary ligands. In particularly, we noticed 
the substrates such as carbenes, pincers, heterocyclic compounds and dendrimers, and on the metal compounds 
such as common metals and rare earth metals. 

As to the carbenes, for example, first and second generation Hoveyda-Grubbs metathesis catalysts have been 
used as very highly active catalysts. Recently, new third Hoveyda-Grubbs catalysts (compounds 3.9) as very 
highly active metathesis catalysts, exhibiting very high both TNOs and TOFs, are used with the simple changing 
of hetroatom from O to N atom. 

The pincer compounds are tridentate substrates, they are very stable and having many functionality, for ex-
ample, Michael addition reactions proceed at room temperature in high yields and high TNOs by using bisox-
azolinylphenyl rhodium compound 2.8 as the catalysts. 

The heterocyclic compounds, for example, oxazolinylphenyl compounds (compounds 2.4, 2.8 and 3.3), and 
the compounds in Equations (3.3.2) and (3.3.8)) are highly active catalysts. 

The dendrimers are expected stable, high TNO and high functional catalysts [48].  
These products are usually prepared by the reactions of noble metal compounds such as Pd, Pt, Ru and Rh 

metal compounds. Recently, articles concerning common metals such as Fe, Ni and Cu and main group metals 
such as Zn and Al, and rare earth metals such a Lu, Eu and Sm have been published. These metal compounds 
are expected to be used as inexpensive and special catalysts with various conventional substrates and other li-
gand compounds. 

Finally, I believe firmly that these cyclometalation five-membered ring products and intermediates would be 
utilized for the development of further new industrial products in many fields such as pharmaceuticals, OLEDs, 
carbon dioxide utilizations, dye-sensitizer solar-cells, sensors and the other many field by utilizing their function 
such as catalytic activity, etc. 
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