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Abstract 
This contribution presents an outline of a new mathematical formulation for 
Classical Non-Equilibrium Thermodynamics (CNET) based on a contact 
structure in differential geometry. First a non-equilibrium state space is in-
troduced as the third key element besides the first and second law of thermo-
dynamics. This state space provides the mathematical structure to generalize 
the Gibbs fundamental relation to non-equilibrium thermodynamics. A 
unique formulation for the second law of thermodynamics is postulated and it 
showed how the complying concept for non-equilibrium entropy is retrieved. 
The foundation of this formulation is a physical quantity, which is in non- 
equilibrium thermodynamics nowhere equal to zero. This is another perspec-
tive compared to the inequality, which is used in most other formulations in 
the literature. Based on this mathematical framework, it is proven that the 
thermodynamic potential is defined by the Gibbs free energy. The set of con-
jugated coordinates in the mathematical structure for the Gibbs fundamental 
relation will be identified for single component, closed systems. Only in the 
final section of this contribution will the equilibrium constraint be introduced 
and applied to obtain some familiar formulations for classical (equilibrium) 
thermodynamics. 
 

Keywords 
Non-Equilibrium Thermodynamics, Gibbs Fundamental Relation, Contact  
Geometry, Second Law of Thermodynamics, Equilibrium Constraint 

 

1. Introduction 

The main objective of this paper is to derive a mathematical framework for ma-
croscopic non-equilibrium thermodynamics, which is not based on some kind of 
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an (implicit) equilibrium assumption. Instead it will be shown, that the equili-
brium conditions are “contained” in the proposed framework by applying an 
additional constraint. There are two key components in this innovative deriva-
tion: 1) a generalization of Gibbs fundamental relation for non-equilibrium 
thermodynamics that is based on the dissipation of energy and 2) a unique for-
mulation of the second law of thermodynamics, including a mathematical prop-
er derivation of non-equilibrium entropy as a thermodynamic state function. 
This paper presents the mathematical framework of Classical Non-Equilibrium 
Thermodynamics (CNET) based on a harmonious integration of mathematics 
and physics. 

In his monumental work “On the Equilibrium of Heterogeneous Substances” 
[1] Josiah Willard Gibbs (1839-1903) postulates a relation that is fundamental 
for thermodynamics, viz. 

1
d d d d

spcN

U T S p V mα α
α

µ
=

= − + ∑ .                   (1) 

Gibbs postulates this relation for a mixture of spcN  non-reacting, chemical 
species in a closed system, which is in a thermodynamic equilibrium state. Often 
this relation is derived by a simple elimination of the reversible heat flow from 
both laws of thermodynamics [2]-[7] or it is applied in non-equilibrium states 
by using the local equilibrium hypothesis [8]. In this paper, only a state space for 
non-equilibrium thermodynamics will be postulated and the corresponding ge-
neralization of the fundamental relation will be derived. This paper will be re-
stricted to closed, single component systems, but a proposition to include the 
physical phenomena of open systems with chemical reactions can be found in [9]. 

Based on the original work of Rudolf Clausius (1822-1888), the macroscopic 
entropy of systems in thermodynamic equilibrium is often defined as the quo-
tient of heat flow and temperature. For non-equilibrium processes this definition 
is then simply extended to an inequality (e.g. Clausius inequality [6]) or an addi-
tional term is included in the definition of macroscopic entropy [10]. The major 
drawback of these approaches is, that it is not obvious that entropy is also a state 
function in non-equilibrium thermodynamics. It is often reasoned, that the 
non-equilibrium entropy has to be a thermodynamic state function. This paper 
presents a unique postulate for the second law of thermodynamics, which does 
not explicitly include the concept of entropy. Based on a mathematical property 
of this postulate, the non-equilibrium entropy will be derived with the appropri-
ate mathematical structure of a thermodynamic state function. This paper is 
confined to the thermodynamic state space, there is no reference to temporal or 
spatial coordinates. 

Section 2 starts with the introduction of a thermodynamic state and defines a 
corresponding state function. The mathematical machinery of contact geometry 
is used to postulate the so-called non-equilibrium state space ( )1,G GM ∆ . Dar-
boux’s theorem can be derived for a contact structure, which possesses the ma-
thematical structure of the Gibbs fundamental relation in thermodynamics (viz. 
Equation (1)). In the third section the first law of thermodynamics is postulated 
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in such a way, that the internal energy is a state function that complies with the 
appropriate definition. The next step is to postulate a unique formulation for the 
second law of thermodynamics and the complying derivation of non-equili- 
brium entropy. Both sections are combined in Section 4 to identify the thermo-
dynamic potential as Gibbs free energy and to identify the pairs of conjugated 
coordinates in Darboux’s theorem. With this identification, a generalized Gibbs 
fundamental relation for non-equilibrium thermodynamics is derived, which in-
cludes sufficient additional degrees of freedom to model non-equilibrium phe-
nomena. The postulate for a thermodynamic equilibrium is postponed until the 
final section of this paper. It will be shown how the equilibrium constraint re-
duces Gibbs fundamental relation to a Pfaffian equation, which is the basis for 
the derivation of the so-called Maxwell relations in thermodynamics [3] [5] [6] 
[7]. 

2. Non-Equilibrium State Space 

A powerful feature of phenomenological thermodynamics is its capability to 
make statements about the macroscopic state of a system without detailed 
knowledge of its microscopic details. This feature is based on the phenomeno-
logical observation, that a finite number of macroscopic properties is required to 
completely describe the thermodynamics of a system. Non-equilibrium thermo-
dynamics will be described in a separate state space  , which is based on statis-
tical averages of the phase space in statistical mechanics. 

A thermodynamic system consists of molN  molecules, where each individual 
molecule [ ]mol1, ,i N∈ 

 has a position iq  and a momentum ip . The com-
plete set of these molN  positions and molN  momenta form the so-called mi-
croscopic state of the system. The number of degrees of freedom in this system 
is, in the case of a 3-dimensional spatial space, equal to mol mol mol3 3 6N N N+ =  
(where 2

mol
36.022 10AN N∝ = × ). A macroscopic state is a statistical ensemble 

of this huge amount of microscopic information, where there is a probability 
distribution over all compatible microscopic states of the system. The corres-
ponding probability density ( )mol mol,N N℘ q p  determines the probability that the 
system will be found in the infinitesimal phase space volume mol mold dN Nq p . It 
complies with  

( ) mol mol, d d 1.N N℘ =∫∫ q p q p                     (2) 

Then the statistical average of some physical observable ( ),θ q p  can be written 
as (e.g. see [11] [12] [13] [14]) 

( ) ( ) mol mol, , d d .N NθΘ = ℘∫∫ q p q p q p                 (3) 

This equation defines a macroscopic property of a system, which will be applied 
as a coordinate for the differential manifold GM  of the thermodynamic state 
space  . At this point, no clear mathematical distinction will be made between 
the definition of the chart Ξ , as part of the definition of the manifold GM , and 
the set of values of the macroscopic properties Θ , which form together the 
thermodynamic state Ξ . Typical examples for macroscopic properties are 



E. Knobbe, D. Roekaerts 
 

11 

energy E , volume V , number of molecules molN  or electric charge Q . A set 
of N  coordinates builds a macroscopic non-equilibrium state, viz. 

{ }1 , , NΞ = Θ Θ
. Notice that there is no explicit expression for time nor for 

spatial distributions of macroscopic properties within the system. 
Non-equilibrium thermodynamics describes changes in a system, which de-

pend on changes in its state Ξ  due to some arbitrary process γ . There are 
various macroscopic properties of the system that depend on the state Ξ , which 
requires the definition of a so-called state function  . 

Definition 1 [Non-equilibrium state function]. The 0-form : GM →  , 
that is generated by an exact 1-form 1µ , is defined as a non-equilibrium state 
function. Hence, 

1 1d   with  d 0  such that  d 0.µ µ= = =∫             (4) 

In this definition symbol d  denotes an exterior derivative with respect to the 
thermodynamic coordinates Θ , which makes it an essential part of the defini-
tion. It describes the dependencies of the thermodynamic changes, which are 
given by the set Ξ  of independent macroscopic properties of the system (again, 
there is no reference to temporal or spatial coordinates). Another important as-
pect of the above definition is that any non-equilibrium property can return to 
its initial condition after an arbitrary periodic process has concluded a complete 
period1. 

The manifold GM  is not sufficient to completely describe non-equilibrium 
thermodynamics. By using the mathematical framework of contact geometry, 
the thermodynamic space can be based on the concept of a contact structure. In 
1973 Robert Hermann [15] suggested to formulate equilibrium thermodynamics 
based on a ( )cjg2 1N + -dimensional differential manifold GM  and a non-de- 
generating contact 1-form 1

G∆ . In this paper his mathematical framework will 
be used as the basic building block to formulate non-equilibrium thermody-
namics. 

Postulate 1 [Gibbs state space]. Non-equilibrium thermodynamics is speci-
fied by a ( )cjg2 1N + -dimensional differential manifold GM , that is equipped 
with a non-degenerate Gibbs contact 1-form 1

G∆ , viz. 

( ) cjg1 1d 0.
N

G G∆ ∧ ∆ ≠                     (5) 

The Gibbs state space   is defined by the contact structure ( )1,G GM ∆ . 
In the general context of this paper, it is very important to notice, that this 

postulate is neither the first law nor the second law of thermodynamics. The 
above postulate states that the contact structure ( )1,G GM ∆  formulates a 
non-equilibrium thermodynamic state space. In this paper, all thermodynamic 
observations will be formulated in this state space. The non-degenerate Gibbs 
contact 1-form 1

G∆  has two important mathematical properties (see [16] [17]): 

 

 

1The macroscopic property has obtained an identical statistically averaged value compared to its ini-
tial value, but this does not mean that the probability distribution is identical to its original distribu-
tion (nor that the microstates are identical). This observation is a severe release of constraints com-
pared to traditional equilibrium based approaches. 
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• it is never equal to zero, so it is either everywhere positive or it is everywhere 
negative, 

• it is not completely integrable (Frobenius condition). 
Both these properties play a key role in the formulation of the second law of 

thermodynamics in section 3. The physical interpretation of the quantity 1
G∆  is 

postponed until the next section. 
According to Darboux’s theorem (see [16] [17] [18] [19] [20]), there is a set of 

canonical coordinates { }, ,X Y
 


 on the manifold GM  such that the Gibbs 

contact 1-form 1
G∆  is specified by  

1
cjgd d ,   1, , .G X Y N∆ = + =

 

                   (6) 

(summation over repeated indices). This equation can be identified as a genera-
lization of the Gibbs fundamental relation, e.g. see Equation (1). Thus, the ma-
thematical structure of the Gibbs fundamental relation is not postulated in this 
paper. Instead it is derived from a mathematical property of the contact struc-
ture ( )1,G GM ∆  that defines the non-equilibrium thermodynamic state space. It 
is also not derived from the combination of both laws of thermodynamics, so it 
is a third essential component in the mathematical formulation of non-equili- 
brium thermodynamics. The canonical coordinate   will be called a thermo-
dynamic potential, hence  

Definition 2 [Thermodynamic potential]. The canonical coordinate  , 
whose change is directly proportional to the Gibbs contact 1-form 1

G∆ , is de-
fined as the thermodynamic potential, viz. 1d G∝ ∆

. 
Symbols X



 and Y


 in Equation (6) denote the conjugated coordinates, 
since they form cjgN  conjugated pairs of extensive and intensive quantities, or 
vice versa. The number of degrees of freedom in the Gibbs state space   is de-
termined by the dimensions of the manifold GM , i.e. cjgdim 2 1GM N= + . At 
this point it must be emphasized that  , X



 and Y


 are coordinates in the 
Gibbs state space   that defines non-equilibrium thermodynamics. Equation 
(6) from Darboux’s theorem specifies only the functional relation between these 
non-equilibrium coordinates and captures the complete mathematical wealth of 
irreversible, non-equilibrium thermodynamics. One of the remaining issues will 
be to identify the physical meaning of the thermodynamic potential   and the 
set of canonical coordinates X



 and Y


. But before these coordinates can be 
identified, it is required to introduce the first and second law of thermodynamics. 

3. Thermodynamic Laws 

The distinction between exact and inexact 1-forms is an essential part of the 
mathematical formulation of the first and second laws of thermodynamics. The 
first law of thermodynamics states that for an arbitrary periodic process, the 
energy at the start and end of a complete period are identical. This statement 
complies with the definition of a non-equilibrium state function (e.g. see Defini-
tion 1). Both the amount of heat flow 1α  and work flow 1ω  are each path 
dependent quantities (viz. both are inexact 1-forms), so they are not conserved 
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over a complete period in a periodic process. The first law of thermodynamics 
states that their sum is conserved. 

Postulate 2 [First law of thermodynamics]. Summation of the inexact 1-forms 
for heat flow 1α  and work flow 1ω  results in an exact 1-form 1Γ , viz. 

( ) ( )1 1 1 1 1 1with   d ,   while  d   and   d .f fα ωα ω α ω+ = Γ Γ = ≠ ≠       (7) 

The crucial feature in the above postulate is, that the sum of two inexact 1-forms 
1α  and 1ω  results in an exact 1-form 1Γ . According to Definition 1 there ex-

ists then a non-equilibrium state function, which will be called internal energy 
 , such that 

1 1d .α ω= +                         (8) 

The internal energy ( )U = Ξ  is conserved over a complete period of an arbi-
trary periodic process due to the definition of the exterior derivative (viz. 
( )d d 0= , which is equivalent with the cycle integral). 
In nature, it is observed that, for closed systems, processes are such that the 

system eventually approximates an equilibrium state. Once a system has ob-
tained such an equilibrium state, interactions with the surroundings of the sys-
tem are required to disturb this equilibrium. Hence, processes are directed to-
wards a mathematical extremum, which corresponds with the equilibrium state, 
and this is irreversible when there is no interference from outside the system. 
Observations of these phenomena are for the first time published by Sadi Carnot 
(1796-1832, see [4] [21]) and later mathematically formulated by Rudolf Clau-
sius (see [22] [23]). Clausius postulates, that a system in an equilibrium state has 
a macroscopic property, which he calls entropy   and is mathematically de-
fined by2 

1 1 1 1 11 1with  d 0  such that  d   and  d 0.  α α
ϑ ϑ

Σ = Σ = Σ = = =∫ ∫ 

      (9) 

As is already stated before, the heat flow 1α  is a path dependent quantity and 
thus an inexact 1-form (viz. 1d 0α ≠ ). Frobenius integration theorem (see type 2) 
in Table 1 or [18] [24] [25] [26]) is used in Clausius formulation to transform 
the inexact 1-form 1α  to the exact 1-form 1Σ . From a mathematical perspective, 
the quantity 1ϑ−  is called an integrating factor, which is a different mathematical 
mechanism to obtain an exact 1-form compared to the one that is used  
 
Table 1. Overview of the Frobenius integrability condition (e.g. see [18] [24] [25]). 

 Type of 1-form Condition Example 

1) exact 1 0Ω ≠  1d 0Ω =  1 dzΩ =  

2) inexact 1d 0Ω ≠  1 1d 0Ω ∧ Ω =  1 dx yΩ =  

3) contact 1 1d 0Ω ∧ Ω ≠  1 1d d 0Ω ∧ Ω =  1 d dz x yΩ = +  

⁞  ⁞ ⁞ ⁞ 

(2n + 1) contact ( )1 1d 0
n

Ω ∧ Ω ≠  ( )1 1d d 0
n

Ω ∧ Ω =  1 d dj jz x yΩ = +  

 

 

2Here the concepts and notation of this paper are used, where an equilibrium state is denoted by 
underlined symbols (see also Section 5). 
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in Postulate 2. In classical thermodynamics, the above definition is then often ex-
tended to non-equilibrium states by replacing the equal sign with an unequal sign 
or by adding some other term3. In such an approach, it is not clear that entropy 
  is a non-equilibrium state function in thermodynamics, since it is not properly 
derived as an exact 1-form. This lack of mathematical accuracy might be one of 
the reasons why there are so many formulations of non-equilibrium thermody-
namics. 

One of the less famous pioneers in thermodynamics is the Greek mathemati-
cian Constantin Carathéodory (1800-1900). His work [30] [32] [33] on the use of 
Pfaffian equations for the mathematical formulation of thermodynamics has been 
crucified4, although it is one of the first attempts for a rigorous formalization of 
thermodynamics. In the second axiom in his 1909 paper [31], he has an interest-
ing formulation for the second law of thermodynamics that is based on geome-
trical considerations: 

Axiom II: In jeder beliebigen Umgebung eines willkürlich vorgeschriebenen 
Anfangszustandes gibt es Zustände, die durch adiabatische Zustandsänderungen 
nicht beliebig approximiert werden können5. 

Above axiom is in the literature also known as Carathéodory’s inaccessibility 
condition or as Carathéodory’s principle [30]. Notice that Carathéodory makes a 
statement about an arbitrary initial state, so in this axiom there is no explicit re-
striction to a thermodynamic equilibrium. But in his paper an adiabatic process 
is defined as a process where the systems remain in (phase) equilibrium when 
the deformable coordinates change6. So the heat transfer is not necessarily al-
ways equal to zero, which is in the textbook of Bamberg and Sternberg [13] [24] 
elegantly formulated by the mathematical concept of a null curve 0γ , viz. 

( )
0

1 10   then  ,  such that  d   and  constant.
γ
α ϑ α ϑ= ∃ = =∫         (11) 

Based on the Frobenius integration theorem the second relation is derived from 
Axiom II and therefore also known as Carathéodory’s theorem [24] [35] [36]. 

So modern interpretations of mathematical formulations for the definition of 
entropy in classical thermodynamics show, that the Frobenius integration theo-
rem plays a crucial role. But opposite to the before mentioned formulations, in 

 

 

3In this context is the work of Eu [27] [28] [29] very interesting. He is aware that the Clausius defini-
tion for entropy holds only for reversible processes (e.g. equilibrium state). Eu introduces therefore a 
new thermodynamic quantity Calortropy Ψ , which is specified by 

1 11 1 1d d   with  d 0  and  d d .N N N Nα α
ϑ ϑ ϑ

Ψ = + = = − ≥ =∫ ∫ 

        (10) 

In these relations N  denotes the uncompensated heat in analogy to the “uncompensirten Ver-
wandlung” N  in the work of Clausius [23]. The last relation with   can only be found in his 
paper [28], where his Equation (8) has the same structure as Equation (13) in this paper. Opposite to 
this paper, 1ϑ−  is not identified as an integrating factor for the term d  and the quantity d  
itself is not specified in further detail. 
4See the Appendix to the Historical Indroit: Failure of Carathéodory’s attempt to set the house in 
order’ in the textbook on Rational thermodynamics by Truesdell (pp. 49-57 in [34]). 
5In every neighborhood of an arbitrary thermodynamic state there exist states that cannot be ap-
proached by an adiabatic process. 
6Based on three assumption he introduces a simple system together with a quasi-static change of 
state, which is in his formulation another reference to an equilibrium state. 
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this paper Frobenius integration theorem is not applied to the inexact 1-form 
1α  for heat flow. As is shown in both before mentioned cases, this would expli-

citly or implicitly require that there is an equilibrium state. Recall that the Gibbs 
contact 1-form 1

G∆  is explicitly postulated to be non-degenerate, so it is not in-
tegrable by itself. Therefore, and this is a unique feature of the mathematical 
formulation in this paper, Frobenius integration theorem is applied to the dif-
ference between the heat flow and dissipation, viz. 1 1 1

GαΩ = − ∆ . 
Postulate 3 [Second law of thermodynamics]. The difference between the in-

exact 1-form 1α  for heat flow and the non-degenerating Gibbs contact 1-form 
1
G∆  that represents the dissipation is completely integrable, viz. 

( ) ( )1 1 1 1d 0.G Gα α− ∆ ∧ − ∆ =                    (12) 

Similar to the approach of Carathéodory, the concept of entropy is not defined 
in the above formulation for the second law of thermodynamics. Based on the 
integrability condition in Postulate 3 it can then be shown (see [18] [37]), that 
there exists exactly one pair of conjugated coordinates. Here these coordinates 
are denoted by the absolute temperature ϑ  and non-equilibrium entropy  , 
such that 

( )1 11d ,   with  0.Gα ϑ
ϑ

= − ∆ ≠                  (13) 

The exterior derivative of entropy ( )S = Ξ  is an exact 1-form due to the 
presence of the integrating factor 1ϑ−  in the right-hand side of Equation (13). 
Hence, the existence of entropy   as a non-equilibrium state function is based 
on a different mathematical mechanism compared to internal energy ( )Ξ  in 
the first law of thermodynamics. It is emphasized that both internal energy 
( )Ξ  and entropy ( )Ξ  are introduced in this paper as non-equilibrium 

state functions. Finally, notice that both the absolute temperature ϑ  and the 
Gibbs contact 1-form 1

G∆  are nowhere equal to zero, so they are either every-
where positive or everywhere negative. Hence, in this paper the second law is not 
dominated by an inequality, but by the observation that certain physical quanti-
ties cannot be equal to zero. 

An integral part of the definition of a non-equilibrium state function is, that 
the initial value is identical to the final value at the end of a complete period in a 
periodic process. This means that the initial and final non-equilibrium state Ξ  
must be identical and consequently this has to hold for every macroscopic prop-
erty Θ . As is already mentioned in Section 2, the likelihood that the statisti-
cally averaged value of every macroscopic property is recovered after a complete 
period in a real physical system is very small. But it is not equal to zero and thus 
it has to be considered as a limiting case in non-equilibrium thermodynamics. 
Consider Equation (13) for the case of a complete period, then 

1 11 1

0 d   such that  0.G Gα α
ϑ ϑ ϑ ϑ

= =
∆ ∆

− = ≠∫ ∫ ∫ ∫ ∫    

          (14) 

Both the absolute temperature ϑ  and the dissipation 1
G∆  are never equal to 

zero, hence their quotient is unequal to zero. This means that the right-hand side 
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in the last relation is always either positive or negative. Consequently, the heat 
flow in a periodic process must have the same direction over every completed 
period and thus a heat flow is required to drive a periodic process. Or converse-
ly, in non-equilibrium thermodynamics there does not exist a process that is 
both periodic and adiabatic at the same time. This is an intriguing observation, 
since Clausius’s formulation for entropy is based on periodic processes, while 
Carathéodory uses adiabatic processes to specify the second law of thermody-
namics. 

4. Identification of Thermodynamic Coordinates 

In this section the thermodynamic potential   and the cjgN  pairs of conju-
gated coordinates X



 and Y


 in Equation (6) will be identified for the case of 
a single component, closed system (e.g. there is no mass transfer with the sur-
rounding of the system). The basic elements for this identification are both laws 
of thermodynamics, but first the work flow 1ω  has to be specified in more de-
tail. In general, every 1-form can be written as a linear combination of the cor-
responding coordinates. The coordinates for work are force F  and displace-
ment D , thus the inexact 1-form 1ω  for the work flow can be written as  

1 d d d .p F Dφ φ ψ ψω = − + +                     (15) 

This equation does not add new information to the presented mathematical 
framework of non-equilibrium thermodynamics. It only specifies the set of 
coordinates that determines the work flow 1ω . Symbols Fδ  and Dδ  (with 

,δ φ ψ= ) denote respectively generalized thermodynamic forces and displace-
ments7, where blackboard fonts are used to denote extensive quantities. The in-
dices are ext1, , Nφ =   and ext wrk1, ,N Nψ = +   for the general case, but for a 
single component, closed system it will be shown that wrk cjg 2N N= − . Combine 
above equation with Equations (8) and (13), then the following equation can be 
obtained 

1d d d d d .Gp F Dφ φ ψ ψϑ= − + + + ∆                  (16) 

By comparing this equation with Equation (6), one could argue that the ther-
modynamic potential and the set of conjugated coordinates are identified. But 
this identification would not be a sound mathematical proof due to the presence 
of the contact 1-form 1

G∆ . Furthermore, this reasoning obscures another im-
portant thermodynamic quantity, which is already hidden in the three proposed 
postulates. 

Opposite to most textbooks on thermodynamics, in this paper the definition 
of the Gibbs free energy   is not one of the building blocks for the mathemat-
ical formulation of thermodynamics. Instead the Gibbs free energy   is de-
rived from the combination of the three proposed postulates in non-equilibrium 

 

 

7Examples are: elastic deformation dσ   (with mechanical stress σ  and strain  ), surface change 
dAγ  (with surface tension γ  and surface area A ), electrical polarization dPE−  (with electric 

field E  and electric dipole moment P ), magnetic work dMB−  (with magnetic field B  and 
magnetic dipole moment M ) and galvanic element dQϕ  (with electrical potential ϕ  and elec-
trical charge Q ). 
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thermodynamics and the above general specification for the work flow 1ω . 
Theorem 1 [Gibbs free energy]. For a single component, closed system the 

thermodynamic potential   in the generalized fundamental relation (e.g. Equ-
ation (6)) is the so-called Gibbs free energy  , viz. 

.p F φϑ= + − −                         (17) 

The corresponding pairs of conjugated coordinates X


 and Y


 are: 

ext

e

1 1

xt cjg

2 2 ,
, 3

and ,
and
and , , 2,

3, , .and
j j

k k

Y
Y
Y F j N

N NY D k

p

φ φ

ψ ψ

ϑ
−

= +

= =
= =
= =
= =− = +





 
 
 
 

           (18) 

Proof. The proof starts with the combination of the generalized Gibbs funda-
mental relation and the second law of thermodynamics by substituting Equation 
(13) into Equation (6). Then replace the 1-form 1α  for heat flow using the first 
law of thermodynamics. Finally, use the above specification of the work flow 1ω  
to obtain 

d d d d d .d dX Y p F Dφ φ ψ ψϑ= − − + − −
 

                (19) 

Notice that due to these steps the Gibbs contact 1-form 1
G∆  is removed from 

the above equation, so the Gibbs fundamental relation is reduced to a Pfaffian 
equation where 1∂ ∂ = . This is the essential step that provides crucial fea-
tures for the following derivation. 

The next step in this proof is based on a unique property of thermodynamic 
properties: thermodynamic properties are either extensive or intensive quanti-
ties. Extensive quantities are proportional to the size (or extend) of the thermo-
dynamic system and therefore scalable, while intensive quantities are indepen-
dent of the size of the system. The total volume   of the system is used here to 
scale every extensive quantity in Equation (19), hence  

1 1 1 1 1,  ,  ,  and  .φ φ ψ ψ= = = = =    

         
    

        (20) 

Consider the case that all conjugate coordinates denoted by X


 are extensive 
quantities (viz. then =

 

   ) and all conjugated coordinates denoted by 
Y


 are intensive quantities8. Substitute every relation in Equation (20) to the 
corresponding terms in Equation (19) and apply the product rule of differentia-
tion. Rearrange the resulting equation by collecting all terms with either d  or 
  to obtain  

( ) ( )d d d d d d d 0.p F Y D Fφ φ ψ ψ φ φϑ ϑ− − + + + − + + + + =
 

       

 

         (21) 

The total volume   of a thermodynamic system is larger than zero, while the 
change of volume d  can be positive, negative or equal to zero. So, for an ar-
bitrary system, above equation can only hold when both terms between the 

 

 

8In principle the following derivation is independent of which of the conjugated coordinates is ex-
tensive or intensive, as long as every pair contains of an extensive and an intensive quantity. But it is 
exactly this particular case, which will reveal that the thermodynamic potential   is equal to the 
familiar Gibbs free energy  . The result of the reverse selection of intensive and extensive quanti-
ties is shown at the end of this section. 
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brackets are equal to zero. Hence, the following two relations have been derived 

d d d d d dY D Fψ ψ φ φϑ= − − − −
 

    



                  (22) 

and  

  or   .p F p Fφ φ φ φϑ ϑ= + − − = + − −  

 

              (23) 

Equation (23)2 is obtained by multiplying Equation (23)1 with the total volume 
 . The thermodynamic potential  , as it is specified in Equation (23), is called 
the Gibbs free energy and is therefore denoted by symbol  . 

The final step in this proof is to identify the set of conjugated coordinates X


 
and Y



. Apply therefore the exterior derivative to Equation (23)2 with =   
and use again the product rule of differentiation, then  

d d d d d d d d .p p F Fφ φ φ φϑ ϑ= + + − − − −                  (24) 

This is again a Pfaffian equation for a thermodynamic state function, either for 
the Gibbs energy   or the internal energy  . Subtract then Equation (19) 
from the above Pfaffian equation, which results in the following relation  

d d d d 0d .p F D Yφ φ ψ ψϑ− − + + =
 

                   (25) 

There are wrk cjg2 N N+ +  conjugated pairs of intensive and extensive quantities 
in the above equation, of which the cjgN  intensive quantities Y



 must be iden-
tified. Thermodynamic state variables can change independently and in the 
Gibbs state space ( )1,G GM ∆  there are exactly cjgN  conjugate pairs of intensive 
and extensive quantities (see Darboux’s theorem on page 5). Hence, the set of 
specified intensive quantities { }, , ,p F Dφ ψϑ  must be identical to the set { }Y



 
that must be identified in this proof. Apply this insight to above equation and 
rearrange to get  

( ) ( ) ( ) ( )1 2d d d d 0.j kp F Dφ φ ψ ψϑ+ − − − − + + =            (26) 

Again, for an arbitrary thermodynamic process the above equation can only hold 
when all terms between brackets are equal to zero. The set of extensive conju-
gated coordinates { }



  is therefore also determined.   
Equation (17), which is in this paper derived in the above proof, is in the lite-

rature also known as Euler’s relation (e.g. see [38] [39] [40]). Substitute Equation 
(17) and the pairs of conjugated coordinates in Theorem 1 into Equation (6) to 
obtain the following generalized formulation for the Gibbs fundamental relation 

1d d d d d .Gp F Dφ φ ψ ψϑ= − − + + ∆                 (27) 

Equation (16) can be derived by subtracting the above equation from Equation 
(27), where =  . The equation can also be derived by repeating the proof of 
Theorem 1 for the reversed case, where every X



 is an intensive quantity and 
every Y



 is an extensive quantity (viz. then =
 

   ). This case shows that 
the thermodynamic potential is specified by the following Euler equation 

.Dψ ψ= −                          (28) 

Both Equations (16) and (27) are implementations of Equation (6) for single 
component, closed systems, which is therefore a generic formulation of the third 



E. Knobbe, D. Roekaerts 
 

19 

key element of thermodynamics (besides both laws of thermodynamics). Both 
equations confirm that Gibbs free energy   and internal energy   are ther-
modynamic potentials according to Definition 2. Finally, notice that both equa-
tions contain identical 1-forms, viz. dDψ ψ  and the Gibbs contact 1-form 1

G∆ . 

5. Equilibrium Constraint 

So far, this paper has been focused on the general case of non-equilibrium states 
and arbitrary irreversible processes. For an isolated system (then there are no 
interactions with the surroundings), it is in nature observed, that the macro- 
scopic state of the system does not change any more if one waits sufficiently 
long. The corresponding thermodynamic state is called the equilibrium state of 
the system for which the change of a state function   is equal to zero, hence 

d 0.=                        (29) 

Molecules do not stop moving in such an equilibrium state; there are many 
fluctuations of the microstates, which are not visible on the macroscopic level. 
On a macroscopic level, any perturbation away of an equilibrium state requires 
some kind of exchange with the surrounding of the system. The above equation 
implements a mathematical extremum, which is not present in the proposed 
mathematical framework for non-equilibrium thermodynamics due to the ma-
thematical properties of the Gibbs contact 1-form 1

G∆ . To further clarify this 
point, consider Equation (13) for the case of a closed system without any heat 
flow, then 

1 110  such that  d 0.Gα
ϑ

= = ∆ ≠                 (30) 

The absolute temperature ϑ  and the Gibbs contact 1-form 1
G∆  are defined to 

be everywhere unequal to zero. So, in the case of non-equilibrium thermody-
namics, the change of entropy d  cannot be equal to zero, as is required for an 
equilibrium state. 

Based on the above considerations it becomes clear, that an additional ma-
thematical construct is required to embed equilibrium thermodynamics within 
the proposed mathematical framework. Consider therefore an arbitrary irre-
versible process : G GM Mγ →  and some other kind of process : L LM Mρ → . 
Equilibrium thermodynamics is then formulated by the Legendre submanifold 

LM , which is induced by the pull-back of a map : L GM Mε →  applied to the 
Gibbs contact 1-form 1

G∆  [16] [41] [42] [43]. 
Postulate 4 [Equilibrium constraint]. There exists an equilibrium map  
: L GM Mε → , who’s pull-back is governed by the equilibrium constraint 

1 0.Gε ∗∆ =                         (31) 

This postulate can also be found in the original work of Hermann [15] and 
Mrugała [44] on thermodynamics in a geometric framework. The modern lite-
rature (e.g. see [15] [16] [43] [44] [45] [46]) uses the Legendre manifold LM  to 
derive classical relations in equilibrium thermodynamics. For instance, Mrugała 
writes9: A Legendre manifold LM  of 1

G∆  is a maximum dimensional integral 
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manifold of the Pfaffian equation 1 0Gε ∗∆ = . Classical formulations follow the 
approach of Carathéodory, which is based on Pfaffian equations and exact 
1-forms (e.g. see [18] [30] [31] [33]). 

The distinction between the equilibrium Legendre state space ( )1, GLM ε ∗∆  
and the non-equilibrium Gibbs state space ( )1, GGM ∆  can be clarified based on 
the visualization in Figure 1. The figure shows two equilibrium hypersurfaces 
denoted by A  and B , which are both a function of the coordinates 1Y  and 

2Y . There are indefinitely many equilibrium hypersurfaces, but some of them 
have at one equilibrium state identical partial derivatives (e.g. see point O  in 
the figure). A thermodynamic process is reversible if it connects only equili-
brium states that are on the same equilibrium hypersurface (viz. the solid lines 
denoted by Aρ  and Bρ ). A process becomes irreversible when two neighbor-
ing equilibrium states do not belong to the same equilibrium hypersurface. The 
transition between two equilibrium hypersurfaces requires that the thermody-
namic system has been in a non-equilibrium state. For instance, the 
non-equilibrium states which connect the equilibrium states A  and B  (here 
shown as a jump by the dotted line). Notice that these non-equilibrium states 
depend, besides 1Y  and 2Y , also on the corresponding conjugated coordinates 

1X  and 2X . 
Next some results will be obtained for the case of equilibrium thermodynam-

ics. An underline will be used in this paper to denote symbols that refer to an 
 

 
Figure 1. Geometric visualization of the Legendre state space ( )1, GLM ε ∗∆  for equili-

brium thermodynamics. The graph contains two equilibrium hypersurfaces denoted by 

A  and B . The solid lines Aρ  and Bρ  show two reversible processes, including 
their projection on the 1 2Y Y -plane (dotted lines between O  and C ). Any process that 
leaves an equilibrium hypersurface is irreversible, hence the cycle that goes through the 
points OACBO  can not be reversed without any interaction with the surroundings. 

 

 

9Quote from [44], but modified with the conventions of this paper. 
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equilibrium state on the Legendre submanifold LM . Apply first the pull-back of 
the equilibrium map ε  to the change of the thermodynamic potential   in 
Equation (6), then  

( ) ( ) ( )d d d d ,   where  .ε ε ε ε∗ ∗= = ° = = °     
           (32) 

Then a similar procedure can be applied to pairs of conjugated coordinates in 
Equation (6), where the 1-form 1

cjgd ,  1, ,X Y NΛ = =
 

   becomes equal to 

( )1 1 with  d d      . andX Y X Y X X Y Yε ε ε ε∗ ∗Λ = = = Λ = ° = °
       

    (33) 

Thus, application of the equilibrium map in Postulate 4 to the generalized Gibbs 
fundamental relation in Equation (6) results in 

( ) 10  such that d d d 0.X Yε ∗ + = + Λ =
 

               (34) 

The last relation is called a Pfaffian equation, where the 1-form 1Λ  is an exact 
1-form (see also Definition 1). A state function   is in general a 0-form, where 
the evaluation of the exterior derivative is straightforward (e.g. see [17] [25] 
[47]). Select the set { }Yϒ =



 with cjg1, , N=   as coordinates, then  

( ) d  such that  and    .dZ Y X
Y Y
∂ ∂

= ϒ = = −
∂ ∂ 

 

 

 
         (35) 

The relations in Equation (35)3 follow from the combination of Equations (34)2 
and (35)2, so these relations are only valid for equilibrium thermodynamics. To 
further clarify this point, consider internal energy   as it is defined in Post-
ulate 2 by the exact 1-form 1Γ . Evaluate Equation (35)2 for the non-equili- 
brium case10 and combine the result with Equation (16) to obtain  

1d d d d .Gp F D
Dφ φ ψ ψ

φ ψ

ϑ
   ∂ ∂ ∂ ∂   − + + + − + − = ∆          ∂ ∂ ∂ ∂       

      
  

 (36) 

Since the Gibbs contact 1-form 1
G∆  is everywhere unequal to zero, it is not 

possible to derive relations from the terms between brackets. This observation 
confirms that the relations in Equation (35)3 do not hold for non-equilibrium 
thermodynamics. 

Another example of interesting formulations in equilibrium thermodynamics 
are the so-called Maxwell relations (e.g. see [3] [7] [48]). Apply the equilibrium 
constraint in Postulate 4 to Equation (16), which reduces to the following Pfaf-
fian equation on the Legendre submanifold LM  

( )  sucd d h d that  , , ,d d .p F D U Dφ φ ψ ψ φ ψϑ= − + + =            (37) 

The second relation shows the correct set of canonical coordinates to completely 
specify internal energy   in the case of equilibrium thermodynamics. Apply 
this knowledge to Equation (35)2 and substitute the result in the above Pfaffian 
equation to obtain 

,  ,   and .p F
Dφ ψ

φ ψ

ϑ∂ ∂ ∂ ∂
= = − = =

∂ ∂ ∂ ∂
    
  

          (38) 

 

 

10It is here tacitly assumed that ( ), , ,U Dφ ψ=     , which has to be proven for the non-equilib- 

rium case. 
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Mixed derivatives that originate from a closed 1-form are symmetric11. So, diffe-
rentiate the first relation with respect to volume   and the second relation 
with respect to entropy  , which results in 

.
pϑ ∂∂

= −
∂ ∂ 

                          (41) 

This is one of the familiar four Maxwell relations [3] [5] [6] [7] [48], where it is 
shown in this paper that they can be derived only for the case of equilibrium 
thermodynamics. Finally, apply the pull-back of map ε  to Equation (27) to ob-
tain the following Gibbs fundamental relation on the Legendre submanifold LM  

( )  sud d d d ch that  , , ,d .p F D G p F Dφ φ ψ ψ φ ψϑ ϑ= − + − + =        (42) 

So, the thermodynamic potential (viz. here =  ) is a state function according 
to Definition 1 in the case of equilibrium thermodynamics. Notice that Equation 
(6) is not a Pfaffian equation due to the presence of the Gibbs contact 1-form 

1
G∆ , which is everywhere unequal to zero. Consequently the 1-form 1 dX YΛ =

 

 
in Equation (6) is neither an exact nor a closed 1-form. The thermodynamic po-
tential   is in the presented mathematical framework for non-equilibrium 
thermodynamics not explicitly postulated as a state function that complies with 
Definition 1. 

6. Conclusions 

Classical Non-Equilibrium Thermodynamics (CNET) is the science of pheno-
menological changes in the state of systems. Especially these changes make the 
tools of differential geometry extremely suited for a rigorous mathematical for-
mulation. The presented formulation for non-equilibrium thermodynamics 
consists of the following three base postulates: 
• there exists a non-equilibrium thermodynamic phase space (Gibbs state 

space),  
• energy is conserved (first law of thermodynamics), 
• the difference between heat flow and dissipation is completely integrable 

(second law of thermodynamics). 

 

 

11Definition 1 introduced the non-equilibrium state function as an exact 1-form and Equation (34)1 
shows that the 1-form 1Λ  in a Pfaffian equation is also exact. The mathematical concept of an exact 
1-form originates from the area of differential manifolds (e.g. see [20] [47] [49] [50] [51]). An arbi-
trary exact 1-form 1Λ  can be constructed as a linear combination of the differentials of the coordi-
nates { }Yϒ =



, i.e. for 1,2=  the 1-form 1Λ  can be written as 

( ) ( )1 1
1 1 2 2d d and  d 0.  X Y X YΛ = ϒ + ϒ + Λ =

                      (39) 

Based on the Poincaré lemma, it can be proven that every exact 1-form is also a closed 1-form (see 
[17] [25]). Hence 1Λ  is a closed 1-form, which means that its exterior derivative is equal to zero. 
Apply the exterior derivative to the case of the above example, which results in  

2 2
1 2 1

1 2
1 2 1 2 2 1

d d d 0  such that  .
X X

Y Y
Y Y Y Y Y Y

 ∂ ∂ ∂ ∂
Λ = − ∧ = = ∂ ∂ ∂ ∂ ∂ ∂ 

                 (40) 

The term between parentheses has to vanish since 1 2d d 0Y Y∧ = . Equation (35)2 shows that the coef-

ficients 1X  and 2X  are equal to the partial derivatives of the generating function ( )Z = ϒ , 

which results in the mixed partial derivatives (See also [16]). 

 



E. Knobbe, D. Roekaerts 
 

23 

The thermodynamic phase space is built upon macroscopic properties of a 
system. Neither temporal nor spatial coordinates are considered in the presented 
mathematical formulation of non-equilibrium thermodynamics. The direction 
of processes is not implemented by an explicit inequality in the second law of 
thermodynamics. Instead an implicit reverse is applied: there is a physical quan-
tity that is nowhere equal to zero, viz. the dissipation of energy. Furthermore, no 
explicit signs are assigned to nowhere vanishing physical quantities. Still this 
formulation shows clearly that there can only be a periodic process if and only if 
it is driven by the appropriate heat flow. 

Together with the definition of a state function, other relations are derived 
based on the mathematical properties of this formulation. The mathematical 
structure for the Gibbs fundamental relation follows from the Gibbs state space. 
Through a clever combination with both laws of thermodynamics it can be 
proven that the thermodynamic potential is specified by the Gibbs free energy. 
Other coordinates in the formulation of the Gibbs fundamental relation are 
identified for a single component, closed system. Notice that there is neither in 
the postulates, nor in the derivation of the mathematical framework for non- 
equilibrium thermodynamics any assumption that restricts the arbitrary processes 
to certain classes (e.g. periodic, adiabatic, sufficiently slow, etc.). 

The introduction of an equilibrium state is postponed until the final section, 
where it is introduced as an extremum (viz. no change of a state function). This 
is mathematically implemented by the pull-back of an equilibrium map with the 
condition that there is no dissipation of energy. Such an elaborate construction 
is required, because the dissipation of energy is in the general case of non- 
equilibrium thermodynamics by definition unequal to zero. For the case of an 
equilibrium state, the Gibbs fundamental relation reduces to a Pfaffian equation. 
It is shown that the Maxwell relations in thermodynamics can be derived only 
for the case of an equilibrium state.  
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